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Abstract

Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with
accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap
with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process
that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that
makes up the backbone of the thick filament, four other proteins which are intimately bound to the
thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural
and regulatory roles. Consistent with this, mutations in the respective genes have been associated
with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to
summarize our current knowledge on the molecular structure, subcellular localization, interacting
partners, function, modulation via posttranslational modifications, and disease involvement of
these five major proteins that comprise the thick filament of striated muscle cells.

Introduction

The sarcomere is the smallest contractile unit of the striated muscle cell that is repeated
thousand of times to give rise to myofibrils, which assemble into myofibers that comprise
the mature muscles (131, 495, 496). One of the most remarkable features of sarcomeres is
their austere periodicity created by overlapping arrays of thick myosin and thin actin
filaments occupying A- and I-bands, respectively (Fig. 1) (354).

A single thick filament contains >200 perfectly aligned myosin molecules assembled into
highly ordered bundles in which the globular motor head domains face outward and the long
rod regions face inward forming a bipolar filament (20, 176) (Fig. 1). The subregion of the
A-band where thick and thin filaments overlap and actomyosin cross-bridges form is known
as the overlap zone. The central subregion of the A-band that is devoid of thin filaments is
referred to as the H-zone (223). Contrary to the A-band that remains constant during
contraction, the H-zone shortens significantly when sarcomeres are activated and allowed to
contract (the shortening distance is similar to that of the I-band). In the middle of the H-
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zone, there is a vertical line called M-line or M-band that is devoid of myosin heads, and
contains accessory proteins that play scaffolding, cross-linking, and regulatory roles (223).
For a more detailed description of the structure of thick filaments, readers are directed to two
excellent recent reviews (530, 563).

In addition to myosin, a number of other proteins reside in the thick filament playing
important structural and regulatory roles. These include: myosin binding protein-C (MyBP-
C), titin, myomesin, and obscurin (Fig. 1). Myosin, the back-bone of the thick filament,
slides past actin thin filaments by hydrolyzing adenosine triphosphate (ATP) to mediate
muscle contraction (255, 256). MyBP-C is tightly anchored to the thick filament through
binding to both myosin and titin, and modulates the formation and cycling of actomyosin
cross-bridges (160, 223, 420, 422). Titin, the largest known protein to date, is intimately
bound to myosin along the length of the thick filament, and mainly functions as a scaffold
for thick filament assembly (287, 356, 407). Myomesin forms antiparallel homodimers
cross-linking myosin molecules within the M-band and contributing to the elasticity of the
thick filament (17, 170, 171). Lastly, obscurin, the newest giant protein of muscle cells,
contributes to the stabilization of thick filaments into mature A-bands and their alignment
with internal membrane systems (287).

In this review, we provide a comprehensive, up-to-date description of the molecular structure
and diversity, subcellular distribution, binding partners, functions, posttranslational
modifications, and involvement in skeletal and cardiac myopathies of these five major
proteins that make up the thick filament of striated muscle cells in vertebrates with an
emphasis in mammals.

Myosin was the first protein purified from muscle cells, originally described as a
“proteinous” complex in 1864 (297,543). Following its original identification, extensive
studies focused on its structural determination and physiological roles demonstrating its
inherent ability to form thick filaments that slide past actin thin filaments by hydrolyzing
ATP, thereby mediating muscle contraction (137, 255, 256, 534). To date, the myosin
structure, isoform variability, regulated ATPase activity, and roles in contractility have been
excessively interrogated yielding important information but also generating new questions.
Below we present a comprehensive review of our current knowledge on mammalian (with an
emphasis on human) sarcomeric myosin, its binding partners, and its causative involvement
in the acquisition of hereditary myopathies.

Structure, localization, and isoforms

Sarcomeric myosin is a hexameric motor protein composed of two heavy chains (MyHC),
two essential light chains (ELCs), and two regulatory light chains (RLCs). Each MyHC
comprises a Src homology 3-like (SH3-like) domain, a globular motor “head” domain that
bears ATPase activity and binds actin, a converter segment connecting the head domain to
the lever arm that binds to ELC and RLC via isoleucine-glutamine (IQ) maotifs, and a “tail”
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that consists of a coiled-coil a-helical region that homodimerizes to form rods, reviewed in
(176) (Fig. 2A). Upon limited trypsin digestion, MyHC is fragmented into two parts, heavy
meromyosin (HMM), which contains the head region, the converter segment, the lever arm
and the NH,-terminal portion of the a-helical rod domain, and light meromyosin (LMM),
which contains the COOH-terminal half of the a-helical rod domain (Fig. 2A). Further
cleavage of HMM by papain leads to generation of subfragments 1 (S1) and 2 (S2), with S1
comprising the head domain, the converter segment, and the lever arm, and S2 containing
the NH,-terminus of the a-helical rod domain (Fig. 2A). The head region contains the ATP
binding site, and is composed of a core of seven-stranded p-sheets surrounded by 17 a-
helices and 10 B-strands (105). ATP binding is mainly mediated by the central ~50 kDa
region of the globular head, which is further divided into upper and lower subregions. The
cleft that is formed between the upper and lower subregions contains the ATP binding site
(393, 469). Importantly, ATP binding to the head domain is coupled with the opening of the
actin binding cleft, described in detail in (279). The converter segment is connected to the
head domain via a long a-helix, called relay helix. The interface of the converter segment
and the relay a-helix is important in fine-tuning ATP binding and hydrolysis, as mutations in
this region alter the kinetics of these events (58). Moreover, both ELC and RLC are
primarily composed of a-helices and contain one or two EF-hand motifs mediating binding
to the 1Q motifs of MyHC (Fig. 2B) (476). While little is known about the regulation of
ELC, RLC is regulated via complex phosphorylation/dephosphorylation events, which in
turn influence the conformation of HMM and ELC, and therefore the catalytic and
mechanical activities of myosin (413) and recently reviewed in (231, 232).

In striated muscle cells, myosin forms the backbone of the thick filaments, which are
anchored within the M-band and extend bidirectionally toward the two opposite ends of the
sarcomere (171, 247). Under the light microscope, myosin filaments appear as dark thick
stripes, mainly due to their high degree of compactness, occupying A-bands. While A-bands
contain HMM and part of the tail of myosin filaments including S1 and S2, M-bands are
devoid of myosin heads and encompass overlapping arrays of antiparallel myosin rods
making up LMM.

To date, 35 distinct myosin families have been characterized in mammalian genomes (581).
Herein, we will focus on the myosin isoforms that are expressed in striated muscles and
discuss their preferential expression during embryogenesis and at maturity.

MyHC isoforms—Eight different gene loci have been identified for MyHC across
mammalian striated muscles during development and in adulthood (Table 1; Fig. 2A).
Human cardiac muscle expresses two main types of MyHC, a and 3, encoded by MYH6
and MYH?7, respectively. Recently though, an additional isoform was described that is
encoded by the MYH7b gene (also called MYH14) (589); however, the expression profile
and role of MYH7bin mediating cardiac contractility remain to be examined. MYH6 and
MYH?7 are expressed in embryonic human heart at 31 to 35 days /n utero and persist during
adulthood with MYH6 predominantly expressed in atria with minimal expression in
ventricles (~7%), and MYH?7 primarily expressed in ventricles (379, 474, 598), reviewed in
(359). In developing mouse heart, both Myh6 and Myh7 are expressed evenly in ventricles at
E11.5 (622); however, the expression of Myh6 is restricted to the right ventricle at E15.5
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(622). At maturity, mouse hearts preferentially express Myh6 in both atria and ventricles
(344, 519), whereas rat hearts express Myh6 and Myh7 in ventricles, and Myh6 in atria
(123, 150). Given that Myh6 confers faster contractions whereas Myh7 maintains tension
more efficiently due to its slower ATPase activity (333, 346, 484), the faster heart rate in
rodents unsurprisingly requires higher amounts of Myh6 in the ventricles. In human heart
failure patients, the expression of MYH®6 is greatly diminished to nearly undetectable levels,
while the expression of MYH7 is significantly upregulated, possibly as a compensatory
response (5, 334, 335, 379).

The MyHC expression profile is more complex in skeletal muscles (for a comprehensive
review on the expression of myosins during muscle development readers are referred to
reference (501). MYHS3, referred to as the embryonic MyHC isoform, is encoded by MYH3.
MYHS3 is mainly expressed in human embryonic limb muscles as early as in week 8 of
gestation, but disappears 2 weeks after birth (39, 100, 595). In addition to MYH3, MYH?7 is
also expressed in embryonic human skeletal muscles, as early as weeks 6 to 10 of gestation
(39,100,254), along with perinatal MYH8, whose presence is detectable at week 9
postgestation (501). Similarly, in mouse, expression of Myh3, Myh7, and Myh8 has been
reported at E10 (343, 579). Myh3 declines to undetectable levels by P21, whereas Myh8 is
still expressed at this time, but disappears in adulthood (19). Contrary to Myh3 and Myh8,
Myh7 is expressed throughout adulthood (19). Myh3 and Myh7 are expressed in primary
myotubes, but Myh8 may replace Myh7 in secondary myotubes (107, 410, 482, 579).

