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ABSTRACT The recent increase in time-series population genomic data from experimental, natural, and ancient populations has been
accompanied by a promising growth in methodologies for inferring demographic and selective parameters from such data. However,
these methods have largely presumed that the populations of interest are well-described by the Kingman coalescent. In reality, many
groups of organisms, including viruses, marine organisms, and some plants, protists, and fungi, typified by high variance in progeny
number, may be best characterized by multiple-merger coalescent models. Estimation of population genetic parameters under Wright-
Fisher assumptions for these organisms may thus be prone to serious mis-inference. We propose a novel method for the joint inference
of demography and selection under the ¥-coalescent model, termed Multiple-Merger Coalescent Approximate Bayesian Computa-
tion, or MMC-ABC. We first demonstrate mis-inference under the Kingman, and then exhibit the superior performance of MMC-ABC
under conditions of skewed offspring distributions. In order to highlight the utility of this approach, we reanalyzed previously published
drug-selection lines of influenza A virus. We jointly inferred the extent of progeny-skew inherent to viral replication and identified

putative drug-resistance mutations.
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ELUCIDATION of the underlying processes of evolution
through the measurement of temporal changes in allele
frequencies has remained a major focus of population genetics
since the founding of the field (Fisher 1930; Wright 1931).
Advancements in sequencing technologies over the last de-
cade have dramatically increased the availability of genome-
wide time-sampled polymorphism data for a wide variety of
organisms, and several methods have been developed to an-
alyze such data (Malaspinas et al. 2012; Mathieson and
McVean 2013; Foll et al. 2014a; Lacerda and Seoighe 2014;
Steinriicken et al. 2014; Ferrer-Admetlla et al. 2016;
Schraiber et al. 2016; Shim et al. 2016; Rousseau et al.
2017). Of primary interest is the estimation of site-specific
selection coefficients, and new methods account for nonequi-
librium demography and environmental fluctuations by, for
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example, accounting for effective population size, population
structure, and changing selection intensities.

Time-series polymorphism data are generally available
from three sources: experimentally evolved populations, clin-
ical patient samples, and ancient specimens. Viruses are well-
represented among such data, owing both to their obvious
clinical relevance, as well as their short generation times,
small genomes, and relatively high mutation rates. However,
aspects of viral biology render the application of standard
population genetic inference methods problematic. Namely,
existing methodologies for analyzing time-sampled polymor-
phism data are generally developed around the Kingman
coalescent framework and the Wright-Fisher (WF) model
(Wright 1931; Kingman 1982) and are of questionable appli-
cability to organisms typified by large variances in offspring
distributions, or so-called “sweepstakes reproduction,” in-
cluding not only viruses but many classes of prokaryotes,
fungi, plants, and animals (reviewed in Tellier and Lemaire
2014; Irwin et al. 2016).

In particular, the WF model assumes constant population
size, random mating, nonoverlapping generations, and Pois-
son offspring distributions with equal mean and variance. The
Kingman coalescent is derived in the limit of the WF model
and shares its assumptions. Reassuringly, population genetic
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statistics and methods developed under the Kingman have been
shown to be robust to many violations of WF assumptions
(Mohle 1998, 1999), and have been extended to incorporate
selection, migration, and population structure (Neuhauser and
Krone 1997; Nordborg 1997; Wilkinson-Herbots 1998). How-
ever, large variance in offspring number (Eldon and Wakeley
2006; Matuszewski et al. 2018), strong selection (Neher and
Hallatschek 2013; Schweinsberg 2017), large sample sizes
(Wakeley and Takahashi 2003; Bhaskar et al. 2014), and re-
current selective sweeps (Durrett and Schweinsberg 2004, 2005)
may violate the critical assumption underlying the Kingman
coalescent that only two lineages may coalesce at a time.
Such a violation may produce genealogies that are character-
ized by multiple-lineage mergers. Thus, the analysis of genomic
data from organisms characterized by highly skewed offspring
distributions—such as viruses—may be prone to serious mis-
inference if examined with traditional WF and Kingman based
approaches, even under neutrality In particular, the neutral
multiple merger events induced by the reproductive biology
of these organisms may be mistaken for multiple-merger events
induced by positive selection (Hallatschek 2018).

