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Multi-population GWAS and enrichment
analyses reveal novel genomic regions and
promising candidate genes underlying
bovine milk fatty acid composition
G. Gebreyesus1,2* , A. J. Buitenhuis1, N. A. Poulsen3, M. H. P. W. Visker2, Q. Zhang4, H. J. F. van Valenberg5,
D. Sun4 and H. Bovenhuis2

Abstract

Background: The power of genome-wide association studies (GWAS) is often limited by the sample size available for
the analysis. Milk fatty acid (FA) traits are scarcely recorded due to expensive and time-consuming analytical techniques.
Combining multi-population datasets can enhance the power of GWAS enabling detection of genomic region explaining
medium to low proportions of the genetic variation. GWAS often detect broader genomic regions containing several
positional candidate genes making it difficult to untangle the causative candidates. Post-GWAS analyses with data on
pathways, ontology and tissue-specific gene expression status might allow prioritization among positional candidate genes.

Results: Multi-population GWAS for 16 FA traits quantified using gas chromatography (GC) in sample populations of the
Chinese, Danish and Dutch Holstein with high-density (HD) genotypes detects 56 genomic regions significantly associated
to at least one of the studied FAs; some of which have not been previously reported. Pathways and gene ontology (GO)
analyses suggest promising candidate genes on the novel regions including OSBPL6 and AGPS on Bos taurus autosome
(BTA) 2, PRLH on BTA 3, SLC51B on BTA 10, ABCG5/8 on BTA 11 and ALG5 on BTA 12. Novel genes in previously known
regions, such as FABP4 on BTA 14, APOA1/5/7 on BTA 15 and MGST2 on BTA 17, are also linked to important FA metabolic
processes.

Conclusion: Integration of multi-population GWAS and enrichment analyses enabled detection of several novel genomic
regions, explaining relatively smaller fractions of the genetic variation, and revealed highly likely candidate genes underlying
the effects. Detection of such regions and candidate genes will be crucial in understanding the complex genetic control of
FA metabolism. The findings can also be used to augment genomic prediction models with regions collectively capturing
most of the genetic variation in the milk FA traits.
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Background
Several fatty acids (FAs) of varying carbon chain length
(C4-C22) and degree of saturation are present in milk.
FAs in milk can originate either through direct transport
from the rumen to the mammary gland via the blood, or

from de novo synthesis in the mammary gland from
acetate, beta-hydroxybutyrate [1] and propionate [2, 3].
Additionally, FAs in the mammary gland can originate
from mobilization of body fat reserves. The short and
intermediate chain FAs are mostly synthesized de novo
in the mammary gland with the exception of C16:0, of
which approximately 50% is assumed to be synthesized
de novo. The long chain FAs, and approximately 50% of
C16:0, are suggested to be derived from blood lipids ori-
ginating from the diet [4] and mobilization of body fat
reserves [1]. Considerable genetic variation has been
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reported for the fat composition of milk [5, 6]. Part of
this genetic variation is attributed to polymorphisms in
genes with major effects such as DGAT1 and SCD1 [7].
In addition, several regions on the bovine genome with
suggestive effects on milk fat composition have been re-
ported from GWAS [8–10]. Identified genes and gen-
omic regions explain a fraction of 3.6 to 53% of the total
genetic variation in different milk FA traits [8, 11]. De-
tection of additional genomic regions requires availability
of larger sample size and high-density markers. GC ana-
lysis, the current method of choice to quantify milk FA,
requires expensive equipment and is time-consuming, thus
limiting measurement of the traits to experimental scale.
GWAS for the milk FA traits so far relied on such

smaller datasets within different dairy cattle breeds/pop-
ulations. An option to deal with the limitation in sample
size could be to combine the available smaller datasets
across populations for joint GWAS. Such analyses can
increase detection power depending on the genetic dis-
tance between the populations and the marker density
[12]. In this study, we undertake multi-population GWAS
for milk FA traits by combining samples from Chinese,
Danish and Dutch Holstein Friesians with HD genotypes
available. Previous studies show high consistency in the
linkage disequilibrium (LD) and minor allele frequencies
between the populations [13, 14]. Thus, combining sam-
ples from these populations for joint GWAS might allow
identification of genomic regions explaining even small
proportions of the genetic variation in milk FA traits.
A hurdle is that due to the long range of LD in live-

stock breeds, GWAS often result in detection of large
genomic regions [15] containing several positional can-
didate genes. Identifying the actual causative variants,
therefore, requires additional evidence on top of the
GWAS. Enrichment analysis is commonly undertaken in
GWAS to prioritize positional candidate genes linked to
significantly enriched pathways and gene ontology (GO)
terms that are believed to be relevant to traits of interest.
However, FA synthesis can take place in various mam-
malian tissues and thus further evidence is needed to de-
termine whether such prioritized genes are relevant
particularly to milk FA related mechanisms. Studies have
been profiling differential expression of genes in the
mammary tissues in various species [16, 17]. Information
on expression status of genes in the mammary tissues can
been used to further prioritize candidate genes linked to
FA related pathways. Furthermore, the mammalian pheno-
type ontology [18], which provides annotation of mamma-
lian phenotypes in the context of mutations, is increasingly
becoming useful in fine-tuning the link between detected
genes and phenotypes associated [19].
In this study, we implement GWAS for milk FA com-

position using multi-population dataset. Furthermore,
we undertake post-GWAS analyses to identify, prioritize

and functionally annotate genes within detected genomic
regions using multiple information sources including
Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, mammary gland gene
expression status and information in the mammalian
phenotype ontology database [18].

Results
Descriptive statistics and genetic parameters
Table 1 presents phenotypic means, additive genetic var-
iances and heritability estimates of the FAs expressed as
weight percentage of total fat and the desaturation in-
dexes in the combined multi-population dataset. The 13
FAs studied together amounted to 87.6% of total fat. Of the
studied FAs, C18:3n3 and CLA occurred at concentrations
less than 1% of total fat in the milk samples. Other FAs in-
cluding C15:0, C8:0, C14:1 and C16:1 also occurred at low
concentrations of total fat (means = 1.09–1.49). Coefficients
of variation (not shown) of the FA traits ranged between
0.06% (C18 index) and 0.43% (CLA). Heritability estimates
in the studied FA traits ranged from low (0.18) for C18:2n6
to high (0.53) for C14 index. The dataset used in the
current study comprises samples from the Chinese, Danish
and Dutch Holstein population and details regarding
descriptive statistics and genetic parameters within each
population can be found in our previous study (Submitted).