In adulthood, skeletal muscles are classified as slow or fast depending on the predominant
MyHC that they express, although additional MyHC isoforms may also be expressed, albeit
in low amounts (403,536). Fast-twitch skeletal myofibers are subclassified as Type-I1x, -11b,
and -lla, and primarily express MyHC-2X encoded by MYH1, MyHC-2B encoded by
MYH4, and MyHC-2A encoded by MYH?Z, respectively, recently reviewed in (501, 581).
Similar to cardiac ventricles, slow-twitch skeletal myofibers (Type-I) mainly express MYH?7,
along with low levels of MYH1, MYH2, MYH4, and MYH6 (403, 536). MYH7b is also
expressed in skeletal muscles, but in low levels (479, 589).

Although sarcomeric MyHCs share >80% sequence identity, their enzymatic properties,
including ATP consumption and hydrolysis rate, adenosine diphosphate (ADP) release rate,
attachment time to actin, contraction rate, tension cost, and power output vary considerably
(57, 70, 218, 226, 500, 518, 536, 581). Generally, fast-twitch muscles exhibit intense power
output with high-contraction rate mediated by fast ATPase hydrolysis; they are therefore
suitable for short bursts of contractility under anaerobic conditions (536, 581). Conversely,
slow-twitch muscles display slow(er) shortening velocity and reduced ATP usage compared
to fast-twitch muscles, thereby sustaining tension for longer periods of time (581).

ELC isoforms—Three different gene loci have been described for ELC in mammalian
striated muscles. These include the fast ELC, the slow/ventricular ELC, and the atrial ELC
encoded by MYL1, MYL3 and MYL4, respectively, Figure 2B; (138, 536). ELCs bind to
the first 1Q motif of MyHC present in the lever arm via their EF-hand motifs (73, 470).
MYL1 and MYL3 are expressed in both fast- and slow-twitch skeletal muscles but at
different ratios with MYL1 being the main isoform in fast-twitch muscles, and MYL3 in
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slow-twitch and ventricular muscles (536). Moreover, while MY L4 is the main isoform in
atria, it is also expressed in skeletal muscles and ventricles during embryogenesis (343, 344,
452).

MY 1is alternatively spliced giving rise to two variants, myosin light chain (MLC) 1f and
MLC3f, which differ in their NH,-termini mediating binding to the COOH-terminus of actin
(Fig. 2B) (408,434,541,559). MYL3 and MY L4 share considerable homology (80.1%
identity and 90.3% similarity); however, they exhibit distinct affinities to myosin and actin
with MYL3 binding more efficiently to actin and MY L4 to MyHC (438, 439). MYL4 is
upregulated in the ventricles of patients with tetralogy or trilogy of Fallot, double-outlet
right ventricle disease, infundibular pulmonary stenosis, and hypertrophic cardiomyopathy
(HCM) or dilated cardiomyopathy (DCM) (30, 388, 390, 499). Skinned cardiac muscle
fibers from these patients exhibit enhanced Ca2* sensitivity, accelerated shortening velocity,
and faster tension development (388, 390), similar to skinned ventricular fibers from
transgenic mice overexpressing Myl4 (144). Consistently, overexpression of human MY L4
in rat hearts subjected to aortocaval shunt operation resulted in attenuation of heart failure
(3), while replacement of MyI3 by human MY L4 in adult rat cardiomyocytes led to
accelerated contractility kinetics without altering Ca2* signaling (438). Thus, upregulation
of MYL4 may serve as a compensatory mechanism to enhance cardiac contractility in
patients with different types of cardiomyopathy possibly by reducing the binding affinity
between ELC and actin therefore enabling faster actomyosin contractions.

RLC isoforms—There are three gene loci encoding RLC isoforms in mammalian striated
muscles, including atrial, ventricular/slow skeletal, and fast skeletal encoded by the MYL7,
MYL2 and MYLPF genes, respectively (Fig. 2B). RLCs bind to the second 1Q motif
present in the lever arm of MyHC via their EF-hand motifs (470).

MYLY7 is ubiquitously expressed throughout the linear heart tube during development;
however, in adulthood, its expression is restricted to the atria (296). Homozygous Myl7
knockout mice exhibit embryonic lethality at E10.5-E11.5 (251). Evaluation of isolated
embryos revealed that they contain enlarged amorphous heart tubes at E8.5, which exhibit
major defects in the atria manifested as impaired myofibrillar organization and reduced
contraction by E9.5, underscoring the key role of Myl7 in cardiac atrial development (251).

MYL2 is expressed during early embryogenesis (i.e., E9.5), and persists at maturity
preferentially localizing in the ventricular myocardium (158) and slow-twitch skeletal
muscles (56, 319). Homozygous Myl2 knockout mice exhibit structural and contractile
defects, and develop DCM, eventually dying at E12.5 (97). Although Myl7 is upregulated in
the Myl2-null hearts, it does not compensate for the loss of Myl2 (97). Patients homozygous
for frameshift mutations in MYL 2 exhibit sarcomeric disarray and miniaturized Type-I
myofibers, but normal size Type-1I myofibers, and die of cardiomyopathy (mainly DCM, but
may carry features of other forms, such as HCM, restrictive or noncompaction
cardiomyopathy) (599).

Lastly, myosin light chain phosphorylable fast skeletal muscle (MYLPF), also known as
HUMMLC2B, is selectively expressed in fast skeletal muscles, although it is also present in
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slow skeletal and cardiac muscles, but in low amounts (500, 536). Homozygous Myipf
knockout mice fail to form functional skeletal muscles, and die immediately after birth,
possibly due to abnormal diaphragm muscles and respiratory issues (588).

Binding partners

In addition to its well-characterized interaction with actin during the generation of power
stroke (please see below), myosin forms stable or transient interactions with proteins
involved in different molecular pathways. This section will focus on binding partners of
myosin in striated muscles (Fig. 3), by grouping them according to their roles and/or
subcellular location.

Proteins modulating contractility

Actin (~42 kDa).: Actin makes up the thin filaments of striated muscle cells, recently
reviewed in (171). It contains two domains, small and large, and an ATP binding pocket
located in the cleft of the two domains (268). Each small and large actin domain consists of
two subdomains; subdomains 1 and 2 are present in the small domain, and subdomains 3
and 4 are present in the large domain (268). Actin subdomains 1 and 3 bind to the myosin S1
fragment (48, 105, 323, 378, 540).

Actin also interacts with ELC isoforms via its COOH-terminus (389, 541, 559). Specifically,
the NH,-terminus of MLCLf contains a ~45-amino acid long insertion that is positively
charged due to its high Lys content, which is absent from MLC3f (159, 225). The presence
of this insertion enhances the binding affinity of MLC1f for actin (approximately fourfold)
compared to MLC3f, and increases the catalytic efficiency (Vmax/KaTpase) of MyHC
(approximately fourfold), but reduces the ATPase activity (Vax) Of the S1 fragment (~60%)
(212). Deletion or Ala substitution of this insertion leads to faster cross-bridge Kinetics,
resembling MLC3f (225, 542).

Similar to the MLC1f and MLC3f isoforms, the NH,-termini of MYL3 and MYL4 also
interact with actin, with MYL3 exhibiting a higher binding affinity than MYL4 (387, 439,
552, 553). Several studies reported that deletion of the first 43 amino acids of MYL3 results
in reduced contractile force per cross-sectional area, diminished isometric tension and
stiffness, and reduced length dependence of Ca2* sensitivity in isolated papillary muscles
(277,371,585). Other studies indicated that abrogation of the binding between the NH,-
terminus of MYL3 and actin leads to faster contractility kinetics in skinned human
cardiomyocytes and mouse papillary muscle strips (389, 466, 585) or has no effect on
shortening velocity in mouse papillary muscle strips (375). Thus, although the exact role of
the interaction between actin and the different ELC isoforms is still elusive, it is apparent
that it contributes to the regulation of actomyosin contractility as a function of the
physiological demands of the muscle in which they are expressed.

MyBP-C (120-140 kDa) and MyBP-H (~52 kDa).: MyBP-C and MyBP-H were first
extracted from striated muscles in 1973 as impurities in myosin preparations (33, 420),
whereas later studies demonstrated that they are interacting partners of sarcomeric myosin
(119,183,386,422). MyBP-C and MyBP-H are modular proteins consisting of tandem
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immunoglobulin (Ig) and fibronectin-111 (Fnlll) domains interspersed with unique sequences
(134, 575, 576, 594). There are three MyBP-C isoforms including cardiac, slow skeletal, and
fast skeletal. While the cardiac isoform is restricted to cardiac muscle (172, 302), the
skeletal isoforms may coexist in different skeletal muscles (9, 12, 172, 302, 326). The
extreme COOH-terminal 1g8-Fnll19-1g10 cassette of MyBP-C and MyBP-H supports
binding to the LMM portion of MyHC (183, 422). Moreover, the NH,-terminus of MyBP-C,
specifically the Pro/Ala rich motif and M-motif flanking Ig domain C1, interacts with the S2
fragment of MyHC (153, 207, 208, 386). Unique to the cardiac isoform, 1g-CO interacts
specifically with MYL2 (467). While the interaction of the COOH-terminus of MyBP-C
with LMM is constant, the interaction of the NH,-terminus with myosin S2 is dynamic and
regulated in a complex manner via phosphorylation (please see below).