Though not widely utilized for inference, an alternative
class of multiple-merger coalescent (MMC) models have been
developed that are more general than the Kingman (e.g.,
Bolthausen and Sznitman 1998; Pitman 1999; Sagitov
1999; Schweinsberg 2000; Mohle and Sagitov 2001), many
being derived from Moran models generalized to allow mul-
tiple offspring per individual. Many of the recently derived
MMC models form specific sub-classes of the A-coalescent, of
which the Kingman is also a specific case, in which only two
lineages are allowed to merge in a generation (Donnelly and
Kurtz 1999; Pitman 1999; Sagitov 1999). It has been dem-
onstrated that expectations under MMC models differ from
those of the Kingman coalescent in several significant ways:
effective population size (N.) does not scale linearly with
census size (N) as it does under the Kingman (Huillet and
Mohle 2011); the site frequency spectrum (SES) is skewed
toward an excess of low- and high-frequency variants relative
to the standard WF expectations, even under equilibrium
neutrality (Eldon and Wakeley 2006; Blath et al. 2016);
and the fixation probability of new beneficial mutations ap-
proaches one as population size increases (Der et al. 2011).

Eldon and Wakeley (2006, 2008, 2009) introduced a spe-
cific case of the broader class of A MMC models, the W-coalescent,
under which the parameter ¥ describes the proportion of
offspring in the population originating from a single parent in
the previous generation. The W-coalescent has been used in
several instances to infer the strength and frequency of sweep-
stake events in marine organisms typified by Type-III survivor-
ship curves (Eldon and Wakeley 2006; Birkner et al. 2013;
Blath et al. 2016; Matuszewski et al. 2018), and the expected
SFS has been determined under both standard and nonequi-
librium demography (Matuszewski et al. 2018).

Thus, we here introduce a novel statistical inference approach,
termed Multiple-Merger Coalescent Approximate Bayesian
Computation (MMC-ABC), for inferring population genetic
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parameters from time-sampled polymorphism data in popula-
tions subject to sweepstakes reproduction. MMC-ABC first char-
acterizes the neutral demography of the population by generating
genome-wide estimates of N and V. It then estimates site-
specific selection coefficients under the inferred sweepstakes
model. We demonstrate that failing to account for skewed off-
spring distributions results in strong mis-inference of both de-
mography and selection, and that MMC-ABC is capable of
accurate joint estimation of offspring skew and selection coeffi-
cients even when the population size is not precisely known.

Materials and Methods

Forward simulation of populations under the
W-coalescent

Eldon and Wakeley (2006) described a model, the W-coalescent,
where each reproductive event in a population of size N is either,
with probability 1 — € a standard WF event yielding a single
offspring, or, with probability € a multiple-merger event yielding
WN offspring. The probability e = 1/N? such that the coalescent
history of a sample is dominated by multiple-merger events
when 0 <y <2, and y= 2 produces a coalescent history typ-
ical of the Kingman. The rate at which k out of n lineages merge
under the W-coalescent is therefore (Tellier and Lemaire 2014):

Ank = (Z)‘I’k(l—llf)“_k, with0<¥ <1

Under this model, ¥ has a straightforward biological inter-
pretation. Namely, it is equal to the proportion of individuals
in generation t; who are the offspring of a single individual
in t;—; (Eldon and Wakeley 2006). We simulated popula-
tions evolving under a W-coalescent model with SLiM version
3 (Haller and Messer 2019). To circumvent the WF framework
of SLiM, we utilized a system of subpopulations with migration
to achieve the same effect as sweepstakes reproduction events.
Each generation consists of three steps:

1. One individual is chosen from the population (A) and
placed in a separate subpopulation (B) of size N = 1.
The unidirectional migration rate from B to A is set to V.

2. One WF generation occurs, with migration from subpop-
ulation B resulting in the chosen individual contributing
NV of the individuals of the next generation of A. A series
of mate choice callbacks within SLiM force the migration
rate to be exact, rather than stochastic (see source code in
the Supplemental Materials). Thus, each generation is a
mix of N(1 — ¥) individual WF reproductive events and a
single sweepstakes event of magnitude NV.