Detected genomic regions
Our multi-population GWAS resulted in the detection of
56 genomic regions containing single nucleotide polymor-
phisms (SNPs) significantly associated with at least one of
the studied FA traits (Table 2). Significant associations were
detected on all chromosomes except BTA 18. Most of the
FA traits showed significant associations with multiple
genomic regions on several chromosomes; particularly for
C10:0 (14 regions), C16:0 (12 regions), C16:1 (13 regions),
C18:1c9 (11 regions) and C16 index (13 regions). Propor-
tions of genetic variance explained by the lead SNPs in the
detected regions ranged between 1.4 and 45.3% for the dif-
ferent FA traits studied.
Peak sizes (highest –log 10 p-value) across FA traits

ranged from a –log 10 p-value of 6.9 for C18:0 to a –log
10 p-value of 126 for C14 index. Figs. 1, 2, 3 and 4
present Manhattan plots for all FAs according to the dif-
ferent FA groups i.e., de novo FAs (Fig. 1), intermediate
to long-chain saturated FAs (Fig. 2), the unsaturated FAs
(Fig. 3), and desaturation indexes (Fig. 4). The strongest
association for C8:0 (−log10 p-value = 11.39), C15:0
(−log10 p-value = 21), C16:0 (−log10 p-value = 58), C16:1
(−log10 p-value = 55), C18:1c9 (−log10 p-value = 46),
C18:2n6 (−log10 p-value = 29), C18:3n3 (−log10 p-value =
24.8), CLA (−log10 p-value = 18.1) and C18 index (−log10
p-value = 19.3) was observed at two variants on BTA 14
(ARS-BFGL-NGS-4939 and BovineHD1400000216). This
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region (14a) was significantly associated with all studied
FA traits except C12:0. The lead SNP in this region ex-
plained up to 34% of the genetic variation in C18:1c9 and
C18:2n6. Two other regions on BTA 14 remained signifi-
cantly associated with multiple FA traits after accounting
for the fixed effect of the lead SNP from region 14a
(ARS-BFGL-NGS-4939). The second region (14b) was
also significantly associated with most FA traits except
C12:0. The third region on BTA 14 (14c), was significantly
associated with C14:1, C16:1, C14 index and C18 index.
The lead SNP in this region explained 2.7% of the genetic
variation in C18 index and 1.6% in C14 index.
Strongest association for C10:0 (−log10 p-value = 24.3),

C12:0 (−log10 p-value = 22) and C14:0 (24.2) was detected
with two variants on BTA 19 (BovineHD1900014372 and
BovineHD1900014348). Significant associations were also
detected for C8:0, C16:0, C18:1c9, C14 index and C18
index with SNPs located between 37.3 to 61.3 Mbp on
chromosome 19. Particularly for C14:0, 22.3% of the genetic
variation was explained by the lead SNP in this region.
The strongest association for C14:1 (−log10 p-value =

98.8), C14 index (−log10 p-value = 126) and C16 index
(−log10 p-value = 39.8) was found with SNPs on chromo-
some 26 (BovineHD2600005461). Significant associations

were also detected for C8:0, C10:0, C12:0, C14:0, C16:0,
C16:1, C18:0 and C18 index. The lead SNP in this region
explained 39.0% of the genetic variation in C14:1.
Effects of lead SNPs in all the detected genomic regions

are presented in Additional file 1. In general for most of
the regions, directions of effects were opposite for the de
novo synthesized FAs versus the long chain FAs.

Gene assignment and functional annotations
Several genes positioned within the detected genomic re-
gions were retrieved from the ensemble database. These
positional candidate genes were further prioritized using
enrichment analyses implemented in the DAVID web
platform (https://david.ncifcrf.gov), which resulted in dif-
ferent significantly enriched GO terms and KEGG path-
ways relevant to FA related mechanisms (Table 3).
Among the enriched GO terms and pathways were bio-

synthesis related, such as ‘GO:0006633~FA biosynthetic
process’, binding and transport related, such as ‘GO:
0008289~lipid binding’ and ‘GO:0010876~lipid localization’,
and metabolism, such as ‘GO:0006631~FA metabolic
process’ and ‘bta00564:Glycerophospholipid metabolism’.
Some among the set of genes in all significantly

enriched pathways and GO terms (Additional file 2)
were also found to be expressed in mammary tissues
and epithelial cells across different species. Furthermore,
some of the prioritized candidate genes were linked to
abnormalities related to FA metabolism in the mamma-
lian phenotype database including ‘increased circulating
triglyceride levels’ (MP:0001552), ‘abnormal lipid homeo-
stasis’ (MP:0002118) and ‘abnormal phospholipid level’
(MP:0004777).
Apart from genes, also non-coding genomic features

such as micro RNAs were located within the detected
genomic regions as presented on Additional file 3.

Discussion
Agreement between detected regions and previous
reports
Our multi-population GWAS resulted in detection of large
numbers of genomic regions significantly associated with
at least one of the 16 milk FA traits studied, indicating the
complexity of the milk FA synthesis pathways. Most of the
detected genomic regions have been previously reported in
connection to milk FA traits, e.g. genomic regions on BTA
14, BTA 19 and BTA 26 [8, 10, 20].
On BTA 14, our analysis indicates three distinct

regions significantly associated with several FA traits.
The first region is known to contain the DGAT1 gene, of
which the effects are well established for multiple FA
traits [21, 22]. The second region was previously reported
to show significant associations with milk fat percentage
[23]. The boundaries of these two regions (14a and 14b) are
in close proximity of each other (1.5–5 Mbp and 5.2–20

Table 1 Phenotypic means (with standard deviations, SD) and
genetic parameters (with standard errors, SE) in the combined-
population dataset

