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Abstract

Initially discovered in Drosophila, the Hippo (Hpo) pathway has been recognized as a conserved 

signaling pathway that controls organ size during development by restricting cell growth and 

proliferation and by promoting apoptosis. In addition, abnormal activities of several Hpo pathway 

components have been implicated in human cancer. Here, we review the current understanding of 

the molecular and cellular basis of Hpo signaling in development and tumorigenesis, and discuss 

how the Hpo pathway integrates spatial and temporal signals to control tissue growth and organ 

size.

Different organs exhibit characteristic size, which is determined by the number and size of 

their constituent cells.1 How the organ size is controlled during animal development has 

been a fascinating problem in modern biology. The control of organ size depends on a 

delicate balance of cell proliferation and cell death, which are properly coordinated in 

response to both global and local stimuli. Although tissue growth is influenced by 

environmental factors such as hormonal signals and nutrients, organ-intrinsic mechanisms 

also play important roles. By genetic screen and characterization of mutants that cause tissue 

overgrowth in Drosophila, several signaling pathways, including the Hpo pathway, have 

been unraveled as organ intrinsic mechanisms that control organ size.2

Finding Hippo---an emerging size control pathway

The imaginal discs of Drosophila, which give rise to adult structures such as wings, legs, and 

eyes, provide an attractive system to study size control.3 Imaginal discs are specified during 

embryonic development but growth occurs at larval stages during which the number of cells 

of each disc increases exponentially. For example, a wing disc has less than 50 cells at the 

beginning of first instar; however, it contains over 50,000 cells at the end of third instar. 

Imaginal discs appear to possess intrinsic mechanisms to determine their final size and 

defects in these mechanisms result in overgrowth in a disc autonomous fashion.4, 5 In the 

past, tumor suppressor mutants were identified by genetic screens for mutations that either 

result in enlarged imaginal discs in homozygous late third instar larvae or cause overgrowth 

of imaginal disc derivatives in mosaic flies that carry clones of homozygous tissues in 
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otherwise heterozygous background (Fig. 1).2, 6 In particular, genetic mosaic screens have 

led to the identification of a number of tumor suppressor genes, including warts/large tumor 
suppressor (wts/lats),7, 8 salvador (sav),9 hpo/dMST,10–14 that fall into an emerging tumor 

suppressor pathway, the so-called Hpo pathway (Fig. 2).

Central to the Hpo pathway is a kinase cascade consisting of four proteins including Hpo, 

Sav, Wts, and Mats (Fig.2). Hpo is the Drosophila homolog of mammalian Ste20 family 

kinases MST1 and MST2, and forms a complex with the WW-repeat scaffolding protein Sav 

to phosphorylate and activate the downstream kinase Wts, a member of the Nuclear Dbf-2-

related (NDR) kinase family.7–14 Wts acts in association with a small regulatory protein 

called Mats (Mobs as tumor suppressor) to restrict cell growth and proliferation and promote 

cell death.15 Like Wts, Mats is phosphorylated by Hpo, which increases its association with 

Wts and its ability to upregulate Wts kinase activity.16, 17

Yki/Sd transcriptional complex mediates Hpo signaling

Hpo signaling pathway restricts cell growth and proliferation and promotes apoptosis mainly 

through transcriptional regulation of genes involved in these processes. Several 

transcriptional targets of the Hpo pathway have been identified, including cycE, diap1, and 

bantam, as well as two upstream Hpo pathway components: merlin (mer) and expanded (ex).
9, 10, 13–15, 18–20 Hpo signaling influences gene expression by regulating Yorkie (Yki), the 

Drosophila homolog of mammalian transcriptional coactivator YAP, which binds to and is 

phosphorylated by Wts.21 Overexpression of Yki phenocopies loss of Hpo signaling activity, 

suggesting that Hpo signaling restricts cell growth and promotes cell death by inhibiting 

Yki-mediated gene expression.21 Indeed, Yki regulates all the known target genes of the 

Hpo pathway.19, 21

What is the DNA-binding transcription factor that associates with Yki to regulate Hpo 

pathway target genes? Three recent studies provided an answer by showing that the 