Contrary to MyBP-C, little is known about MyBP-H. MyBP-H is preferentially expressed in
fast-twitch skeletal muscles and the Purkinje fibers of cardiac muscle (21,33,50).
Interestingly, the expression levels of MyBP-H are increased in the gracilis or vastus lateralis
skeletal muscles of patients with amyotrophic lateral sclerosis (ALS), however the
physiological significance of these observations are unknown (109). Recently, linkage
disequilibrium analysis of MYH7 mutations associated with HCM and single nucleotide
polymorphisms (SNP) in MYBPH described an association between increased left
ventricular wall thickness in patients carrying the MYH7 A797T mutation and the MYBPH
SNP rs2250509 (396). However, the exact mechanism of how the MYBPH SNP rs2250509
exacerbates left ventricular wall thickness in patients containing the MYH7 A797T mutation
is currently unknown.

Cytoskeletal proteins

Myomesin and M-protein (165-188 kDa).: Myomesin and M-protein consist of 1g and
Fnlll domains, and both localize at the sarcomeric M-band, reviewed in (247). Myomesin
interacts with the central LMM region of myosin via its NH»-terminal My1 domain (418),
contributing to the assembly and incorporation of myosin into A-bands during
myofibrillogenesis (163). It has been speculated that the disordered nature of My1 allows it
to adopt an extended and flexible conformation that enables its interaction with the bulky
myosin filaments. Consistent with this, myomesin anchors myosin filaments in an angular
position and maintains the regularity of the A-band lattice (17). Although My1 binds
specifically to myosin, it is not sufficient to target myomesin to M-bands (31). Indeed,
ectopic expression of myomesin fragments in neonatal rat cardiomyocytes (NRCs) revealed
that the 1g domain My?2 is necessary (and sufficient) for the incorporation of myomesin into
M-bands, likely due to its interaction with a yet unidentified M-band protein (31).

Contrary to myomesin that binds to LMM via My1, M-protein binds to LMM via Ig
domains My2-My3 (419). Interestingly, the interaction between LMM and M-protein is
negatively regulated by protein kinase A (PKA)-mediated phosphorylation of Ser76 located
in My1 (419). This finding suggests that My1 may also contribute to the interaction between
M-protein and LMM (similar to myomesin) or that phosphorylation of My1 may induce a
conformational change to the My2-Mya3 region precluding it from binding to LMM. Further
evaluation of the ability of different portions of M-protein to target to M-bands indicated that
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My2-Mya3 (i.e., the LMM binding site) and My9-My13 independently mediate targeting of
M-protein to M-bands (419).

Titin (~3—4 MDa).: Titin is a giant protein with a molecular weight of 3 to 4 MDa. A single
titin molecule spans a half sarcomere with its NH,-terminus anchored to the Z-disk and its
COOH-terminus to the M-band (164, 209, 287, 329). The A-band region of titin (~2 MDa)
is composed of two types of super repeats made up of tandem Ig and Fnlll domains (168,
287). The first super repeat contains seven domains, Ig-(Fnlil),-1g-(Fnlil)3, resides in the D-
zone (comprising the ends of thick filaments), and is repeated six times, while the second
super repeat contains 11 domains, Ig-(Fnlll),-l1g-(Fnlll)s-1g-(Fnlll)3, localizes in the C-zone
(defined by the presence of MyBP-C), and is repeated 11 times (287, 306, 398).
Interestingly, the 11-domain super repeat shows a ~43 nm periodicity, which corresponds
well to the periodicity formed by myosin heads and MyBP-C in the C-zone (51, 287, 340). It
has therefore been proposed that titin may serve as a blueprint to determine the regular
organization of staggering myosin heads and MyBP-C. Consistent with this, the interaction
between myosin and titin in the A-band takes place within minutes after they are
synthesized, as shown by pulse-labeling and immunoprecipitation assays (259). Both the S1
and LMM regions of myosin interact with the Fnlll domains of titin in the A-band, as
demonstrated by cosedimentation and solid phase binding assays (51, 246, 259, 398, 586).
The interaction between LMM and titin, however, is weaker than the interaction between the
S1 fragment and titin (398). Accordingly, it has been postulated that the S1/titin interaction
promotes the assembly and regular incorporation of thick filaments into A-bands, enhances
the myosin ATPase activity /77 vitro, and contributes to the regulation of force production
(280,287,398). Given that titin is a major structural component of the thick filament, it will
also be discussed below in more detail.

Nonerythroid protein 4.1R (66-97 kDa).: Protein 4.1R was originally identified as a
peripheral protein in erythrocytes, but later it was shown that it is ubiquitously expressed in
all tissues and organs (34). Protein 4.1R contains a nonmodular NHo-terminus, a middle 4.1/
ezrin/radixin/moesin (FERM) domain, a FERM-adjacent domain, and a COOH-terminal
spectrin-actin binding domain (SAB) (34). In the heart, protein 4.1R localizes at the
sarcolemma, is enriched at the intercalated disc, and is also present at Z-disks (444, 550).
However, in skeletal muscles, protein 4.1R preferentially localizes to the C-zone of the A-
band where it interacts with HMM via its SAB domain (292). Recently, it was shown that
downregulation of protein 4.1R in mouse C2C12 skeletal myoblasts results in delayed
myogenic differentiation and reduced levels of MyHC and light chains (252). However, the
exact functional significance of the HMM/4.1R binding in skeletal muscles remains
unknown.

Kinases

Protein kinase B (PKB)/Akt2 (49-56 kDa).: PKB/AKkt2 localizes in both the cytosol and
the sarcolemma in rat skeletal myotubes (623). It contains a pleckstrin-homology (PH)
domain at its NH,-terminus and a kinase domain at its COOH-terminus. Akt2 directly binds
to MyHC via its PH domain (546). In the presence of increasing amounts of
phosphatidylinositol-4,5-bisphosphate (P1(4,5)P5), myosin binding to Akt is competitively
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inhibited (546). Overexpression of a dominant negative form of Akt in chicken embryonic
myoblasts demonstrated that Akt activity is required to induce myoblast differentiation and
expression of MyHC (265). Although the interaction of Akt2 and myosin has been identified
for nearly two decades, its exact physiological significance is still unknown.

Metabolic enzymes

Adenosine monophosphate deaminase 1 (AMPD1, ~90 kDa).: While the thick filament is
home to many metabolic enzymes, recently reviewed in (247), AMPDL is the only known
metabolic enzyme that directly binds to myosin (28). AMPDL binds to myosin during
muscle contraction, and catalyzes the removal of an amine group from adenosine
monophosphate (AMP) generating inosine monophosphate (IMP) (483). The central
nonmodular region of AMPD1 (amino acids 178-333) mediates binding to the S2 fragment
of myosin (28, 236). Since myosin ATPase requires large amounts of ATP to perform
repetitive contractions, ATP is supplied by glycolysis, oxidative respiration, or adenylate
kinase-mediated ATP synthesis at the M-band (310), reviewed in (247). Adenylate kinase
mediates ATP synthesis by transferring a phosphate group from ADP to another ADP
generating AMP and ATP as final products. Conversion of AMP to IMP by AMPDL1 results
in reduced AMP levels, allowing ATP synthesis to occur by adenylate kinase. Thus, the
presence of AMPD1 is essential for maintaining the constant production of ATP via
adenylate kinase during repeating contractions.

Molecular chaperones

Heat shock protein B2 (HspB2, ~20 kDa).: Molecular chaperones are proteins that
promote refolding of denatured proteins (250), recently reviewed in (38). Among them,
HspB2 was recently identified as an interacting partner of MYH6 and MYH?7 in a yeast-two-
hybrid screen (202). HspB2 mainly localizes at the interface of Z-disks and I-bands and the
intercalated disc (185, 512). It is therefore likely that HspB2 binding to MYH6 and MYH7
is transient and takes place during stress to mediate myosin refolding. Conversely, it is
possible that minute amounts of HspB2 are stably bound to myosin filaments. Further work
needs to be done to examine these possibilities.