FAs Mean SD σ2a SE h2 SE

Saturated FAsa

C8:0 1.18 0.38 0.008 0.04 0.27 0.03

C10:0 2.80 0.58 0.07 0.09 0.39 0.04

C12:0 3.58 0.76 0.09 0.11 0.33 0.04

C14:0 11.0 1.26 0.21 0.17 0.25 0.03

C15:0 1.09 0.18 0.004 0.02 0.23 0.04

C16:0 30.20 3.53 1.80 0.48 0.34 0.04

C18:0 10.30 1.99 0.52 0.29 0.25 0.04

Unsaturated FAsa

C14:1 1.19 0.35 0.03 0.05 0.47 0.04

C16:1 1.49 0.35 0.05 0.07 0.46 0.04

C18:1c9 21.90 4.37 1.38 0.46 0.27 0.04

C18:2n6 1.89 1.19 0.01 0.05 0.18 0.03

C18:3n3 0.48 0.13 0.005 0.01 0.19 0.03

CLA 0.53 0.23 0.004 0.02 0.21 0.04

Desaturation indexesb

C14 index 9.71 2.37 1.57 0.37 0.53 0.03

C16 index 4.70 0.97 0.32 0.19 0.38 0.04

C18 index 67.80 3.98 3.95 0.73 0.31 0.04
aExpressed in % wt/wt
bDesaturation indexes calculated as unsaturated/(unsaturated
+ saturated) × 100
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Table 2 Genomic regions associated with milk fatty acid traits in the multi-population analysis and suggested candidate genes

Regiona Start (Mbp) End (Mbp) Traits associated (and % of explained genetic variance) Candidate genes

1a 19.92 19.93 C16:0(3.1)

1b 101.0 101.0 C18 index(2.8)

1c 141.3 142.5 C15:0(3.9)

2a 12.5 19.8 C8:0(3.7), C10:0(3.0) OSBPL6, AGPS

2b 54.9 59.8 C14:1(1.6), C16:0(3.6), C16:1(2.1), C14 index(1.5)

2c 64.1 67.8 C16:1(2.3), C16 index(2.3)

2d 106.5 135.6 C12:0(2.5), C15:0(5.6), C16:0(2.8), C18:1c9(3.8) MOGAT1, FABP3,
MECR

3 116.2 119.4 C18:3n3(4.3), CLA(3.2) PRLH

4 15.59 15.6 C15:0(5.2)

5a 10.33 10.36 C15:0(9.0)

5b 65.7 82.8 C8:0(3.9), C10:0(2.5) CHPT1

5c 87.4 99.0 C8:0(4.3), C10:0(3.2), C12:0(2.6), C14:1(1.7), C16:0(2.7), C16:1(2.1), C18:1c9(5.6), CLA(3.2), C14 index(2.4),
C16 index(4.9)

MGST1, PLBD1,
LRP6

6 41.4 41.4 C18 index(2.9)

7a 14.6 15.5 C8:0(3.3), C10:0(2.2)

7b 78.4 78.4 C18:2n6(3.3)

7c 81.6 83.2 C12:0(3.0), C15:0(6.0)

8a 57.5 59.7 C15:0(6.1), C16:1(2.0), C16 index(2.5) PIGO, STOML2

8b 79.9 98.4 C14:0(3.9), C18:0(4.1), CLA(3.3)

9a 25.5 25.6 C14:1(1.7)

9b 81.3 81.3 C15:0(5.0)

10a 1.1 8.6 C10:0(2.0), C12:0(3.5)

10b 12.9 12.9 C14:1(1.6), C18:0(3.6) SLC51B

10c 78.1 80.1 C18:3n3(4.9) PIGH

10d 87.5 93.1 C18:0(4.1), CLA(3.4), C18 index(2.5)

11a 24.7 26.7 C16:0(2.6) ABCG5, ABCG8

11b 58.81 58.89 C16:0(2.8)

12a 17.1 17.1 C18:1c9(3.5)

12b 24.0 24.8 C14:1(1.8) ALG5

12c 70.0 77.4 CLA(3.5), C16 index(2.5)

13 64.6 65.7 C10:0(2.4) ACSS2

14a 1.5 5 C8:0(7.8), C10:0(3.6), C14:0(8.8), C14:1(2.1), C15:0(16.3), C16:0(33.8), C16:1(7.8), C18:1c9(34.1), C18:2n6(34.3),
C18:3n3(24.2), CLA(14.6), C14 index(4.5), C16 index(11.3), C18 index(11.4)

DGAT1, GPAA1

14b 5.2 20 C8:0(4.3), C10:0(2.7), C15:0(5.2), C16:0(11.2), C16:1(6.6), C18:1c9(10.5), C18:2n6(15.2), C18:3n3(12.8),
CLA(4.7), C14 index(1.8), C16 index(3.4), C18 index(4.4)

ST3GAL1

14c 44.7 49.9 C14:1(2.0), C16:1(1.9), C14 index(1.6), C18 index(2.7) PMP2, FABP9,
FABP4
FABP12

15a 27.2 31.2 C10:0(2.3), C14:0(4.6), C18:0(4.6) APOA1, APOA4,
APOA5, DPAGT1

15b 46.9 65.9 C10:0(2.8) CAT

16a 23.8 25.22 C18:0(3.8), C16 index(2.3)

16b 57.53 57.58 C16:1(1.7), C16 index(2.1)

17a 17.4 22.6 C16:1(3.0), C16 index(2.1) MGST2

17b 27.8 44.1 C8:0(5.9), C10:0(3.0), C16:1(2.6), C18:3n3(4.8), C16 index(2.3) LARP1B