3. Subpopulation B is removed, and the next generation
begins.

N.-based ABC method

The data X consist of allele frequency trajectories measured
at L loci: x; (i=1,...,L). The N,-based ABC methodology



(modified from the method of Foll et al. 2014a) infers
genome-wide values of N and ¥ and L locus-specific selection
coefficients s;(i=1,...,L). At a particular locus i, we can
approximate the joint posterior distribution as:

P(N,V¥,si|X) ~ P(N,¥|T(X))P(s;|N, ¥, U(X;))

where T(X) = T(Xy,...,X;) denotes summary statistics cho-
sen to be informative about N and ¥ that are a function of all
loci, and U(X;) denotes locus-specific summary statistics cho-
sen to be informative about s;. A two-step ABC algorithm as
proposed by Bazin et al. (2010) is used to approximate this
posterior:

Step 1. Obtain an approximation of the density

P(N, ¥|T(X)) ~ P(N, ¥|X)

1. Simulate L trajectories for J populations X;; using the start-
ing frequencies from the first time point in each trajectory
x;, with N and V¥ for each trajectory sampled randomly
from their priors, and J equal to the total number of sim-
ulation replicates.

2. Compute T(X;;) for each simulated population.

3. Retain the simulations with the smallest Euclidian dis-
tance between T(X) and T(x) to obtain a sample from an
approximation to P(N, ¥|T(X)) ~ P(N, ¥|X).

Step 2. Forlocii=1toi=L:

1. Simulate K trajectories X;; from a W-coalescent model,
with s; sampled randomly from its prior, and N and ¥ from
the joint density obtained in Step 1.

2. Compute U(X;x) for each simulated trajectory.

3. Retain the simulations with the smallest Euclidian dis-
tance between U(X;) and U(x;) to obtain a sample from an
approximation to P(s;|N, ¥, X;)P(N, ¥|X) = P(N, ¥, s;|X).

In Step 1 of MMC-ABC, a population of size N and skew ¥
(chosen from their prior distributions) is evolved with vari-
ants matching those described by the empirical data. The
starting frequencies x;1(i = 1,...,L) are identical to those
observed during the first sampled time point. The frequency
of each allele under consideration is output at each genera-
tion of the trajectories in X.

As in the WF-ABC methodology of Foll et al. (2014b), we
define T(X) as a single statistic, Fs’, an unbiased estimator
of N, under the WF model, given by Jorde and Ryman
(2007):

, 1Fs[1—-1/(2n)] —2/n
S Tt A+ Es/A1-1/(ny)]

with Fs = X7y
z(1

where x and y are the minor allele frequencies at the two time
points separated by t generations, z = (x +y)/2, and n is the
harmonic mean of the sample sizes n, and n, at the two time
points expressed in the number of chromosomes (twice the
number of individuals for diploids). We averaged Fs' values

over sites and times to obtain a genome-wide estimator of
N, = 1/Fs' for haploids and N, = 1/2Fs’ for diploids (Jorde
and Ryman 2007). Note that we use the common notation where
N, corresponds to the effective number of individuals, and the
corresponding number of chromosomes for diploids is 2N,.

In Step 2 of MMC-ABC, simulations are performed for each
site with an initial allele frequency and sample size matching
those observed, and with N and ¥ drawn from a joint posterior
derived during Step 1 and the selection coefficient s chosen
from its prior. At each site we utilize two summary statistics
derived from Fs': U(X;) = (Fsd';, Fsi';), with Fsd' and Fsi’ cal-
culated, respectively, between pairs of time points where the
allele considered is decreasing and increasing in frequency,
such that, at a given site, Fs’ = Fsd’' + Fsi'. For the diploid
model, we define the relative fitness as wpq =1 +s5,
Waq = 1+ sh, and wy, = 1, where h denotes the dominance
ratio (1 = dominant, 0.5 = codominance, 0 = recessive), and
aswy = 1+ sandw, = 1 for the haploid model (Ewens 2004).

Simulated data sets for testing performance of MMC-
ABC

The data used for testing the performance of MMC-ABC were
generated in one of two ways:

1. A diploid population of size N was first evolved under stan-
dard, neutral WF conditions for a burn-in period of 50,000
generations, and then evolved for a period of time under
sweepstakes conditions. The frequencies of every segregat-
ing allele were output at the onset of sweepstakes condi-
tions and at predetermined intervals for a set number of
generations, including mutations present at the start of out-
put as well as mutations that arose or fixed during the out-
put period. Trajectories meeting minimum criteria (at least
three informative time points, at least two consecutive time
points with frequency >0.01, and at least one time point
with frequency higher than 0.025) were retained. Data
were generated in this manner for testing the performance
of Step 1 of MMC-ABC (joint estimation of N and ¥). Un-
filtered single-time point population data were used to gen-
erate the observed SFS data in Figure 1.