Uncoordinated mutant number-45 (Unc-45, ~105 kDa).: Urnc-45is also a myosin
chaperone first identified in Caenorhabditis elegans (C. elegans) that contains an NH,-
terminal tetratricopeptide repeat domain, a central domain, and a COOH-terminal UNC-45/
CRO1/SHE4 (UCS) domain comprised of armadillo repeats (44, 317). Chaperones carrying
the UCS domain are myosin-specific (22, 43), aiding the folding of the myosin head during
differentiation and protecting myosin from denaturation during stress, such as heat-induced
aggregation (317). While invertebrates express one Unc-45 protein, vertebrates express two,
Unc-45athat is present in general cell types and Unc-456 that is specifically expressed in
striated muscle cells (453). Extensive biochemical and biophysical work has shown that
Unc-45b binds to the myosin head domain via its central and UCS domains (72). Gain and
loss of function experiments using /n7 vitro and /n vivo models demonstrated that while
Unc-45ais critical for cell proliferation and fusion, Unc-45b is essential for myoblast fusion
and sarcomeric organization (317, 453, 577, 606). Consistent with the key role of Unc-45b
in striated muscles, mice carrying loss-of-function Unc-456 mutations exhibit cardiac
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development arrest, heart failure, and embryonic lethality, despite the presence of normal
levels of Unc-45a, likely due to decreased accumulation of myosins and thus defective
contractility (96).

Ligases mediating proteasomal degradation
Muscle RING finger proteins (MuRFs, 40-60 kDa).: MuRFs are E3 ubiquitin ligases

preferentially expressed in striated muscles (59, 87, 524). They contain an NH,-terminal
really interesting new gene (RING) finger domain, a B-box zinc finger motif, a coiled-coil
segment, and a nonmodular acidic COOH-terminus, reviewed in (361). By mediating
substrate recognition and transferring ubiquitin chains to their substrates to mark them for
proteasomal degradation, MuRFs are essential for maintaining the structural and molecular
organization of sarcomeres (145, 146, 366). Coimmunoprecipitation and ubiquitination
assays showed that MuRF1 and MuRF3 interact with both the S1 and S2 domains of MYH7
and MYH2, and mediate their degradation (145). Knockout mice deficient in both MuRF1
and MuRF3 develop myosin storage myopathy characterized by myosin accumulations and
diminished force generation in skeletal muscles as well as HCM also presenting with myosin
aggregates and disoriented thick filaments in the heart (145). Consistent with these findings,
myosin accumulations were observed in a patient with compound mutations in TR/M63 and
TRIM54 genes, encoding MuRF1 and MuRF3, respectively (424). A yeast-two-hybrid
screen identified MuRF1 and MuRF2 as interacting partners of MYL2, too (605). Notably,
MuRF1 and MuRF2 double knockout mice experience loss of type-II fibers accompanied by
an increase in type-1 fibers in soleus muscle, but not in tibialis anterior muscle (392). The
increase in type-1 and loss of type-II fibers may be due to accumulation of MYH7 and
MYL2, which is consistent with MYH7 and MYL2 being the predominant MyHC and RLC
isoforms, respectively, in type-1 fibers (392, 403, 501, 536). Given that accumulation of
myosin aggregates leads to myopathy (145), the association of the myosin hexamer with the
MuRF family is essential for its regulated degradation, and thus for the maintenance of
muscle structure and function.

Apoptotic proteins

Caspase-3 (~32 kDa).: During apoptosis, cysteine proteases known as caspases dismantle
subcellular structures by fragmenting individual proteins, recently reviewed in (498). Once
the apoptotic cascade is initiated, caspase-3 is activated by cleavage and removal of its NH,-
terminal prodomain (219, 532). Activated caspase-3 in turn activates downstream caspases,
resulting in massive proteolysis and DNA fragmentation (498). MYL3 is a substrate of
caspase-3 in the heart, as evidenced by its caspase-3 mediated fragmentation in a rabbit heart
failure model induced by rapid pacing (391). However, in heart failure patients MYL3
expression and cleavage were indistinguishable from controls, even though caspase-3
activity was significantly upregulated (67). Thus, further studies are required to elucidate
whether cleavage of MYL3 by caspase-3 is experimentally induced and/or species specific.

Generation of power stroke—During muscle contraction, actin thin filaments slide past
myosin thick filaments resulting in sarcomeric length shortening (527). This is a highly
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regulated process mediated by thin and thick filament accessory proteins. At rest, binding of
tropomyosin (Tm) and troponin-I (Tnl) to actin precludes its binding of myasin, while
troponin-T (TnT) interlocks the Tn/Tm complex and actin, and contributes to the
cooperative activation of thin filaments in response to Ca%*, reviewed in (188) (186, 187,
348). In response to depolarization, Ca2* released from the sarcoplasmic reticulum (SR)
binds to troponin-C (TnC) resulting in displacement of Tnl and Tm from the actin filament,
and enabling its interaction with the motor head domain of myosin, reviewed in (350).

The conventional view of the actomyosin interaction postulates that it is solely induced by
conformational changes of the thin filaments in response to increased sarcoplasmic Ca%*
levels, reviewed in (138, 188). However, recent studies suggest that both thin and thick
filaments undergo structural alterations to accommodate actomyosin binding (please see
below) (167, 327, 472, 612). During active contraction, ATP binding to HMM is coupled
with the opening of the actin binding cleft, described in detail in (279), resulting in
detachment of the globular myosin head domain from actin (108,239,376) (Fig. 4A). A
recovery stroke takes place in response to the conformational strain imposed by ATP binding
to myosin, leading to rotation of the converter domain by 65° (Fig. 4B) (279). This rotation
allows ATP hydrolysis to take place due to closure of the ATP binding site, enabling the
initial weak electrostatic association of actin and myosin (148,279). Once ATP is hydrolyzed
and myosin is weakly bound to actin through the lower ~50 kDa domain (Fig. 4C) (48),
HMM alters conformation triggering the release of inorganic phosphate (188). This results
in a ~16° rotation of the upper ~50 kDa domain (48, 332) leading to enhanced actomyosin
binding, mediated by both stereospecific and electrostatic interactions between the two
filaments (332). Concomitant with the release of ADP, the lever arm undergoes a
conformational change resulting to generation of power stroke and muscle contraction; it is
worth noting, however, that recent studies debate whether inorganic phosphate is released
before or after the generation of power stroke (78,79,118,245,373,401,402). Following ADP
release, actomyosin is ready to undergo another round of cross-bridge cycling following
binding and hydrolysis of a new molecule of ATP (Fig. 4D), recently reviewed in (211).

Recent studies have suggested that myosin exists in three states in skeletal muscle: activated,
conventionally relaxed (CRX), and super-relaxed (SRX), recently reviewed in (368). In the
SRX state, myosin heads are arranged almost parallel to the thick filament with a 14.34 nm
periodicity, and exhibit a 10-fold lower ATPase activity compared to the CRX state
(271,328,472,533,626). In the CRX state, myosin heads extend perpendicularly from the
thick filament, but are blocked from interacting with actin due to the Tn/Tm complex (166).
Notably, even when myosin filaments are in the SRX state, ~10% of myosin heads still
adopt a CRX conformation (166,472). During unloaded (no mechanical force) or low load
(small amount of mechanical force) shortening, only a subset of myosin heads supports
contraction (327, 443), but their periodicity remains 14.34 nm as in resting states (327).
Conversely, in response to high load (large amount of mechanical force), the thick filament
helix switches to the activated state, and assumes a less-packed topography with myosin
heads exhibiting a 14.57 nm periodicity (167, 327, 328). This periodicity shift from 14.34
nm (in the relaxed state) to 14.57 nm (in the activated state) is independent of Ca2*
concentration, and has been attributed to mechanical forces alone (167,327). Interestingly,
activated skeletal muscle does not contain any myosin in the SRX state (110, 533). On the
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contrary, cardiac muscle always contains a subpopulation of myosin heads in the SRX
conformation even during contraction (241), which may possibly have a cardioprotective
role during stress (368).

Posttranslational modifications

Numerous studies have demonstrated that the myosin complex undergoes extensive
posttranslational modifications (PTM) (Fig. 5, Tables 2-5), regulating its binding,
enzymatic, and contractile properties. Below we provide a synopsis of the main PTM that
myosin undergoes, and their effects (if known) on sarcomeric contractility. A listing of all
(known) residues in MyHC, ELC, and RLC undergoing PTM is included in Tables 2 to 5;
however, we only discuss select ones that have been biochemically or functionally studied.

Acetylation—Acetylation of myosin was first observed in 1983 (556). A number of
acetylation sites have been identified on MyHC, ELC, and RLC (338, 487, 494), however
little is known about their effects. Nevertheless, a recent study demonstrated that acetylation
of purified Myh6 and Myh?7 results in 20% and 36% increase in the sliding velocity of actin
filaments in /n vitro motility assays, respectively (494). Consistent with this, muscle disuse-
induced atrophy of rat soleus and plantaris muscles leads to decreased acetylation of Myh7
and Myh2 (487). Taken together, these studies therefore suggest that acetylation of MyHC
may enhance sarcomeric contractility.