19 37.3 61.3 C8:0(7.6), C10:0(12.6), C12:0(13.6), C14:0(22.3), C16:0(4.6), C18:1c9(3.9), C14 index(3.1), C18 index(2.5) ACLY, BRCA1, FASN,
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Mbp) and the regions appear to be highly correlated in
terms of associated FA traits and proportions of genetic
variance explained for these traits. While our analysis indi-
cates two distinctive regions, Bouwman et al. [8], based on
part of the dataset used in our study, reported a single,
broader region (0.0–26.3 Mbp) with significant associations
to several FA traits. Our hypothesis is that different quantita-
tive trait loci (QTL) underlie these two regions (14a and
14b) but that estimated effects of the QTLs could be con-
founded, because the high LD at the start of BTA 14 [24]
makes it difficult to disentangle the effects of multiple QTL.
The third region on BTA 14 (44.7–49.9 Mbp) was exclu-

sively associated with C14:1 and C16:1 as well as C14
index and C18 index. This region was previously reported
for significant associations with C16:1 [8] and milk fat per-
centage [25]. The region contains the fatty acid binding
proteins FABP4, FABP9 and FABP12 as well as the periph-
eral myelin protein (PMP2), enriching the GO terms of
FA metabolic process (GO:0006631) and lipid binding
activities (GO:0008289). A study by Nafikov et al. [26] re-
ported a FABP4 haplotype negatively associated with satu-
rated milk FAs and the ratio between saturated and
unsaturated FAs while having positive effects on the
unsaturated FAs. Marchitelli et al. [27] also reported that
the FABP4 affected the ratio of monounsaturated/satu-
rated FA in milk. Additionally, variation in FABP4 is
reported to affect other milk production traits such as
milk yield [28]. Therefore, results of our analysis and

previous studies suggest a role of this region in desatur-
ation of C14:0, C16:0 and C18:0 with the FABP4 as the
most likely candidate gene.
Broader regions were detected on BTA 19 (37.3–61.3

Mbp) and BTA 26 (2.9–43.0 Mbp). The genes FASN on
BTA 19 [29] and SCD1 on BTA 26 [30] have previously
been suggested as the likely candidate genes for FA
traits. However, our enrichment analysis indicate add-
itional genes in these regions connected to important FA
metabolism processes including the ACLY, STAT5a,
PRKAA1, GH on BTA 19 and ELOVL3, ACLS5 on BTA
26. Significant associations were previously reported
between variants within some of these genes and some
milk FA traits [11, 31].
In our study, more FA traits have been found to have sig-

nificant associations with the DGAT1 and SCD1 regions
than previous GWAS using different parts of the
multi-population dataset used in the current analysis [8–11,
14]. These previous studies might not be considered as in-
dependent of the current analysis; however, more associa-
tions in the current analysis can be an indication of
improved detection power from combining the popula-
tions. This was also demonstrated in our previous study
(Submitted) in which results of population-specific analyses
versus multi-population joint GWAS were compared.
Effects of the DGAT1 (ARS-BFGL-NGS-4939) and SCD1
(BovineHD2600005461) loci were similar in direction and
highly correlated between the three populations but

Table 2 Genomic regions associated with milk fatty acid traits in the multi-population analysis and suggested candidate genes
(Continued)

Regiona Start (Mbp) End (Mbp) Traits associated (and % of explained genetic variance) Candidate genes

STAT5A,

20a 32.4 34.2 C16:1(1.9), C18:0(4.3) PRKAA1

20b 36.7 36.9 C14:1(1.6), C18:1c9(3.9)

20c 55.3 60.4 C14 index(1.6), C18 index(2.8)

21 53.8 59.1 C10:0(2.3), C12:0(2.9), C14:0(3.3), C18:1c9(4.1)

22 59.12 59.13 C14 index(1.6)

23a 26.7 32.7 CLA(4.3) AGPAT1, ATAT1

23b 33.5 36.5 C15:0(5.8)

23c 40.7 43.5 C18:1c9(3.4), C16 index(2.1), C18 index(2.6)

24 10.2 10.2 C18:0(4.2)

25a 9.8 9.9 C12:0(3.1)

25b 24.7 24.7 C18:1c9(3.5)

25c 41.4 41.7 CLA(3.0) C14 index(1.4)

26 2.9 43.0 C8:0(3.7), C10:0(5.5), C12:0(3.3), C14:0(8.0), C14:1(39.0), C16:0(2.4), C16:1(13.6), C18:0(4.5), C14 index(45.3),
C16 index(19.7), C18 index(3.3)

SCD, ELOVL3,
ACSL5, GPAM

27 37.0 42.2 C16:0(2.9)

28 36.6 37.2 C16:1(2.3), C16 index(2.5)

29 32.9 40.5 C16:0(2.5), C18:1c9(3.2) TKFC
aBTA number with subscript of alphabets to denote the multiple regions within a chromosome
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estimated effects in the Chinese sample were consistently
lower across the FAs compared to the Dutch and Danish
Holstein samples.
The three regions detected on BTA 5 overlap with pre-

viously reported regions for milk FA traits [8, 9, 32]. For
region 5c, MGST1 was suggested as the most likely candi-
date gene [32]. In our analysis, the lead SNP in the region
was located within the MGST1 gene. However, our enrich-
ment analysis did not establish any connection to MGST1
with significantly enriched FA related GO terms and path-
ways. Additionally, PLBD1 and LRP6 genes were connected
to several pathways including lipid localization (GO:00
10876) and transport (UP_KEYWORDS) suggesting that

the significant association observed in the region with 10
FA traits might not be limited to the MGST1 effect.
The region on BTA 13 was previously detected in the

Dutch Holstein population [8, 11] and in Danish Jersey [9]
with both studies suggesting the ACSS2 as the highly likely
candidate gene. Meanwhile, using infrared (IR) predicted
phenotypes for the de novo FAs, Olsen et al. [33] suggested
that the NCOA6, not the ACSS2, is responsible for significant
associations in the region. Our enrichment analysis however
links ACSS2 with several significantly enriched pathways
while no such links were established for the NCOA6 gene.
Similarly, the first region on BTA 15 (27.2–31.2 Mbp)

has been reported in previous studies including a joint

A

B

C

D

Fig. 1 Manhattan plots showing BTAs on the x-axis and -log 10-p values on the y-axis for the de novo synthesized FAs of C8:0 (a), C10:0 (b), C12:0 (c),
C14:0(d). Red line indicates the significance threshold (log 10 p-value =5.0)
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Chinese-Danish Holstein population [14]. Several genes
enriching FA related pathways were detected in the re-
gion including APOA1, APOA4, APOA5, and DPAGT1.
The apolipoproteins APOA1/4/5 enriched glycerolipid
metabolic process (GO:0046486), fat digestion and ab-
sorption (bta04975) as well as negative regulation of FA
biosynthetic process (GO:0045717) while the DPGAT1
was involved in lipid biosynthetic process (GO:0008610).
The strongest associations observed in the region were
between C18.0 and variants within the alipoprotein
genes, which showed opposite direction of effects on
C10:0 and C14:0. Although effects were not significant,
the lead SNP in the region also showed moderate effects on
the other de novo FAs including C8:0 (−log 10 p-value =
2.96) and C12:0 (−log 10 p-value = 2.96) with direction of
effects similar to C10:0 and C14:0. The alipoproteins
APOA1/4/5 are thus collectively suggested as the candi-
dates underlying the strong effect on C18:0 observed in the
region. The opposing effects on the de novo FAs might be
directly through involvement of the alipoproteins in nega-
tive regulation of FA biosynthesis or indirectly through the
effect on C18:0, which suppresses de novo synthesis.