2. Individual trajectories of mutations of a given starting fre-
quency with selection coefficient s were modeled in a
diploid population of size N with free recombination so
that all sites were unlinked, with allele frequency trajec-
tories and sweepstakes dynamics beginning in generation
one. Trajectories generated in this manner were pooled
into larger data sets for use in testing the performance of
Step 2 of MMC-ABC (estimation of site-specific selection
coefficients), with all allele trajectories beginning at
a minor allele frequency of 10%—a frequency low enough
that most neutral mutations should not fix, but high
enough to ensure the availability of multiple informative
time points for most trajectories.

We frequently used a fixed value of ¥ = 0.1 throughout our
study;, as this is close to the value estimated for experimentally
evolved lines of influenza analyzed below. Additionally, at this
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Figure 1 (A) The site frequency  spectrum  (SFS)  for

¥ €{0,0.1,0.2,0.3,0.4,0.5}, derived from values averaged over 100 rep-
licate simulations at N = 1000 with sample size n = 250. (B) The value of
Tajima’s D for 0 = ¥ = 0.25 averaged across 100 replicate simulated pop-
ulations with sample size n = 30. As shown, offspring skew strongly biases
commonly used summary statistics, even under equilibrium neutrality.

level of skew, multiple mergers should dominate the coales-
cent history of a population without entirely eliminating all
segregating variation. When ¥ > 0.25, variation is generally
eliminated from the population more quickly than it can be
generated, and we therefore restricted most of our analyses
performed over a range of ¥ to values of ¥ < 0.25.

Analysis of drug-resistance in influenza A virus

We applied MMC-ABC to time-series polymorphism data from
experimentally evolved populations of influenza A virus,
originally described by Foll et al. (2014a). The data consist
of population genomic sequencing from two control lineages
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Figure 2 Estimation of ¥ by MMC-ABC. Estimates were averaged over
1000 replicate populations of size N = 1000, with an average of 300 poly-
morphic sites per population tracked at 20 time points over 200 genera-
tions with a minimum of 8 informative time points, with the correct value
of N specified to MMC-ABC. True values of ¥ are indicated by the dashed
line. Thus, MMC-ABC accurately estimates the value of ¥ from time-
series data when the true value of N is known.

and two lineages exposed to exponentially increasing con-
centrations of the influenza drug oseltamivir, reared on
Madin-Darby canine kidney (MDCK) cells and sampled
every 13 generations. The data were previously analyzed with
WEF-ABC and putative drug-resistance mutations were identi-
fied. We reanalyzed the data with MMC-ABC for comparison.

Data availability

The source code and manual for MMC-ABC, along with the
SLiM and python scripts used to generate our simulated data,
are publicly available at https://github.com/sackmana/
MMC-ABC/. The raw data from the experimentally evolved
influenza virus populations can be found at the ALiVE repos-
itory at http://bib.umassmed.edu/influenza/. Supplemental
material available at Figshare: https://doi.org/10.25386/
genetics.7579943.

Results and Discussion

Effects of skewed offspring distributions on variation
within populations

To underscore the importance of properly accounting for
skewed offspring distributions when inferring selection from
population genetic data, we briefly illustrate the effects of
sweepstakes reproduction on two population genetic sum-
mary statistics. Under a model of sweepstakes reproduction
where the variable ¥ describes the proportion of individuals
in a generation that are the offspring of a single individual in
the previous generation, we summarize in Figure 1 the SFS
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Figure 3 (A) Estimation of ¥ by MMC-ABC. Estimates were averaged
over 100 replicate populations of size N = 1000 with values of ¥ and N
drawn from priors ~ U[0,0.3] and ~ U[250,4000], demonstrating the
robustness of MMC-ABC to mis-specification of census size. True values
of ¥ are indicated by the dashed line. (B) Estimation of ¥ by MMC-ABC,
with estimates averaged over 100 replicate populations of size N = 1000
with either the correct value of N or an incorrect value of N
(N € {250,500, 1000, 2000, 4000} ) specified, demonstrating the nonlin-
ear relationship between N and N, under the W-coalescent, with mis-
specification of N having little effect on the accurate estimation of ¥
when ¥ is large.

and Tajima’s D, averaged over 100 replicate populations of
size N = 1000 under a broad range of V.