Arginylation—Arginylation of sarcomeric components is essential for muscle formation
and contractility; for a recent review, please see reference (321). Mass spectrometry has
identified several arginylation sites in MYH2, MYH4, MYH6, and MYH7 (112, 303).
Cardiac myofibrils prepared from ventricles of cardiac-specific knockout mice lacking
arginyl-tRNA-transferase (Atel), the enzyme responsible for arginylation, exhibited reduced
active and passive force compared to wild type (303, 477). Similarly, myosin filaments
isolated from muscles of skeletal muscle-specific Atel knockout mice displayed reduced
force generation capacity /7 vitro when they were allowed to interact with actin filaments,
likely due to loss of cross-bridges formation (112). This phenotype was rescued by
arginylation of myosin filaments using purified Atel (112). Thus, it is possible that
arginylation alters the conformation of MyHC, which may be essential for cross-bridges
formation and force generation.

Phosphorylation—Biochemical and proteomics studies have documented that MyHC,
ELC, and RLC are subjected to extensive phosphorylation; however, the physiological
relevance of these events has only been scantily characterized (26, 184, 238, 337, 338).
Phosphorylation of the ELC isoform MYL3 on Ser195 (26) has been proposed to be
essential in regulating cardiac contractility. This notion was supported by /n vivo
overexpression studies in a zebrafish mutant line, /azy susan (/az), carrying COOH-terminal
truncated MYL3 (cmlc-1 gene in zebrafish), which exhibits impaired cardiac contractility
(369). Over-expression of phosphomimetic MYL3 (i.e., Ser195Asp), but not phosphoablated
MYL3 (i.e., Ser195Ala), in the heart of /az zebrafish embryos restored cardiac contractility
(369).
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Contrary to the minimal information available on the effects of phosphorylation of MyHC
and ELC, phosphorylation of RLC has been extensively studied. Structural studies have
suggested that phosphorylation of RLC allows the head domain on MyHC to change
orientation from parallel to the axis of the thick filament at the SRX state to perpendicular at
the CRX state (271, 372). The effects of phosphorylation of RLC MYL2 at Serl5 by the
cardiac and skeletal myosin light chain kinases (MLCK) have been extensively examined
(89, 126, 624). Accordingly, it was demonstrated that it renders the lever arm of MyHC
stiffer, potentiates isometric and concentric force production, and increases myofilament
Ca?* sensitivity in both cardiac and skeletal muscles, reviewed in (514, 573, 574, 618).
Consistent with these findings, constitutive expression of phosphomimetic Myl2 (i.e.,
Ser15Asp) in myocardia prevented the development of HCM in transgenic mice carrying the
HCM-linked Asp166Val MY/ 2 missense mutation (620). In addition to being
phosphorylated by the skeletal and cardiac MLCK, MYL2 is also a substrate of a novel
MLCK, MLCKA4 that is independent of Ca?*/calmodulin regulation, although the specific
residue and the effect of this PTM are still unknown (91).

Myl2 in mice and rats can be phosphorylated at both Ser14 and Ser15 contrary to human
MYL2 that is only phosphorylated at Ser15, since it contains an Asn at position 14 (506).
Substitution of Ser15 for Ala in mouse hearts (Ser15Ala) leads to increased phosphorylation
of Ser14, as a compensatory response (515). Importantly, phosphoablated Ser15Ala mice
show decreased DCM-induced mortality compared to double phosphoablated mice in which
both Ser14 and Ser15 are substituted for Ala (515). Thus, it appears that although
phosphorylation of Ser14 may not be essential, since it is not phosphorylated under normal
conditions in the rodent heart (515), it can effectively compensate for the loss of Serl5
phosphorylation.

The dynamic versus constitutive nature of MYL2 phosphorylation in the heart following p1-
adrenergic stimulation has led to conflicting reports in the literature. Scruggs et al. (2009)
reported that the amount of phosphorylated Serl15 is increased upon pl-adrenergic
stimulation, while Chang et al. (2015) indicated that there is no change in the
phosphorylation levels of Serl5 upon dopamine infusion or propranolol treatment (90, 505).
A possible explanation for this discrepancy may be that the phosphorylation levels of MYL2
in the heart follow a transmural gradient, with the highest in the epicardium and the lowest
in the endocardium (515). Thus, the differential phosphorylation profile of MYL2 in
response to pl-adrenergic stimulation may be due to the different regions examined in the
two studies. Moreover, the phosphorylation status of MYL2 is not altered in response to a.1-
adrenergic signaling (200, 547).

In cardiac muscle, ~40% of MYL2 is constitutively phosphorylated in systole or diastole
(90, 234, 270, 521). On the contrary, the extent of phosphorylation of MYL2 in skeletal
muscles fluctuates significantly with ~10% being phosphorylated at rest and ~80% upon
stimulation (270, 574). In both muscle types, myosin light chain phosphatase (MLCP)
mediates dephosphorylation of MYL2 (194, 383). MLCP is a tripartite protein consisting of
three components: protein phosphatase 1C delta (PP1c8), myosin phosphatase targeting
protein 2 (MYPT2), and a 20/21 kDa subunit (M20/M21) of unknown function (24, 161,
414, 423). Cardiac-specific overexpression of MYPT2 in a murine model resulted in

Compr Physiol. Author manuscript; available in PMC 2019 March 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wang et al.

Page 14

upregulation of PP1c8, which in turn led to reduced phosphorylation of Myl2 that was
accompanied by decreased ejection fraction of whole hearts and Ca2* desensitization of
isolated ventricular fibers (380). Consistent with the important role of MLCP in regulating
the phosphorylation levels of MYL2, treatment of paced ventricular cardiomyocytes with the
MLCP inhibitor calyculin A resulted in ~90% of MyI2 being constitutively phosphorylated
(90). Thus, MLCP is essential for maintaining the phosphorylation levels of Myl2 at ~40%
in cardiac muscle for normal cardiac function.

Similar to MYL2, Mylpf is also phosphorylated on Ser15 in addition to Ser16 and Serl7 in
human fast-twitch skeletal muscles (238,338). Interestingly, a recent report demonstrated
that aged rats suffering from sarcopenia exhibited reduced phosphorylation at both Ser15
and Ser16 of Mylpf in fast-twitch fibers of gastrocnemius muscle, along with decreased
force production and myofilament Ca2* sensitivity (196). Moreover, the atrial RLC isoform
Myl7 is phosphorylated on Ser21 and Ser22 in mice (corresponding to human MYL7 Ser22
and Ser23) in response to stretch and a.1-adrenergic signaling (201, 283). Given that
treatment of atrial muscle strips with the MLCK ML-7 inhibitor decreased the extent of
Myl7 phosphorylation considerably, it was proposed that Ser21 and Ser22 are substrates of
MLCK (201). Consistent with this, inhibition of MLCK via ML-7 suppressed the
phenylephrine-induced ionotropic effect in atria (201), and attenuated force production in
response to stretch (283).

O-GIcNAcylation—MyHC, ELC, and RLC are also modified by O-GIcNAcylation (102,
229, 461). Accordingly, several sites of O-GIcNAcylation have been reported on Myh6,
Myl12, and Myl3 (461, 462). Interestingly, Serl5 of Myl2 is subjected to both
phosphorylation and O-GIcNAcylation, but the two posttranslational modifications are
exclusive of each other (101).

O-GIcNACc transferase is the enzyme that mediates the covalent attachment of an acetyl-
glucosamine moiety to a Ser or Thr residue, whereas O-GIcNAcase (OGA) is the enzyme
that mediates its removal (229, 230, 461, 462). Incubation of skinned myofibers isolated
from rat soleus muscle with p-N-acetyl-d-glucosamine (GIcNAc) or OGA inhibitors
increased the O-GIcNAcylation levels of several contractile proteins, including Myl1, MyI2,
and Mylpf, and led to enhanced Ca?* myofilament sensitivity (102, 230). On the contrary,
skinned trabeculae isolated from rat hearts exhibited decreased Ca?* sensitivity following
incubation with GIcNAc (461), while removal of GIcNAc restored CaZ* sensitivity in
diabetic rat hearts (462). These contradictory findings on the functional significance of O-
GlcNAcylation with regards to myofilament Ca?* sensitivity may be due to the inherent
structural and regulatory differences between cardiac and skeletal muscles.

Mutations and myopathies

The aim of this section is to provide a brief synopsis on the mutational “hot spots” that are
possibly present in the myosin complex and an updated list with the currently known
mutations (Fig. 6 and Tables 6 and 7). We therefore kindly refer the readership to recent
excellent reviews, summarizing the functional ramifications of select myosin mutations
(105, 526, 545).
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Although encoded by different genes, the MyHC isoforms are highly homologous, sharing
87% to 97.8% similarity. Mutations in conserved residues have been associated with the
development of severe cardiac and skeletal myopathies. As such, more than ~700 mutations
have been identified in the different MyHC isoforms. MYH?7 contains the highest number of
mutations with more than 600 mutations reported, whereas MYH2, MYH3, MYHS, and
MYHS8 contain 15, 33, 35, and 1 mutations, respectively. In contrast, no skeletal or cardiac
myopathy causing mutations have been identified to date for MYH1, MYH4, and MYHT7B.