TEAD/TEF family transcription factor Scalloped (Sd) acts in a complex with Yki to 

promote the expression of Hpo pathway responsive genes.22–24 Overexpression of Sd 

enhances Hop target gene expression and tissue overgrowth caused by excessive Yki or 

tumor suppressor mutations in the Hpo pathway. Conversely, inactivation of Sd suppresses 

these effects. Moreover, a constitutively active form of Sd can promote tissue overgrowth as 

well as Hpo target gene expression.23 Characterization of diap1 enhancer elements suggests 

that Sd directly binds diap1 regulatory elements.22, 23 Sd promotes Yki nuclear 

localization23, 24 and recruits Yki to the diap1 promoter.23 On the other hand, 

phosphorylation of Yki at S168 by Wts restricts Yki nuclear localization.23, 25, 26 Thus, the 

Yki/Sd complex serves as a Hpo pathway transcriptional effector that is negatively regulated 

by Hpo signaling via phosphorylation and cytoplasmic retention of Yki (Fig.2).

Of note, loss of Sd has less severe phenotypes than loss of Yki.22, 23 For example, loss of Sd 

does not affect basal levels of diap1 expression but loss of Yki does. One possibility is that 

Yki can hook up with another transcription factor to regulate the basal expression of diap1. 

Alternatively, Sd may function as a default transcriptional repressor in the absence of Yki, as 
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are the cases for the transcription factors of many signaling pathways.27 A prediction of the 

latter model is that removal of sd in yki mutant cells should restore diap1 expression.

Exploring upstream regulators of the Hpo pathway

While the regulatory events downstream of the Hpo kinase cascade have been relatively 

well-defined, the upstream regulatory mechanisms remain much less understood. Several 

studies suggested that the protocadherin Fat may function as a receptor for the Hpo pathway.
28–31 fat was originally identified as a tumor suppressor gene whose mutations caused 

tumorous overgrowth of imaginal discs.32 fat mutant clones deregulated many Hpo target 

genes including cycE, diap1, and wg, and genetic epistasis study suggested that fat acts 

upstream of hpo, wts, and yki.28–31 Consistent with Fat acting upstream of Hpo signaling, 

overexpression of a truncated form of Fat (FatΔECD), which lacks the extra cellular domain 

and can suppress cell growth in vivo, induced Wts phosphorylation in cultured cells.31, 33 In 

addition, Wts levels diminished in fat mutant discs,29 and overexpression of Wts can rescue 

fat mutants to viability.34 Taken together, these observations suggest that Fat acts as a Hpo 

pathway receptor that regulates both Wts phosphorylation and turnover.

How Fat is linked to the Hpo kinase cascade is not clear but several proteins have been 

implicated as components acting downstream of Fat and upstream of Hpo. Two FERM 

domain containing proteins, Ex and Mer, were identified as partially redundant activators of 

Hpo.35 The mammalian orthologue of Mer is the product of tumor suppressor gene 

Neurofibromatosis type-2 (NF2), whose loss of function leads to the development of tumors 

in the central nervous system.36 In Drosophila, mer ex double mutant cells upregulate Hpo 

pathway target genes and deregulate both proliferation and apoptosis in a manner similar to 

hpo mutant cells, whereas mer or ex single mutant cells exhibit less severe phenotypes.35 

Genetic and biochemical studies place Mer and Ex upstream of Hpo--overexpression of Hpo 

suppresses tissue overgrowth in mer ex double mutants and overexpression of Mer and Ex in 

S2 cells induces Warts phosphorylation and downregulates Yki activity. Interestingly, Mer 

and Ex are both transcriptional targets of the Hpo pathway and act in a negative feedback 

loop to regulate Hpo pathway activity.35

Ex and Fat colocalize at the adherens junctions and loss of Fat leads to reduced membrane 

localization of Ex, suggesting that Fat may regulate Ex activity by controlling its subcellular 

localization.30, 31 In the eye, the phenotype associated with overexpression of Ex is 

dominant over the phenotype caused by loss of Fat, consistent with Ex acting downstream of 