The two regions detected on BTA 17 are also in agree-
ment with previous findings. The regions detected by
Bouwman et al. (2012) [8] (15.0–23.9 Mbp) and Li et al.,
[10] (19.5–22.5 Mbp) overlap with the first region (17a)
detected in our study. In the region, MGST2 significantly
enriched GO terms that included FA metabolic
(GO:0006631) and biosynthetic (GO:0006633) processes.
The MGST2 is previously linked to intramuscular FA
composition in pigs [34] and shown to be expressed in
all stages of lactation in humans [17]. Therefore, the
MGST2 is suggested as the likely candidate gene under-
lying effects on the first region of BTA 17. Using a subset
of the dataset used in the current study to fine map BTA
17, Duchemin et al. [35] suggested the LARP1B as a
primary candidate gene in the second region (17b). How-
ever, our enrichment analysis did not result in significant
enrichment of any of the FA pathways and ontology terms
for genes in the region.
Some of the regions detected in our analysis overlap

with results from some of the recently published GWAS
that are based on IR predicted FA phenotypes [33, 36].
Interestingly, some of the well-established genomic

A

B

C

Fig. 2 Manhattan plots with BTAs on the x-axis and -log 10-p values on the y-axis for the medium to long-chain FAs of C15:0 (a), C16:0 (b), C18:0
(c). y-axis for (b) has breaks at –log 10-p-value =15 to show only the highest values of those –log 10-p-value > 25 while keeping the visibility of
smaller peaks. Red line indicates the significance threshold (log 10 p-value =5.0)
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regions in connection to GC-based FA traits, which were
also detected in our analysis, have not been found to
have significant associations with any of the milk FA
phenotypes in these studies. For instance, GWAS by
Olsen et al. [33] and Knutsen et al. [36] using the IR pre-
dicted FA phenotypes in Nordic Red cattle did not de-
tect any significant association in the DGAT1 and SCD1
regions. Lack of segregation of the A variant of the
DGAT1 K232A polymorphism has been suggested as
the potential reason for the lack of association in the
DGAT1 region. Additionally, Wang et al. [37] showed

that the SCD1 polymorphism did not significantly affect
any of the milk IR wavenumbers in samples from the
Dutch Holstein population. These findings suggest that IR
predicted FA phenotypes are not suitable for GWAS. While
some FAs can be accurately predicted based on IR [38], low
prediction accuracies [39] and low genetic correlations with
GC measured FA [40] have been reported for other FAs.
Especially FAs found in low concentrations in milk were
shown to have low IR prediction accuracies [41]. Appar-
ently, the power to detect QTL can be severely restricted
by the IR prediction accuracy.

A

B

C

D

E

F

Fig. 3 Manhattan plots showing BTAs on the x-axis and -log 10-p values on the y-axis for the unsaturated FAs of C14:1 (a), C16:1 (b), C18:1c9 (c), C18_2n6
(d), C18_3n3 (e), CLA (f). Y-axis breaks for (b) at –log 10-p-value =20 and for (a), (c) and (d) at –log 10-p-value = 15. Red line indicates the significance
threshold (log 10 p-value =5.0)
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A

B

C

Fig. 4 Manhattan plots showing BTAs on the x-axis and -log 10-p values on the y-axis for the desaturation indexes: C14 index (a), C16 index (b), C18 index
(c) with y-axis breaks at –log 10 p-values = 15 for (a) and (b). Red line indicates the significance threshold (log 10 p-value =5.0)

Table 3 The list of enriched FA related pathways and GO terms

Category Term Count P_value FDR

GOTERM_BP_DIRECT GO:0006633~fatty acid biosynthetic process 8 < 0.001 < 0.001

GOTERM_MF_DIRECT GO:0008289~lipid binding 13 < 0.001 < 0.001

GOTERM_BP_DIRECT GO:0070328~triglyceride homeostasis 5 < 0.001 < 0.001

GOTERM_BP_DIRECT GO:0008610~lipid biosynthetic process 13 < 0.001 0.002

GOTERM_BP_DIRECT GO:0016042~lipid catabolic process 15 < 0.001 < 0.001

GOTERM_BP_DIRECT GO:0045717~negative regulation of fatty acid biosynthetic process 4 < 0.001 0.001

GOTERM_BT_ALL GO:0010876~lipid localization 9 0.001 0.01

GOTERM_MF_DIRECT GO:0005543~phospholipid binding 5 0.001 0.02

GOTERM_BP_DIRECT GO:0006631~fatty acid metabolic process 20 0.005 0.01

GOTERM_BP_DIRECT GO:0046486~glycerolipid metabolic process 9 0.03 0.01

UP_KEYWORDS Acyltransferase 10 < 0.001 < 0.001

UP_KEYWORDS Lipid transport 7 < 0.001 < 0.001

INTERPRO IPR016181:Acyl-CoA N-acyltransferase 6 < 0.001 < 0.001

KEGG_PATHWAY bta00564:Glycerophospholipid metabolism 10 < 0.001 < 0.001

KEGG_PATHWAY bta04975:Fat digestion and absorption 10 < 0.001 < 0.001

KEGG_PATHWAY bta00565:Ether lipid metabolism 8 < 0.001 < 0.001

KEGG_PATHWAY bta00062:Fatty acid elongation 4 0.004 0.04

KEGG_PATHWAY bta05204:Chemical carcinogenesis 3 0.004 0.04
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Novel genomic regions and candidate genes
Of the 56 genomic regions significantly associated with
at least one FA trait in this study, regions located on
BTA 2, 3 10, 11, 12 and 21 appear to be novel regions
that have not been previously connected to milk FA
traits. The lead SNPs in these regions explained between
1.4 and 5% of the genetic variation in at least one of the
FA traits studied.