The majority of the MYH7 HCM-causing mutations are present in the S1 and S2 fragments
(105, 309). Consistent with this, a recent study highlighted the prevalence of MYH7 HCM-
associated mutations in the converter region and the myosin mesa, a flat surface of the
globular head domain (240). Conversely, the majority of the MYH7 skeletal myopathy-
causing mutations reside in the coiled-coil LMM region (105, 240, 309). Thus, disease-
linked mutations are scattered throughout the length of MYH7 although they appear
segregated in terms of eliciting cardiac or skeletal muscle defects. Equivalent numbers of
myopathic mutations have been identified in the motor head domain and the coiled-coil
region of MYH2 and MYHS6, while the majority of MYH3 mutations are present in the
motor head domain. A somewhat paradoxical feature of HCM patients carrying MYH7
mutations is that they are asymptomatic until the third decade of their life or even later
(526). Contrary to MYH7 mutations, MYH3 and MYH6 mutations are linked to
developmental defects, and carriers with these mutations are often affected at an early age.
Moreover, patients carrying the same missense mutation in a conserved residue within
different myosin isoforms may present with different clinical phenotypes. An intriguing
example of this is Thr177/178 that precedes the phosphate binding site in the motor head
domain. Substitution of Thr177 for lle (Thr1771le) in MYH7 leads to development of HCM,
substitution of Thr178 for lle or Met in MYH3 (Thr178lle and Thr178Met) leads to
development of distal arthrogryposis, and substitution of Thr178 for lle in MYH2
(Thr178lle) leads to development of early-onset myopathy (105,544,558). It therefore
appears that the differential expression profile of the MyHC isoforms is a major determining
factor for the onset, severity, and tissue pathogenicity of their respective mutations.

In addition to mutations in MyHC, mutations in ELC and RLC also lead to disease
development (253,625). Intriguingly, mutations in MYL2 and MY L3 mainly underlie the
development of cardiomyopathies, although they are expressed in both cardiac and skeletal
muscles. Specifically, the majority of mutations in MYL2 and MYL3 are associated with
HCM, and only single cases are linked to DCM. Mutations in MYL2 have been suggested to
alter its structure, therefore impacting the kinetics of cross-bridges formation, while
mutations in MY L3 affect actomyosin binding and alter myofilament Ca2* sensitivity,
recently reviewed in (253). Moreover, mutations in the atrial-specific MY L4 were recently
associated with the development of atrial fibrillation (210, 426). Lastly, no myopathy-
causing mutations have been identified in MYL1 and MYLPF, which are predominantly
expressed in fast-twitch muscles.
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Although more than a century has passed since the initial discovery of hexameric myosin,
our understanding of its structure, isoform diversity, regulation, and functions is still
ongoing. Given that myosins are the most heavily mutated proteins in congenital and
somatic cardiac and skeletal myopathies, further multidisciplinary studies are warranted
aiming to comprehensively investigate their roles in muscle (patho)physiology.

Myosin Binding Protein-C

Discovery

Structure, lo

MyBP-C was first discovered as a contaminant of skeletal muscle myosin preparations
(531), but later characterized as a myosin binding protein with a molecular weight of 120 to
150 kDa depending on the muscle source (420). Much work has focused on the cardiac
isoform, as mutations in cardiac MyBP-C are a leading cause of congenital
cardiomyopathies. Recent work, however, has begun to investigate the roles and regulation
of the skeletal isoforms, due to their direct involvement in hereditary myopathies, especially
in the case of slow MyBP-C.

calization, and isoforms

MyBP-C comprises a family of accessory proteins with structural and regulatory roles that
constitutes 2% to 4% of the myofibrillar mass (395). Three different isoforms have been
described: cardiac (cMyBP-C), fast skeletal (fMyBP-C), and slow skeletal (sMyBP-C)
(594), which play key roles in the assembly and stabilization of thick filaments, and regulate
actomyaosin cross-bridges via direct interactions with both myosin and actin (12, 13, 122,
262, 355, 363, 416). The three isoforms share similar structures consisting of seven
(sMyBP-C and fMyBP-C) or eight (cMyBP-C) Ig and three Fnlll modules numbered from
the NH,-terminus to the COOH-terminus as C1-C10 (113) (Fig. 7). The cardiac isoform
includes an additional 1g domain at its extreme NH,-terminus, referred to as C0O (174). All
three isoforms contain a 50-amino acid long Pro/Ala rich region and a 100-amino acid long
MyBP-C specific motif, termed M-motif, that flank Ig domain C1 (113, 489). Unique to
cMyBP-C are a 9-amino acid long insert in the M-motif and a 28-amino acid long insert in
the C5 domain, which is enriched in Pro and charged residues and potentially acts as an
SH3-domain recognition site (151). The cardiac and fast skeletal isoforms also share a
conserved linker region between Ig domains C4 and C5, which is absent from the slow
skeletal isoform (151).

cMyBP-C is encoded by the MYBPC3 gene located on human chromosome 11, has an
apparent molecular mass of ~140 kDa, and is restricted to heart muscle (152, 156, 449).
Structural information about cMyBP-C is limited to secondary structures of the NH,-
terminal CO-C2 region and the C5 domain (147, 489). Solution nuclear magnetic resonance
(NMR) structures confirmed that CO exhibits a canonical 1g topography forming a 8-
sandwich, and 15N relaxation studies showed that its NH,-terminus is highly disordered,
whereas its COOH-terminus is ordered (147, 467). Moreover, crystallographic and NMR
studies demonstrated that Ig domain C1 is more extended than other Ig domains, with its
NH,-terminus being structurally compact, but its COOH-terminus disordered and flexible
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(1), possibly enabling the proper positioning of the neighboring M-maotif for interactions
with other myofilament proteins (147). In contrast to data for CO and C1, there is
disagreement regarding the conformation of the M-motif, with some studies reporting that it
assumes a compact conformation that is structurally related to an 1g p-fold (264), and others
indicating that it is highly disordered in solution (223, 272). NMR studies did confirm that
the M-motif is partially folded, however, no B-sheet composition was evident (149).
Moreover, Ig domain C2 displays the expected p-sandwich topology of an Ig domain (2),
and molecular modeling studies predicted that charge-charge interactions are crucial to the
formation of the protein binding interface between C2 and myosin S2 (147). Lastly, C5
exhibits a prominent p-bulge, formed by the 10-amino acid linker between C4 and C5 that
stabilizes C5, and is only present in the cardiac and fast skeletal isoforms (86, 258).

In comparison to the cardiac isoform, much less is known about the skeletal isoforms.
sMyBP-C and fMyBP-C are encoded by MYBPCI and MYBPCZ located on human
chromosomes 12 and 19, respectively (594). Similar to cMyBP-C, a single transcript has
been described for fMyBP-C, which encodes a protein of ~130 kDa (614). sMyBP-C,
however, is unique, as there are several variants that have been reported ranging in size from
~126 to ~131.5 kDa (15). The slow variants result from extensive alternative splicing of
small amino acid segments within the Pro/Ala rich motif, the M-motif, Ig domain C7, and
the extreme COOH-terminus (12). Accordingly, 14 sMyBP-C variants have been described
in human skeletal muscles to date. The different SMyBP-C variants are coexpressed in
variable amounts and combinations in both slow and fast-twitch skeletal muscles where they
may coexist with fMyBP-C (11). However, there is no single mammalian muscle that
expresses all known sMyBP-C proteins, which is indicative of their distinct structural and
regulatory roles (7, 9-13).

cMyBP-C is expressed in embryonic, neonatal, and adult hearts (156, 172, 266, 594, 615). In
mice, it is first detected at gestational day 8 coinciding with the appearance of titin (172).
Expression of sMyBP-C succeeds the expression of titin and sarcomeric myaosin by about 5
days, at approximately gestational day 14, while expression of fMyBP-C follows at
gestational day 18 (172). Given the expression of sSMyBP-C during early embryogenesis, it
has been postulated that it has essential roles during myofibrillogenesis (4).

The location of MyBP-C in the thick filament was first shown by immuno-electron
microscopy (immuno-EM), revealing its presence in 7 to 9 transverse stripes (C-zone) within
the cross-bridge-bearing region of each half A-band (114,183). Early studies postulated that
binding of the COOH-terminus of MyBP-C to titin determines its localization, given that
titin is incorporated into sarcomeres prior to MyBP-C and exhibits the same periodic
organization (152, 197). Notably, the distance between the MyBP-C stripes is ~43 nm,
which is equal to the spacing of the myosin helix repeat (340). Different models have been
proposed for the positioning and orientation of MyBP-C in the sarcomere to date, primarily
focusing on cMyBP-C. These include the axial, the circumferential, the axial/radial, and the
circumferential/radial models (304, 318). Early studies on MyBP-C localization using X-ray
diffraction modeling suggested an axial arrangement of the entire molecule along the thick
filament (257,528). Alternatively, the circumferential arrangement proposed that three
molecules of cMyBP-C form collar-like rings every 43 nm around the thick filament, which
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are stabilized by intermolecular interactions mediated by the C5-C10 region, specifically
between C5 and C8, and C7 and C10 (151, 152, 304, 382). Interestingly, binding
interactions between the respective domains of fMyBP-C were also shown by surface
plasmon resonance, suggesting that fMyBP-C may also wrap around the thick filament like a
collar. Such interactions were considerably weaker between the corresponding domains of
sMyBP-C with an estimated K, at least 10-fold lower than that for the cMyBP-C domains
(151). Lastly, the axial/radial and circumferential/radial models propose axial and
circumferential orientation of the COOH-terminus of MyBP-C, respectively, with radial
extension of the NH,-terminus toward the thin filament (318). Consistent with an axial/
radial arrangement of the protein, it was recently shown that the last three COOH-terminal
domains (C8-C10) of cMyBP-C are located roughly parallel to the thick filament axis while
the majority of the molecule (C0-C7) runs transversely to the thick filament (318). Notably,
this orientation allows the NH,-terminus to dynamically interact with both the thin and thick
filaments (529).