The primary points of note are that, under equilibrium
neutrality, nonzero values of ¥ skew the SFS toward an excess
of singletons and high-frequency variants, and that Tajima’s
D is negatively correlated with ¥. The reader may note that
Tajima’s D is slightly negative for ¥ =0, as should be
expected given that Tajima’s D is a biased summary of the
SFS dependent upon the recombination rate (Thornton 2005).
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Figure 4 (A) Estimation of s by MMC-ABC and WF-ABC for 1000 sites
under selection for s e {0,0.1,0.2,0.3,0.4} with the true values of
N = 1000 and ¥ = 0.1 provided to MMC-ABC and the true value of N
provided to WF-ABC. Results presented in a standard box plot with the
box as the first, second, and third quartiles, and the whiskers as the
lowest and highest datum within the 1.5 interquartile range of the lower
and upper quartiles, respectively. Red circles indicate the true value of s,
and blue triangles indicate the sample mean. (B) Estimation for
5€{0,0.005,0.01,0.015,0.02} with the same conditions as above.
WEF-ABC tends to underestimate s for neutral alleles and overestimate s
under strong positive selection under sweepstakes reproduction.

Hence, it is clear that failure to account for offspring skew
may result in mis-inference, as null model expectations differ
strongly from those of the WF model. In the following sections,
we will demonstrate that accounting for sweepstakes repro-
duction simply as a decrease in N, (as in WF-ABC) results in
highly biased estimates of selection. However, explicitly in-
corporating the underlying processes of MMC events can
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Figure 5 Estimation of s by MMC-ABC (A) and WF-ABC (B). Dots represent 1000 sites under selection with the true s ranging from —0.1 to 0.4. For
each site, we estimated s from 10,000 simulations with a uniform prior ~ U[—0.2,0.6]. MMC-ABC was provided with the correct values of ¥ = 0.1 and
N. As shown, MMC-ABC is a relatively unbiased estimator of s under offspring skew, while WF-ABC strongly overestimates s for positively selected sites,

and underestimates s for neutral and negatively selected sites.

correctly adjust for their effects and yield accurate and pre-
cise estimates of s from time-series data.

Estimation of ¥ with MMC-ABC

In Step 1 of MMC-ABC, the trajectories of all sites included in
the data are used to estimate N, using the unbiased estimator
of Jorde and Ryman (2007). In the case where the census size
or harmonic mean of the population size across all time
points is known, as is often the case in experimental lineages,
populations of census size N with sweepstakes parameter ¥
drawn from its prior and mutational frequencies matching
those at the first time point of the data are simulated for
the same number of generations as the original data. The best
1% of simulations are retained to generate a posterior for V.

MMC-ABC is able to accurately infer ¥ over a broad pa-
rameter space. Figure 2 shows the mean of the posterior
distribution of ¥ averaged over 1000 replicate populations
each at ¥ € {0,0.01,...0.25} in the case where the correct
value of N is specified. These illustrative parameter values
were chosen to match general features of common viral ex-
perimental evolution studies (e.g., Foll et al. 2014a; Bank
et al. 2016; Ormond et al. 2017).

Although in cases of experimental evolution precise mea-
surements of N may be available to inform the prior used in
Step 1 of MMC-ABC, knowledge of the size of the population in
question may not be available. Therefore, we determined the
power of MMC-ABC to accurately estimate ¥ in the absence of
knowledge about the true value of N. In this case, both N and
¥ are drawn from priors, and MMC-ABC generates a joint
posterior for the two parameters. We found that MMC-ABC
is a good estimator of ¥ even when a large, uniform prior is
used (Figure 3). MMC-ABC likewise performs well in the case
where a single, incorrect value of N is specified, particularly for
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high values of ¥, at which ¥ converges at the true value due to
the nonlinear relationship between ¥ and N, (Figure 3).

We assessed the performance of MMC-ABC over a range of
data types, including cases with 5, 11, or 21 time points
over a span of 100 generations, as well as for sample sizes
of 25, 100, and 250 for populations of N =1000 at
¥ € {0,0.05,0.1,0.15,0.2} (Supplemental Material, Fig-
ures S1 and S2). As expected, the estimation of ¥ improves
with larger sample sizes and more densely sampled time
points. However, MMC-ABC remains a good estimator of ¥,
even with as few as five time points or a sample size of 25.