BTA 2
Two genes retrieved for region 2a enriched GO terms
related to fatty acids. The OSBPL6 gene belonging to the
oxysterol-binding protein (OSBP) family, a group of
intracellular lipid receptors, is shown to be involved in
lipid binding (GO:0008289) and transport (UP_KEY-
WORDS) processes. The OSBPL6 gene is found to be
expressed in the human mammary gland during several
stages of lactation [17]. The human OSBPL6 gene is also
shown to have a binding site for miR-33a/b [42], which
is a microRNA shown to have targeting effects on genes
regulating β-oxidation of FAs [43], leading to signifi-
cantly lower levels of β-hydroxybutyrate [44]. Another
gene located in the region (AGPS) also enriched GO
terms related to FA synthesis including lipid biosynthesis
process (GO:0008610). In the mammalian phenotype
database, mutation in the AGPS gene in mice has been
linked to abnormal lipid levels (MP:0001547), which is a
rather broad term in the database referring to any anom-
aly in the concentrations of fat-soluble substances in the
body, including circulating triglyceride and free FAs.
Thus, our enrichment analysis indicate that both the
OSBPL6 and AGPS might have roles on de novo synthe-
sis of FAs. Pattern of SNP effects in the region is also in
agreement with enrichment analysis such that strongest
association was estimated with C8:0 and C10:0 while
moderate, but not significant effect was measured for
C12:0 and C14:0 (−log 10 p-value = 4.2). Opposing direc-
tion of the lead SNP effect were also observed for the de
novo synthesized FAs, except C15:0, on the one hand
and most of the long chain FAs on the other (Fig. 5a).
Therefore, both the OSBPL6 and AGPS are considered
as likely candidates in the region. .

BTA 3
On the detected novel region of BTA 3, the prolactin re-
leasing hormone (PRLH) was shown to be involved in
FA metabolic process (GO:0006631). Mutations on the
PRLH gene in mice have been associated with increased
circulating triglyceride levels (MP:0001552) and
increased total body fat amount (MP:0010024) in the
mammalian phenotype database. In mammals, the PRLH
gene is known to stimulate prolactin release and regulate
its expression. Prolactin, which is a polypeptide hor-
mone, has been shown to induce lipogenesis in many

tissues [45] and stimulate the expression of genes in-
volved in milk protein synthesis and lipid metabolism
[46–48]. Moreover, prolactin has been shown to have a
wide-range of effects on lactation including growth and
development of the mammary gland, promotion of milk
synthesis and maintenance of milk secretion [49–51].
Therefore, the PRLH gene, through regulation of prolac-
tin release might have effects on milk yield. The pattern
of SNP effects in the region suggest a connection with
the poly-unsaturated fatty acids (PUFAs) with strongest
associations observed for C18:3n3 and CLA. The direc-
tion of effects of the lead SNP was similar for all unsat-
urated FAs as well as all the desaturation indexes, while
opposing effects were estimated for the de novo synthe-
sized FAs and C16:0 (Fig. 5b). C16:0 is shown to have
strong negative genetic correlation with milk yield, while
moderate positive correlations were reported for the
PUFAs [5]. Therefore, the PRLH is suggested as the can-
didate gene in the region; the effect of which might be
indirect through its effect on milk yield, affecting the
concentration of the PUFAs and C16:0.

BTA 10
The second region on BTA 10 contains the solute carrier
family 51-beta subunit (SLC51B) genewhich is impli-
cated in lipid transport (UP_KEYWORDS) and
localization (GO:0010876) processes. Pattern of effects
in the region show strong effect on C14:1 and moderate
effects on with C14 index (−log 10 p-value = 4.5) and
C18 index (−log 10 p-value = 3.6) in direction opposite
to the strong effect on C18:0 (Fig. 5c). This pattern sug-
gests a reduction in desaturation when C18:0 increases.
C18:0 in milk is largely derived via direct transport
through the blood from the rumen where is it formed
from bio-hydrogenation of dietary C18:2n6 and C18:3n3.
Therefore, the effect of SLC51B is highly likely through
its involvement in the FA transport processes. Dietary
poly-unsaturated FAs, such as C18:2n6, are known to
suppress SCD1 activity, thereby reducing its desaturation
activity [52]. Thus, we hypothesize that SLC51B under-
lies the effect on C18:0, while observed opposite effects
on the unsaturated FAs and desaturation indexes are
rather due to the correlation in C18:0 in milk and diet-
ary PUFA, which suppress desaturation.

BTA 11
Among the genes located in the first region of BTA 11,
the ATP binding cassette subfamily G5 (ABCG5) and
ABCG8 enriched several pathways and processes includ-
ing fat digestion and absorption pathway (KEGG
~bta04975) and the GO terms of lipid localization
(GO:0010876) and transport. In the mammalian pheno-
type database, the ABCG5 and ABCG8 genes are linked
to increased circulating triglyceride level (MP:0001552),
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abnormal lipid homeostasis (MP:0002118) and abnormal
phospholipid level (MP:0004777). In humans, mutations
in ABCG5/8 have been linked to conditions character-
ized by abnormal accumulation of sterols in blood and
tissues [53, 54] implicating them in lipid absorption and
transport. The KEGG pathway for fat digestion and
absorption involves absorption of lipid from the rumen
to the blood stream and from the blood stream to the
mammary gland. Viturro et al. [55] previously reported

high expression levels of both ABCG5 and ABCG8 genes
in bovine liver, mammary gland, digestive tract and
blood samples. Expression of ABCG5/8 in bovine mam-
mary gland might indicate that apart from absorption and
transport of lipids from the digestive tract, ABCG5/8 might
also be involved in the secretion of lipids from the mam-
mary gland into the milk. Significant association in the re-
gion was limited to C16:0. Although not significant, this
region was also associated with C16:1 (−log 10-pvalue = 3.8)
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Fig. 5 Effects of lead SNPs on regions 2a (a), 3 (b), 10b (c), 11b (d), 12b (e) and 21 (f) standardized by dividing the SNP effects with standard
deviation of the respective FA trait
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and CLA (−log 10-pvalue = 2.2), with directions of effects
on CLA opposite to the effects on C16:0, C16:1, and C16
index (Fig. 5d). The GO term of lipid localization and asso-
ciation almost exclusively with C16:0, which is one of the
FAs that is highly mobilized from body reserves during
negative energy balance, might also indicate a role in the
mechanism of body fat reserve mobilization.