Fat.30, 31 In the wing, however, overexpression of Ex is not sufficient to suppress fat mutant 

phenotype even though high levels of Ex accumulate at normal subapical position.34 It is 

possible that Fat may not only regulate the subcellular localization but also control the 

activation of Ex so that Ex cannot function in the absence of Fat even when it localizes 

properly. Alternatively, or in addition to the mechanism stated above, Fat may act through a 

different pathway to regulate downstream signaling events. In support for the latter 

possibility is the observation that fat and ex mutations have additive effects on imaginal disc 

growth and development.34 Indeed, a previous study suggested that Fat acts through an 

unconventional myosin encoded by dachs.37 dachs mutations suppress tissue overgrowth as 

well as altered gene expression caused by fat mutations. Consistent with dachs acting 
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downstream of fat, dachs protein levels at the membrane are negatively regulated by Fat. In 

addition, the normal subcellular localization and activity of Dachs require Approximated 

(App), a member of DHHC family of palmitoyltransferase.38 Dachs physically associates 

with Warts in cultured cells.29 As Fat signaling acts at least in part by stabilizing Wts,29 it 

would be interesting to determine whether Dachs mediates this aspect of Fat output.

Another classic tumor suppressor gene is discs overgrown (dco), which encodes a casein 

kinase 1 (CK1) family member, CK1ε.39 dco mutant cells exhibit deregulated expression of 

Fat/Hpo target genes, and epistasis analysis places dco between fat and dachs.29 However, 

the relevant Dco/CK1 substrate(s) in the Fat/Hpo pathway remains to be determined.

How does the Hpo pathway read the spatial and temporal signals?

The protocadherin Dachsous (Ds) functions as a ligand for Fat in the planer cell polarity 

(PCP) pathway.40 Several lines of evidence suggest that Ds functions as a candidate ligand 

for Fat in the Hpo pathway. ds mutations result in tissue overgrowth, albeit less severe than 

that caused by fat mutations.32, 41, 42 Ds and Fat participate in heterophilic cell adhesion in 

cultured cells, and stabilize each other at the cell surface in imaginal discs.33, 42 The 

expression of Fat and Hpo target genes is influenced by Ds in a nonautonomous manner.
29, 43 Ds and another protein, Four-jointed (Fj), a Golgi protein that phosphorylates Fat and 

Ds to influence their interaction,44 are distributed in a graded fashion in developing imaginal 

discs.41, 45 Interestingly, juxtaposition of cells expressing different levels of Ds or Fj 

stimulates the expression of Hpo target genes and cell proliferation in a manner depending 

on Fat signaling,46, 47 suggesting that Fat signaling activity is modulated by discontinuities 

of Ds/Fj. The model implies that the steepness of Ds/Fj gradient drives disc growth by 

modulating the Fat/Hpo signaling activity. For example, at early stages during larval 

development when the discs are small, the Ds/Fj gradient is steep and disc growth is 

promoted. At later stages, the Ds/Fj gradient is flattened due to increased disc size; as a 

consequence, tissue growth is retarded. However, there is no direct evidence that Hpo 

pathway activity is modulated in space or over time in a manner correlating with cell 

proliferation during normal development. Thus, it remains possible that Hpo pathway 

activity could be maintained at a constant level throughout larval development.

Dpp signaling regulates the expression of both Ds and Fj.46 In addition, juxtaposition of 

cells transducing different levels of Dpp signaling also stimulates cell proliferation and Hpo 

target gene expression through Dachs.46, 48 These and other observations led to the proposal 

that the Fat/Hpo pathway may couple cell growth and organ size control to morphogen 

gradients such as Dpp gradient.46 However, a recent study provided evidence that normal 

growth can occur even in the absence of graded Dpp signaling.49 In addition, measurement 

of Dpp gradient or its activity gradient (through p-Mad staining) during disc growth did not 

detect any change in the steepness of these gradients at different larval stages.50 Thus, it is 

unclear whether the steepness of Dpp gradient is a driving force for tissue growth during 

normal development. It is possible that other morphogen gradients such Wg morphogen may 

promote disc growth in the absence of graded Dpp signaling. It is also possible that cell 

proliferation stimulated by Dpp signaling discontinuity may reflect a growth control 
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mechanism utilized during wound healing and regeneration when cells exposed to different 

levels of Dpp are juxtaposed after injury.