Similar to the cardiac isoform, fMyBP-C and the majority of the sMyBP-C variants are
targeted to the C-zone. However, select sMyBP-C variants (e.g., variants 1, 6, 7, 8, 9, 002,
and 202) possess a unique COOH-terminal insertion of 26 residues and preferentially
localize to the periphery of the M-band (7).

Binding partners

Based on its sarcomeric location, it is apparent that the main binding partners of MyBP-C
are myosin, actin, and titin. Notably, later studies identified additional binding partners
including obscurin, muscle-type creatine kinase, and myosin RLC (Fig. 8).

Actin (~42 kDa)—In addition to binding myosin (the interaction is described in the
Myosin section above), cMyBP-C also binds actin (384, 385, 613). Early competition
studies suggested that the binding between actin and cMyBP-C is specific, since it was
abolished by myosin S1 (interacting with actin) in the absence of ATP, and cMyBP-C could
displace myosin S1 from actin in the presence of ATP (385). A number of recent studies
have attempted to precisely map the binding site of actin on cMyBP-C, occasionally yielding
conflicting results. Several reports have identified the NH,-terminal CO-C2 region as the
actin binding site, although the interaction appears to be weak with an affinity in the umol/L
range (147, 336, 400, 486). In particular, sequences in CO (298, 336, 425, 601), C1 (55,
511), the first 17 amino acids of the M-motif (597), and the folded tri-helix structure of the
M-motif (54) were shown to support binding to actin, suggesting that there may be multiple
(apparently weak) interaction sites dispersed throughout the NH,-terminus of cMyBP-C.
This was further supported by the ability of the C1-C2 region to cross-link F-actin filaments
(400). Contrary to the above studies, Rybakova and colleagues reported that the COOH-
terminal C5-C10 region confers binding to actin in a saturable and specific manner (486).
Recent work on sMyBP-C has also located the actin binding site in the NH»-terminus of the
protein encompassing the Pro/Ala-C1-M-motif region, although the strength of the
interaction appears to be variant-specific (13).
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The ability of MyBP-C to bind both actin and myosin classifies it as the only myofilament
protein that can link the thick and thin filaments within the region of active cross-bridge
cycling (570).

Titin (3—4 MDa)—MyBP-C’s other thick filament binding partner, titin, has been suggested
to dictate its periodic positioning along the thick filament, as the region of titin that lies in
the C-zone of the A-band also exhibits a periodicity of ~43 nm (306, 307). Early work had
shown that radiolabeled skeletal MyBP-C binds strongly and specifically to the first Ig
domain within titin’s second set of super repeats, and binding was retained by a MyBP-C
fragment lacking the NH,-terminal 171 residues (165), suggesting that the COOH-terminus
of the protein mediates binding to titin. Later studies using recombinant titin and cMyBP-C
fragments mapped the titin binding site to domains C8-C10 (160). Although the interaction
between MyBP-C and titin is relatively weak, the interaction between MyBP-C, myosin, and
titin has been suggested to be instrumental in the ordered arrangement of the sarcomere
(160).

Obscurin (~50-970 kDa)—Unique to sMyBP-C, the COOH-terminus of select slow
variants (e.g., human variants 1, 6, 7, 8, 9, 002, and 202), contains a 26-amino acid long
insertion that along with Ig domain C10 supports binding to the NH,-terminal 1g2 repeat of
the giant protein obscurin at the periphery of the sarcomeric M-band in both developing and
adult skeletal myofibers (7). Over-expression of obscurins’ 1g2 domain in primary cultures
of skeletal myotubes disrupts the formation of M-bands and A-bands, and thereby the
localization of sMyBP-C variants at M-bands, suggesting that obscurins play key roles in the
stability and maintenance of thick filaments, and the targeting of select sSMyBP-C variants to
the periphery of M-bands (7,551).

Muscle-type creatine kinase (M-CK; ~43 kDa)—sMyBP-C directly binds to the M-
CK (99). Using a combination of /n vitro binding assays, it was shown that domains C6-C10
of sMyBP-C support binding to M-CK (99). The interaction has been suggested to be
important, as Ig domain C10 also supports binding to myosin. In ATPase assays, ATP
expenditure accelerated upon the association of the three proteins, and the apparent K,
value of myosin was therefore reduced (99). Thus, by functionally coupling myosin,
sMyBP-C, and M-CK, sMyBP-C acts as an adaptor that connects the ATP consumer
(myosin) and the ATP regenerator (M-CK) for efficient energy metabolism and homeostasis.

Myosin RLC (~18-19 kDa)—As discussed earlier, cMyBP-C contains an additional Ig
domain, CO0, and this domain binds to RLC (467). Although not proven yet, it has been
postulated that CO may be positioned between the two RLCs where it could influence the
relative orientation of the myosin S1 heads (467).

Structural and regulatory roles have been suggested for the MyBP-C family in both cardiac
and skeletal muscles (4, 304, 322, 449, 604), although most of our knowledge stems from
studies on cMyBP-C.
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Structural roles—Early biochemical work demonstrated that MyBP-C plays key roles in
the regular assembly of myofibrils, as the presence of normal MyBP-C levels is required for
the regular assembly of synthetic myosin filaments in regards to thickness, length, formation
of bare zone, and distribution of myosin heads (604). Consistent with this, Harris and
colleagues showed that cMyBP-C null hearts (cMyBP-C~~) develop fibrosis, and contain
misaligned (yet structurally intact) sarcomeres by 3 to 4 months of age (222). Ultrastructural
evaluation of cMyBP-C ™/~ hearts further confirmed these findings revealing the presence of
misaligned Z-disks. Functionally, the null hearts displayed significantly depressed indices of
diastolic and systolic functions and reduced Ca?* sensitivity of tension (222, 304, 367).
Similarly, a second cMyBP-C null model generated by Carrier and colleagues also exhibits
myocardial disarray with increased interstitial fibrosis, and additionally develops eccentric
left ventricular hypertrophy characterized by depressed fractional shortening by 3 to 4
months of age and markedly impaired relaxation by 9 months of age (83, 222, 365, 427).

Much less is known about the structural roles of the skeletal isoforms. Early on, Davis and
colleagues demonstrated that addition of purified rabbit skeletal MyBP-C reduces the critical
concentration required for myosin polymerization 7 vitro (119). Moreover, Abdul-Hussain
and colleagues reported that sMyBP-C is the major MyBP-C isoform expressed during early
myofibrillogenesis in cultured primary human skeletal myotubes, suggesting that it may be
essential for sarcomeric assembly and maintenance (4). Recently, Li and colleagues
indicated that knockdown of fMyBP-C in zebrafish larvae leads to development of a
myopathic phenotype, characterized by shorter sarcomeres, wider interfilament spacing, and
muscle weakness (322). Muscle function was also significantly impaired, and was
characterized by reduced force production, prolonged time between stimulus and onset of
contraction, and slower rates of contraction and relaxation (322).

Regulatory roles—In addition to its proposed structural role, accumulating evidence has
implicated MyBP-C in the regulation of cross-bridge cycling, myofilament Ca2* sensitivity,
and enzymatic activity of myosin.

Cross-bridge cycling.: The first evidence that MyBP-C contributes to the regulation of
cross-bridge cycling came from J/n vitro studies indicating that addition of purified rabbit
skeletal MyBP-C in skinned myofibers slows down the shortening velocity of actomyosin
cross-bridges (237). Despite this early work using skeletal MyBP-C, our current
understanding of how MyBP-C modulates actomyosin cross-bridges comes from extensive
in vitro and in vivo studies on cMyBP-C. Accordingly, it has been demonstrated that the first
~29 kDa of the NH,-terminus of cMyBP-C, containing Ig domain CO, the Pro/Ala rich
motif, g domain C1, and the first 17 amino acids of the M-motif has an inhibitory effect on
thin filament sliding velocity along thick filaments at high Ca2* concentrations (450).
Interestingly, later studies further showed that cMyBP-C inhibits maximal sliding velocity of
fully activated thin filaments at high Ca2* concentration (i.e., pCa4), but activates
actomyosin force generation and thin filament sliding at low Ca?* concentration (i.e., pCa9)
(449, 471). It has therefore been suggested that cMyBP-C may act both as a “brake” and an
“accelerator,” ultimately regulating the rate of formation of actomyosin cross-bridges as a
function of Ca2* levels.
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Myofilament Ca?* sensitivity.: Moreover, cMyBP-C modulates myofilament Ca2*
sensitivity, as extraction of cMyBP-C from skinned rat cardiomyocytes and trabeculae
results in dramatic increase of Ca2* sensitivity, that is reversed by addition of umol/L
amounts of purified protein (237, 299, 351). Consistent with this, cMyBP-C null
cardiomyocytes exhibit higher Ca?* sensitivity than wild type (85, 98, 222, 427).