BTA 12
The dolichyl-phosphate beta glucosyltransferase (ALG5)
gene located on the second region of BTA 12 was shown
to enrich the lipid biosynthesis process (GO:0008610)
and glycerolipid metabolic process (GO:0046486). The
ALG5 gene has previously been shown to be differen-
tially expressed during the different stages of lactation in
bovine [16] and human [17]. Significant effects in the re-
gion were limited to C14:1. The lead SNP also showed
moderate effect on C14 index (−log 10 p-value = 3.07) and
C18:0 (−log 10 p-value = 3.43) where opposite direction of
effects were observed for C18:0 (Fig. 5e). Therefore, the
ALG5 is suggested as promising candidate for further
characterization for potential role in desaturation process.

BTA 21
Significant associations were detected on BTA 21 with
C10:0, C12:0, C14:0 and C18:1c9. Effects estimated for
the lead SNP in the region were generally opposing di-
rections for the de novo synthesized FAs and C16:0 ver-
sus for the long-chain FAs and desaturation indexes
(Fig. 5f ). Significant associations have previously been
reported in the region with milk and milk protein yield
[56] as well as fertility traits in cows [57]. However, our
enrichment analysis show no gene implicated in the sig-
nificantly enriched pathways and Go terms. Despite lack
of genes implicated on FA related pathways, moderate ef-
fects observed for multiple traits in the region are of par-
ticular interest. QTL detected through GWAS might be
located in non-coding regions. Such QTLs might be in-
volved in regulation of expression of other genes affecting
the traits of interest. Therefore, the region might be of
interest for eQTL based GWAS in milk FA traits.

Regulatory elements within detected genomic regions
Apart from coding genes, retrieved genes from the de-
tected regions included regulatory elements, most com-
monly microRNAs (miRNAs). MiRNAs are small RNAs
that regulate the expression of complementary messen-
ger RNAs [58]. Several studies have reported possible
roles of miRNAs in lipid and fatty acid metabolisms and
in mammary gland development and lactation in several
species [59–61]. Some of the miRNAs in the detected
genomic regions in our study were previously linked to
regulatory roles on genes related to FA metabolism and
synthesis. Of these, bta-mir-27b, on BTA 8 (region 8b)

was shown to target known FA synthesis genes such as
FASN and SCD1 [62] as well as mRNAs involved in lipid
metabolism [63] and shown to be highly expressed dur-
ing different stages of bovine lactation [64]. Among the
genes located on BTA 2 (region 2d), the bta-mir-26b
was shown to be expressed in bovine milk cells and
mammary gland [60]. Wang et al., [61] showed that down-
regulation of miR-26a/b and their host genes decreased the
expression of genes related to fatty acid synthesis, including
DGAT1 and SCD1.

Conclusion
Multi-population GWAS for GC-quantified FA traits re-
sulted in the detection of 56 genomic regions signifi-
cantly associated to at least one of the studied FAs,
including novel regions explaining relatively smaller frac-
tions of the genetic variation. Enrichment analysis of
genes harbored in detected regions reveals promising can-
didate genes some of which have not been previously
linked to milk FA traits, including OSBPL6 and AGPS on
BTA 2, PRLH on BTA 3, SLC51B on BTA 10, ABCG5/8
on BTA 11 and ALG5 on BTA 12. Post-GWAS analyses
using multiple data sources on pathways, ontology terms
and tissue-specific gene expression status enabled
prioritization of highly likely causative candidate genes
among several positional candidates on detected regions.
Use of such data in combination in combination with ana-
lysis of patterns of effects across the milk FA spectrum
allowed linking some of the candidates to specific FA
synthesis mechanisms. Detection of several novel regions
and candidate genes will be contribute to the knowledge
base on genetics underlying the bovine milk FA
composition.

Methods
Animals and phenotypes
Test-day milk samples were obtained from 784 Chinese,
675 Danish and 1566 Dutch Holstein cows sampled
from 18 herds in China, 22 herds across Denmark and
398 herds in the Netherlands. Stages of lactation of sam-
pled cows ranged from 3 to 700 days in milk in the
Chinese population, 9 to 481 days in milk in the Danish
population and 60 to 278 days in milk in the Dutch Hol-
stein cows. To standardize the samples from the three
countries, only cows at days-in-milk of 60 and above were
considered for the multi-population GWAS. Thus, 700
Chinese, 614 Danish and 1566 Dutch samples were available
for the analysis. The reason to standardize the dataset by lac-
tation stage is that the genetic determination of milk fat
composition traits might be different in the early stages of
lactation. There is evidence that effects of genes in early lac-
tation differ from those later in lactation [65]. Excluding early
lactation records can help eliminate this heterogeneity issue.
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FA traits, including C8:0, C10:0, C12:0, C14:0, C14:1,
C15:0, C16:0, C16:1, C18:0, C18:1c9, C18:2n6, C18:3n3
and C18:2 cis-9,trans-11 (CLA), were analyzed using the
GC method. Details of the sample preparation for the
GC analyses are as described by Li et al. [10] for Chinese
samples, Poulsen et al. [66] for Danish samples and
Stoop et al. [5] for Dutch samples. Genomic regions af-
fecting the saturated FAs might show association to the
unsaturated forms because the saturated form available
for desaturation determines proportion of the unsatur-
ated FAs. Hence, calculation of the desaturation indexes
might allow detection of regions particularly associated
with the desaturation process. Accordingly, desaturation
indexes were calculated based on the FA measurements
as: C14 index = C14:1/(C14:1 + C14:0) * 100; C16 index
= C16:1/(C16:1 + C16:0) * 100 and C18 index = C18:1c9/
(C18:1c9 + C18:0) * 100.