Hpo signaling in mammals

The core components of the Drosophila Hpo pathway are highly conserved in mammals (see 

Table1).51–53 In fact, several components of the Drosophila Hpo pathway can be 

functionally replaced by their mammalian homologs.11, 15, 21, 22, 54, 55 Accumulating 

evidence has suggested that the mammalian Hpo pathway regulates cell contact inhibition, 

organ size, and cancer development.52, 55–60 Mice lacking Lats1, a vertebrate orthologue of 

Drosophila Wts, develop soft-tissue sarcomas, ovarian tumours, and pituitary dysfunction.61 

Embryos deficient for Lats2, another mammalian orthologue of Wts, showed overgrowth in 

several mesodermal tissues, and fibroblasts derived from these embryos (MEFs) have growth 

advantages, exhibit a defect in contact inhibition and cytokinesis, and display centrosome 

amplification and genome instability.62 Complete knock-out of Lats2 resulted in an 

acceleration of exit from mitosis and mitotic defects including centrosome fragmentation 

and cytokinesis defects, followed by nuclear enlargement and multinucleation.63 Human 

Mst2, an orthologue of Hpo, phosphorylates and activates both Lats1 and Lats2.64 The 

human homolog of Sav, hWW45, is mutated in several cancer cell lines.9 Mice lacking 

WW45 revealed a crucial role for WW45 in cell-cycle exit and epithelial terminal 

differentiation, and WW45 is required for Mst1 activation for proper epithelial tissue 

development in mammals.65

Yap, a human orthologue of yki, is a candidate oncogene amplified in several types of tumor.
57, 66 Recent studies revealed that Yap is the primary effector of the mammalian Hippo 

pathway.25, 58, 59, 67 Yap overexpression in cultured cells is able to overcome cell contact 

inhibition and Yap inactivation can restore contact inhibition in a human cancer cell line 

bearing deletion of hWW45/Sav.58 Yap nuclear localization is inhibited by Lats 

phosphorylation as well as by cell-cell contact.25, 58 Yap overexpression in mouse liver 

caused excessive tissue growth and reversibly increased liver size,25, 59 and long-term 

overexpression of Yap led to hepatocellular carcinoma (HCC).25 Furthermore, Yap protein 

levels and/or nuclear localization are elevated in many human cancers including liver cancer, 

prostate cancer, lung cancer, colon cancer, ovarian cancer, and breast cancer.25, 58, 60 Several 

recent studies provided evidence that TEAD family of transcription factors mediate the 

function of Yap to regulate cell proliferation and contact inhibition in mammals.68–70

Much less is known about the upstream signals regulating the mammalian Hpo pathway, 

except that Merlin has been extensively studied for its tumor suppressor function in 

mammalian nervous tissues.36, 71–73 A recent study showed that loss of Merlin in 

meningioma cells resulted in loss of contact-dependent growth inhibition, enhanced 

anchorage independent cell growth, and increased cell proliferation due to accelerated S-

phase entry. In addition, loss of Merlin in meningioma cell lines or primary tumors resulted 

in increased protein level and nuclear localization of Yap.74 Fat4 is essential for vertebrate 

PCP, and loss of Fat4 disrupts oriented cell divisions and tubule elongation during kidney 

development, leading to cystic kidney disease.75 Furthermore, Fat4 is a candidate tumor 
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suppressor whose expression is lost in a fraction of human breast tumor cell lines and 

primary tumors.76

Future perspective

The Hpo pathway has emerged as an evolutionarily conserved signaling pathway that 

regulates cell growth, proliferation, and cell death during normal development and its 

malfunction has been linked to several types of human cancer. The past several years have 

witnessed an explosion of information regarding various aspects of Hpo signaling cascade. 

However, many important questions regarding the signaling mechanism as well as the 

physiological and pathological roles of the Hpo pathway remain. In mammals, the upstream 

signal(s) that regulates Hpo signaling activity remains obscure. One intriguing observation is 

that cell-contact inhibition can modulate Yki activity but the molecular pathway that links 

the detection of cell density to Yki regulation has not been defined. It also remains to be 

determined whether mammalian Fat homologs participate in this process. Whether the Hpo 

pathway activity is modulated in space and over the time course of normal development 

remains a critical issue. More direct measurement of pathway activity, e.g., by measuring the 

phosphorylation states of Yki, Wts, or Hpo should be informative but could be challenging, 

not only because these reagents are difficult to develop but also because the change in Hpo 

pathway activity over time might be subtle. Hpo pathway reporter genes might also be useful 

to monitor spatial and temporal changes in Hpo pathway activity.