To assess the ability of MMC-ABC to perform accurate
inference from time-series data including ancient samples,
we estimated ¥ for 500 replicate simulated populations
with data from 10 time points spaced 10 generations apart,
and a single time point 500 generations in the past. The
true value of ¥ was 0.1 for all populations, with roughly
one third of sites being nonzero at the ancient time point.
The average value of ¥ estimated across all replicate pop-
ulations was 0.10 (Figure S3).

Estimation of site-specific selection coefficients

In the second step of MMC-ABC, the posterior distributions of
N and ¥ obtained in Step 1 are used to simulate 10,000
trajectories at each site x; (i = 1,...,L) with the alleles in-
troduced in the population at the initial frequency x;; pro-
vided in the data. The best 1% of simulations are retained to
generate a posterior for s. Foll et al. (2014b) previously dem-
onstrated WF-ABC to be a good estimator of genome-wide N,
and site-specific selection coefficients in populations well-
described by the Kingman coalescent. The performance of
WEF-ABC matched or exceeded that of similar methods.
Therefore, we restrict our comparison of the performance
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Figure 6 Estimation of s by MMC-ABC for 9500 neutral sites and
500 sites for which s =0.1 with N = 1000 and ¥ = 0.1, with N esti-
mated over a uniform prior ~ U[250,2000], ¥ estimated from the prior
~ U[0,0.3], and s estimated over ~ U[—0.2,0.6]. Note that we display
the relative frequencies for estimated values of s for each class of muta-
tion, for which there were unequal numbers of total sites. These results
demonstrate the ability of MMC-ABC to jointly and accurately estimate N,
¥, and s from genomic data, even when a large number of sites are
under positive selection.

of MMC-ABC to that of WF-ABC. For a detailed comparison of
the performance of WF-ABC with that of other methods, in-
cluding those of Bollback et al. (2008), Malaspinas et al.
(2012), and Mathieson and McVean (2013), see the results
of Foll et al. (2014b).

To compare the ability of MMC-ABC and WF-ABC to infer
site-specific selection coefficients, we estimated s for 1000 tra-
jectories simulated under the W-coalescent with N = 1000
and ¥ = 0.1 for s € {0,0.1,0.2,0.3,0.4}. All allele trajecto-
ries began from a minor allele frequency of 10%. Because the
summary statistics used by MMC-ABC and WF-ABC assume
that the majority of sites are neutral, we provided true values
of N and ¥ to MMC-ABC and of N to WF-ABC in this initial
comparison. As shown in Figure 4, MMC-ABC is very accurate
at estimating s under recurrent and strong sweepstakes
reproduction, while WF-ABC consistently overestimates se-
lection coefficients for positively selected sites and underes-
timates s for neutral sites. The same is true for small values of
s €{0,0.005,0.01,0.015,0.02}. The results of the same
analysis performed over a broad range of 0 < ¥ < 0.2 dem-
onstrate that the performance of WF-ABC rapidly deterio-
rates when V is as large as 0.04 (Figure S4).

Estimating s for single trajectories of mutations covering a
wider range of true selection coefficients from —0.1 to 0.4, it
is evident that MMC-ABC is not only a good estimator under
sweepstakes reproduction of selection for sites under positive
selection and neutrality, but is also accurate for sites under
negative selection. WF-ABC, however, in addition to having a

strong bias toward overestimation of s for sites under positive
selection, is negatively biased for neutral and negatively se-
lected sites (Figure 5). Inference under the Kingman for or-
ganisms that violate the assumption of small variance in
progeny distributions is thus prone to serious over- or un-
der-estimation of selection coefficients, while correctly ac-
counting for reproductive skew produces accurate estimates
of selective strength. This mis-inference under the WF model
results from the acceleration of transit times under sweep-
stakes reproduction, which are interpreted by WF-ABC as an
amplification of positive or negative selection.

As with the estimation of ¥, we assessed the performance
of Part 2 of MMC-ABC over a range of data types, including
cases with 5, 11, or 21 time points over a span of 100 gener-
ations, as well as for sample sizes of 25, 100, and 250 for
populations of N = 1000 ats € {0,0.1,0.2,0.3,0.4} (Figures
S5 and S6). Again, as expected, the estimation of s improves
with larger sample sizes and more densely sampled time
points. However, MMC-ABC is a reasonably good estimator
of s even with as few as five time points or a sample size of 25.