Genotypes and imputation
High-density (HD) genotypes, real or imputed, were
available for all cows used in the analyses. All cows in
the Chinese dataset were initially genotyped using the
BovineSNP50 Beadchip (50 K, Illumina). A sample popu-
lation of 96 Chinese Holstein bulls, genotyped using the
BovineHD Beadchip (777 K), was available as reference
to impute the 50 K genotypes of the cows to HD.
Part of the Danish cows were genotyped using the

BovineSNP50 Beadchip, while the remaining Danish
cows were genotyped using the BovineHD Beadchip
and used as reference to impute the 50 K genotypes of
the first part of the Danish cows to HD as described in
Gebreyesus et al. [67]. The Dutch cows were genotyped
with a custom 50 K SNP Beadchip and subsequently
imputed to HD as presented in detail in Duchemin et
al. [68]. SNPs with minor allele frequencies (MAF) less
than 0.05 or with a count of one of the genotypes less
than 10 in each population were excluded from the as-
sociation analysis. A total of 464,130 SNPs were avail-
able for the association analysis. The SNP positions
were based on the bovine genome assembly UMD 3.1
[69].

Genome-wide association
A single-SNP association test was implemented using a
mixed linear model in the GCTA program [70].
Association analysis was carried out using the following
statistical model:

yijkl ¼ μþ parityi þ herd j þ b1 � DIMijkl

þb2 � SNPk þ animall þ eijkl;

ð1Þ

Where yijkl is the phenotype of cow l; μ is the fixed
effect of mean; parityi and herdj are the fixed effects of

parity and herd, respectively; b1 is the regression coeffi-
cient for DIM, DIMijkl is a covariate of days in milk; b2
is the allele substitution effect for SNP, SNPk is a covar-
iate indicating the number of copies of a specific allele
(0, 1 or 2) of the SNP; and animal is the random addi-
tive genetic effect. Animal effects were assumed to be
distributed as Nð0;Gσ2aÞ; where G is the genomic rela-
tionship matrix constructed using all HD genotypes but
excluding the SNPs on the chromosome on which SNP
k is located. Residuals were assumed to be distributed as:
Nð0; Iσ2eÞ; where I is the identity matrix. Since only cows
with more than 60 days-in-milk were included in the ana-
lyses, a linear adjustment for DIM was sufficient. For the
FA traits C18:2n6, C18:3n3 and CLA, log transformation
was applied prior to the association analysis to account for
observed heterogeneity of residual variances.
Significance thresholds were determined using a false

discovery rate (FDR). Significance thresholds corre-
sponding to FDR of 5% ranged for different FA from –
log10 p-value = 3.4 to –log10 p-value = 5.0. We used a
–log10 p-value of 5.0 as the genome-wide significance
threshold for all FA composition traits.

Determining multiple regions on a chromosome
To determine if a region harbored one or more QTL,
iterative approaches fitting the effect of SNPs with the
highest –log 10 p-values were employed. In this ap-
proach, the SNP with the highest –log 10 p-value for
the studied FA trait was considered as the lead SNP.
The allelic dosage of such a lead SNP was then fitted as
fixed effect for a second round of chromosome-wide
analyses. If other SNPs, also significantly associated in the
first round GWAS, were still found to have -log 10-pvalue
> 5 in the second round analysis, the SNP with the highest
–log 10 p-value in the second analysis was taken as the sec-
ond lead SNP and its allelic dosage fitted as fixed effect for
a third round of analysis. This procedure was iterated until
no further SNP with -log 10-pvalue > 5 was observed. The
SNPs that showed significant association in a round of
GWAS but showed –log 10 p-value < 5 upon fitting the al-
lelic dosage of the lead SNP were then considered as part
of a region around that lead SNP. The position of the first
and last such SNP before and after the lead SNP were con-
sidered as the boundaries of the region.

Estimation of genetic variances explained by SNPs
Genetic variance explained by the lead SNP in a region
was calculated from the GWAS summary as: 2pqα2,
where p and q are the allele frequencies and α is the al-
lele substitution effect [71]. The proportion of total gen-
etic variance explained by such a lead SNP was then
calculated as:
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2pqα2
�

σ2a
;

where σ2a is the additive genetic variance estimated
using model 1 but without fitting fixed effects of SNP
and using G constructed using all HD SNPs. Computa-
tion of genetic variance explained by SNPs from a
GWAS summery might lead to overestimation of SNP
effects [72] specially for small effect size SNPs that only
just reach the significance threshold. Heritability (h2)
estimates were computed as:

h2 ¼ σ2a
σ2
a þ σ2e

; ð2Þ

where σ2e is the residual variance.

Gene assignment and enrichment analysis
Genes found within detected genomic regions were re-
trieved from the ensemble database using the BioMart web
interface based on the UMD 3.1 bovine genome assembly
(https://www.ensembl.org/biomart/martview). The DAVID
functional annotation tool (https://david.ncifcrf.gov) was
then used to analyze overrepresented GO biological terms,
which included the terms cellular component (CC), mo-
lecular function (MF), biological process (BP) and the
KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
ways. Ontologies in the mammalian phenotype database
were accessed and searched for genes connected to abnor-
malities relevant to FA metabolism using the Mouse
Genome Informatics (MGI) web platform (http://www.in-
formatics.jax.org/batch).

Additional files

Additional file 1: Effects of the lead SNPs in all the detected genomic
regions. SNP regression coefficients (SNP effects) in all the FA traits
studied, along with the standard errors and –log 10 p-values, for the
lead-SNP in each of the detected genomic region. (XLSX 45 kb)

Additional file 2: List of genes identified as enriched using the DAVID
based enrichment analysis. Gene names and the positions in the genome
(chromosome, start and end bp) clustered to at least one of the
significantly enriched pathways and GO terms. (XLSX 24 kb)

Additional file 3: Micro-RNAs located within detected genomic regions.
List of micro-RNAs (names and ensemble stable IDs) located in detected
genomic regions and their positions in the genome (chromosome, start
and end bp). (XLSX 11 kb)
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