The Hpo signaling pathway is unlikely to be linear. There is evidence that another yet to be 

identified receptor may act in parallel with Fat.35 Similarly, the Hpo pathway may branch 

out at other levels. For example, Hpo may directly regulate the turnover of Diap1 in addition 

to controlling its expression.12 The biological effect of Hpo signaling is likely to be context 

dependent, and there is evidence that Yap can promote cell death by binding to a p53 family 

member, p73.77, 78 In Drosophila, Hpo pathway components also play roles in other 

developmental processes including retina cell patterning,79 dendrite morphogenesis,80, 81 

regulation of oocyte polarity,82–84 and salivary gland degeneration.85 Furthermore, Hpo 

signaling regulates salivary gland cell death in a PI3K-dependent, but Yki-independent, 

manner.85 The specification of posterior follicle cell fate identify during oogenesis, another 

process that involves Hpo signaling, does not require the action of Fat.81 These observations 

indicate that there can be deviations from the canonical pathway depending on 

developmental contexts. With respect to situations in which Hpo pathway goes awry, Yap is 

upregulated in many cancers but the underlying mechanisms and functional significance 

remain largely undetermined. It is possible that other growth control pathways can feed into 

the Hpo pathway at different levels. Uncovering pathway crosstalk should provide better 

insight into the signaling network underlying the control of tissue growth and organ size 

during normal development and how cancer cells hijack the signaling network to favor their 

survival and proliferation.
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Figure 1. hop or wts mutant clones lead to tumor-like growth in mosaic flies
Wild type eye (A) or enlarged eye carrying hpo mutant clones (B). wts mutant clones 

(arrows) located on the notum resulted in tumor-like growth (C). Adapted from Jia et al.10
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Figure 2. The Drosophila Hpo pathway
The Hpo kinase cascade consists of four core proteins: Hpo, Sav, Wts, and Mats. Sav binds 

and regulates Hpo. Hpo phosphorylates and activates Wts. Hpo also phosphorylates Mats to 

enhance its ability to activate Wts. Wts phosphorylates Yki and restricts its nuclear 

localization. Yki forms a complex with Sd to activate Hpo target genes. Ex and Mer act in a 

partially redundant manner to regulate the Hpo kinase cascade. Fat is a candidate receptor 

and may regulate the Hpo pathway through Dachs and Ex. Ds is a candidate ligand for Fat. 

Fj modulates Ds/Fat interaction through phosphorylating Ds and Fat in the Golgi.
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Table 1

Conserved Hpo pathway components between Drosophila and mammals

Drosophila Mouse Human Protein type

Dachsous (Ds) Dchs1, Dchs2 DCHS1, DCHS2 Protocadherin

Fat Fat1-Fat3, Fat4/Fat-j Fat1-Fat3,Fat4/Fat-j Protocadherin

Four-jointed (Fj) Fjx1 Fjx1 Golgi associated kinase

Discs overgrown (Dco) CK1ε/δ CK1ε/δ Ser/Thr kinase

Expanded (Ex) Ex1/Frmd6,Ex2 Willin FERM-domain

Merlin (Mer) Merlin NF2 (Merlin) FERM-domain

Hippo(Hpo /dMst) Mst1, Mst2 Mst1/STK4
Mst2/STK3

Ser/Thr kinase

Salvador (Sav) WW45/Sav1 hWW45/SAV1 WW domain

Warts (Wts) Lats1, Lats2 LATS1 and LATS2 Ser/Thr kinase

Mob as tumor suppressor (Mats) Mob1, Mob2 MOBKL1A, MOBKL1B NDR kinase family cofactor

Yorkie (Yki) Yap
TAZ

YAP
TAZ/WWTR1

WW domain, transcriptional co-activator

Scalloped (Sd) Tead/Tef1-Tef4 Tead1-Tead4 TEA DNA binding domain
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