Joint estimation of N, ¥, and s

We simulated trajectories for 9500 neutral loci and 500 se-
lected loci for which s = 0.1, under conditions in which
N = 1000 and ¥ = 0.1. MMC-ABC estimated first N and ¥
over priors of ~ U[250,2000] and ~ UJ0,0.3], respectively,
and then estimated s for each site with values of N and ¥
drawn from the joint posterior (Figure 6). The estimated
value of ¥ = 0.101, the mean estimated value of s for neutral
sites was —0.008, and for positively selected sites was
0.0924, highlighting the ability of MMC-ABC to jointly esti-
mate the magnitude of skewed offspring distributions and
site-specific selection coefficients with accuracy, even when
a relatively large proportion (5% in this case) of sites are
under strong positive selection.

Results of similar analyses comparing the performance
of MMC-ABC and WF-ABC for sets of simulated trajectories
of 1900 neutral and 100 selected loci with ¥ € {0,0.1,0.2}
ands € {0.1,0.2,0.3,0.4} demonstrate good performance of
MMC-ABC over a broad range of ¥, and poor performance of
WF-ABC when ¥ > 0 (Figures S7 and S8).

These results are notable, given that both recurrent positive
selection and skewed progeny distributions can result in co-
alescent trees dominated by multiple-mergers (Durrett and
Schweinsberg 2004, 2005). Different features of the data—
resulting from the localized effects of selection and the ge-
nome-wide effects of sweepstakes reproduction—allow us to
disentangle the MMC behavior of neutral offspring skew from
that of non-neutral offspring skew generated by positive
selection.

Application to data from influenza A

We applied MMC-ABC to time-series data from the ex-
perimental evolution of influenza A. These data were
collected under standard culture conditions and during a
period of exposure to exponentially increasing concentrations
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Table 1 Influenza A virus mutations identified as significantly beneficial by MMC-ABC

Substitution

WF-ABC s

MMC-ABC s

Segment  Position type Initial freq. (%) Final freq. (%) estimates (99% HPDIs)  estimates (99% HPDIs)
Control 1 HA 1395 Nonsynonymous 0.03 92.5 0.12 (0.05, 0.19) 0.14 (0.06, 0.21)
Control 2 HA 1211 Nonsynonymous 0.04 100.0 0.20 (0.08, 0.35) 0.23 (0.15, 0.32)
Drug 1 PA 2194 Synonymous 1.4 36.7 0.09 (0.02, 0.17) 0.11 (0.05, 0.18)
HA 48 Synonymous 0.1 92.3 0.14 (0.06, 0.27) 0.16 (0.05, 0.24)
HA 1395 Nonsynonymous 0.06 99.9 0.22 (0.08, 0.34) 0.27 (0.13, 0.42)
NA 582 Synonymous 0.02 98.3 0.29 (0.15, 0.45) 0.43 (0.28, 0.56)
NA 8232 Nonsynonymous 0.04 99.5 0.15 (0.06, 0.24) 0.18 (0.08, 0.28)
Drug 2 NA 8232 Nonsynonymous 0.04 90.3 0.27 (0.12, 0.48) 0.26 (0.13, 0.42)

7 Sites of known drug-resistance mutations

of the drug oseltamivir (Foll et al. 2014a; Renzette et al.
2014).

The data consist of time-sampled minor allele frequencies
for two control lineages and two drug-selected lineages. Using
WEF-ABC, Foll et al. (2014a) previously estimated the effec-
tive population sizes of the control and selected populations
to be 176 and 226, respectively, with values of N, derived
from the harmonic means of the population sizes during pas-
saging being 737 and 696, respectively. They hypothesized
that the discrepancies in measurements of N, were likely due
to the large variance in viral burst sizes, yielding skewed
offspring distributions. These experimentally evolved popu-
lations are therefore well-suited to the application of MMC-
ABC.

We first obtained estimates of ¥ for each population, using
the harmonic population size means as a prior for N. We then
obtained posterior distributions of s for all mutations segre-
gating in at least two time points and with a minimum fre-
quency of 2.5% for at least one time point. We define
Bayesian “P-values” for s as P(s < O|x) and consider a trajec-
tory to be “significant at level p” if its equal-tailed
100(1 —p)% posterior interval excludes zero (Beaumont
and Balding 2004).

The mean posterior estimate of ¥ for the two control lines
was 0.067, and the mean value of ¥ across both drug-
treatment lines was 0.084. MMC-ABC recovered two of the
same six control line mutations and 7 of the 15 mutations
from the drug selection lines identified by Foll et al. (2014a)
as being beneficial at the level p = 0.01 (Table 1, summariz-
ing all 8 mutations significant under MMC-ABC and 8 of the
20 significant under WE-ABC, sites of known drug-resistance
mutations shown in bold font). The mutations of significant
beneficial effect under WF-ABC had an average effect of
s =0.1 for control line mutations and s = 0.13 for drug-
selection mutations. The same sets of mutations (including
those that did not achieve significance under MMC-ABC) had
average effects of s =0.11 and s = 0.17, as estimated by
MMC-ABC.

The beneficial mutations identified in the control lines are
likely adaptations to the MDCK cells used in serial passaging.
One mutation at nucleotide position 1395 of the hemagglu-
tinin segment, which rose to high frequency in the first control
and drug lines, has been widely observed across influenza
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strains and is a common adaptation to tissue culture (Daniels
et al. 1985; Reed et al. 2009; Foll et al. 2014a). Another
mutation, which reached high frequency in the second con-
trol line, has likewise been associated with adaptation to
culture conditions (Lin et al. 1997; Ilyushina et al. 2007).
Notably, the mutation at position 823 of the neuraminidase
segment (identified as H275Y under the N2 numbering sys-
tem) achieved high frequency in both drug lineages, and is a
well-documented resistance mutation for oseltamivir (Sha
and Luo 1997; Arzt et al. 2001; Collins et al. 2008).

Six of the eight synonymous mutations found to be signif-
icantly beneficial by WF-ABC were not significantly beneficial
under MMC-ABC. By estimating an appropriate neutral null
model under the W-coalescent, we reduced the list of candi-
date resistance mutations, thus likely minimizing the rate of
false positives and excluding many hitchhiking mutations (as
the synonymous sites are likely to be). This is supported by an
analysis of the proportion of neutral and positively selected
mutations that are significantly beneficial or deleterious un-
der WF-ABC and MMC-ABC, which demonstrated a high
false-positive rate of neutral mutations classified as strongly
beneficial by WF-ABC under moderately strong offspring
skew (Table S2). Several experimentally validated mutations
known to improve either infectivity in tissue culture or re-
sistance to oseltamivir were retained under MMC-ABC, as
were a handful of other potential candidate resistance
mutations.

Conclusions

The revolution in sequencing technology has increased the
availability of time-series polymorphism data by orders of
magnitude, but the utility of such data relies upon the deri-
vation and development of appropriate inference methodol-
ogies. The neutral biology of large swaths of the tree of life
renders the most common class of method based on the
Kingman coalescent of questionable use. We have demon-
strated here that performing inference under the assumptions
of the Wright-Fisher model and the Kingman coalescent leads
to an incorrect understanding of both population size and
selection coefficients in such organisms. Matuszewski et al.
(2018) have also shown this to be true for the demographic
history of the population. Fortunately, the theoretical details
are in place to develop similar inference of demography and



selection under biologically appropriate alternative coales-
cent models (Wakeley 2013).

We have shown that MMC-ABC is able to jointly estimate
N, ¥, and site-specific selection coefficients accurately, even
under high levels of reproductive skew and with an unknown
population size. Notably, we were able to distinguish selec-
tion-induced offspring skew from skew originating from the
neutral reproductive biology of populations, largely due to
the genome-wide scale of MMC events relative to the local-
ized effects of selection. We were also able to differentiate
drift-induced effects imposed by small population sizes from
those induced by sweepstakes reproduction events.

Very little is known regarding the extent of progeny skew
across groups of viruses, bacteria, and plants, or the extent of
skew artificially induced by domestication and cultivation.
However, this work demonstrates that, at least with time-
sampled allele frequency data, such inference is now possible.
Moreover, our method will allow for the construction of much
more accurate neutral null models in these organisms, which
will greatly reduce false-positive rates in scans for selection,
provide a more accurate picture of demographic history, and
reveal previously hidden details regarding variance in off-
spring number.
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