Myosin ATPase activity.: Early studies had shown that MyBP-C modulates the actin
activated, but not the intrinsic, ATPase activity of myosin (224, 384, 604, 613). Specifically,
work from Yamamoto and colleagues as well as Winegrad and colleagues demonstrated that
addition of purified cMyBP-C increases the enzymatic activity of cardiac myaosin in the
presence of actin independently of ionic strength (604,613). Given that cMyBP-C undergoes
extensive phosphorylation within its NH,-terminus (please see below), the effects of
phosphorylation on the ATPase activity of myosin were evaluated, too. Although
phosphorylated cMyBP-C also enhances the actin-activated ATPase activity of myosin,
maximal activity was considerably lower (224). Moreover, work from Weisburg and
colleagues further indicated that phosphorylation of cMyBP-C may differentially affect the
actin-activated ATPase activity depending on the myosin isoform (596). Thus, PKA-
mediated phosphorylation of cMyBP-C had no effect on the enzymatic activity of pMyHC,
but significantly increased the enzymatic activity of a MyHC (596). Contrary to cMyBP-C,
skeletal MyBP-C isolated from rabbit slow- and fast-twitch muscles has a biphasic effect on
the ATPase activity of myosin that depends on ionic strength. At low ionic strength, it is
strongly inhibitory, whereas at high ionic strength, it is moderately stimulatory (613). This
inhibitory effect of skeletal MyBP-C at low ionic strength may result from competition with
the S1 fragment of myosin for actin binding as it is not relieved by increasing actin
concentration (384, 613).

Posttranslational modifications

The regulation of MyBP-C via PTM, and particularly phosphorylation, has been a major
focus of several groups (199, 213, 347, 394, 451) (Fig. 9 and Table 8). In addition to
phosphorylation, cMyBP-C undergoes acetylation, citrullination, S-glutathiolation, S-
nitrosylation, and carbonylation (84) (Fig. 9 and Table 8).

Phosphorylation—A great amount of literature has examined the effects of
phosphorylation of cMyBP-C on actomyosin binding and contractile regulation (42, 451,
491). cMyBP-C is heavily phosphorylated within the NH,-terminal M-motif at murine
residues Ser273, Ser282, Ser302, and Ser307 (304). Protein kinase C (PKC) phosphorylates
Ser273 and Ser302 (381), Ca2*/calmodulin-dependent protein kinase Il (CaMKI1) and
protein kinase D (PKD) primarily target Ser302 (40,174,490), ribosomal s6 kinase
phosphorylates Ser282 (115, 142), and PKA is able to target all four residues. Ser307 has
only been shown as a phosphorylatable residue in mice, as it is not conserved in humans
(174, 381).

A hierarchy in the order of these phosphorylation events has been proposed from both /in
vitroand in vivo studies. Recombinant proteins encompassing the human C1-M-C2 region
in which the three phosphorylatable serines (e.g., Ser273, Ser282, or Ser302) were
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individually mutated to Ala revealed that phosphorylation of Ser282 is required for Ser302
phosphorylation in vitro (488). Moreover, generation of three transgenic mouse lines
expressing mutant cMyBP-C containing either Ser273-Ala282-Ser302 (cMyBP-CSAS),
Ala273-Asp282-Ala302 (cMyBP-CAPA) or Asp273-Ala282-Asp302 (cMyBP-CPAD)
further demonstrated that Ser282 phosphorylation is critical, as loss of phosphorylation at
Ser282 (cMyBP-CSAS model) leads to decreased diastolic function at baseline, diminished
[B-adrenergic response, and reduced phosphorylation at Ser302 following stimulation (490).
Similar to the cMyBP-CSAS model, the cMyBP-CPAD and cMyBP-CAPA mice also showed
diminished B-adrenergic response after dobutamine treatment, emphasizing the importance
of phosphorylation at all three sites.

Early studies had shown that phosphorylation of Ser273, Ser282, and Ser302 accelerates
contraction by disrupting the binding of the NH,-terminus of cMyBP-C to myosin (596).
Further experimentation confirmed these findings by describing an inverse relationship
between the levels of unphosphorylated cMyBP-C and maximal Ca2* activated force
production in skinned rat trabeculae and skeletal muscle (301, 364). In later studies,
measurements of cross-bridge cycle kinetics (i.e., rate constant of force development, 4;) at
submaximal Ca?* activation were significantly elevated following PKA treatment in wild-
type myocardia, however, this increase in kinetics was not observed in cMyBP-C~/~ (null)
myocardia (106). These studies were extended by measuring X-ray intensity ratios in
trabeculae of wild type and cMyBP-C~/~ mice under relaxed conditions to investigate the
role of phosphorylation on the distribution of cross-bridge mass between thick and thin
filaments. In resting myocardia, PKA-mediated phosphorylation of cMyBP-C resulted in a
net transfer of mass from the thick to the thin filament by allowing myosin heads to move
closer to the thin filament, therefore increasing the probability of actomyosin cross-bridges,
and ultimately leading to acceleration of cooperative recruitment of additional cross-bridges
(106).

Later studies further demonstrated that phosphorylation of cMyBP-C is essential for normal
cardiac function and may be cardioprotective (478, 491, 492, 554). A phosphomimetic
mouse model, in which all known phosphorylation sites were mutated to Asp (cMyBP-
CAlIP+) showed no signs of cardiac hypertrophy or mortality (492). Notably, cMyBP-CAIIP*
mice exhibited relatively conserved cardiac function and minimal cellular damage following
ischemia/reperfusion injury (175, 492). Moreover, when the cMyBP-CAIP* [ine was bred
with a cMyBP-C™/~ line, which displayed DCM, myocyte hypertrophy, fibrosis, and
calcification (365), the cMyBP-CAIIP* allele was able to rescue the null phenotype, and the
cMyBP-CAIIP+null hearts displayed normal structure and contractility (492).

cMyBP-C is dephosphorylated in heart failure (491), which correlates well with the reported
increased levels of phosphatases (412). In support of the harmful effects of
dephosphorylated cMyBP-C in heart failure, a transgenic mouse model in which all
phosphorylation sites were mutated to nonphosphorylatable Ala (MyBP-CA!P-) showed
significantly decreased rates of contraction and relaxation, despite the normal incorporation
of mutant cMyBP-C into sarcomeres (478, 491). Moreover, the normal increase in twitch
force resulting from increased pacing frequency was severely blunted in the MyBP-CAlIP-
myocardia compared to wild type, even following p-adrenergic stimulation (555). Similarly,
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a non-PKA phosphorylatable cMyBP-C model exhibited systolic dysfunction due to
decelerating cross-bridge kinetics (554). Notably, the phosphorylation levels of cMyBP-C
were increased in a regionally stunned canine model, which mimics human coronary
ischemic disease, possibly as a compensatory (cardioprotective) response (619). Consistent
with this, phosphorylation of Ser288 (mouse Ser282) by CamKII was largely inhibited in a
globally stunned rat model when stunning was prevented either by ischemic preconditioning
or reperfusion, resulting in complete recovery of left-ventricular pressure (619).

Recent work using negative staining EM indicated that CaZ* antagonizes the effects of
phosphorylation. In particular, a recombinant NH,-terminal cMyBP-C fragment containing
the C0-C3 region adopts a compact conformation in the presence of phosphorylation (451).
Addition of Ca?* at peak contraction concentration reverses the impact of phosphorylation,
altering the conformation of the C0-C3 region from compact to extended. This finding was
further corroborated by 7n vitro motility assays demonstrating that wild-type recombinant
CO0-C3 and its phosphomimetic counterpart are functionally indistinguishable in the presence
of physiological Ca2* levels (0.5-1.2 umol/L) (451). It therefore becomes apparent that
phosphorylation and Ca2* fine-tune the ability of cMyBP-C to modulate the formation and
rate of actomyosin cross-bridges.

In addition to affecting the regulatory activities of cMyBP-C, phosphorylation also
modulates its stability. In models of myocardial infarction, phosphorylation of cMyBP-C is
significantly diminished, coinciding with increased degradation and release of NH,-terminal
fragments (124, 189).

Although cMyBP-C is primarily phosphorylated within the M-motif, a recent study reported
the presence of glycogen synthase kinase B (GSKp)-mediated phosphorylation of Ser133
located in the Pro/Ala rich region (539). The functional importance of this phosphorylation
event has only been cursorily examined indicating that GSKp treatment of permeabilized
human cardiomyocytes enhances the maximal rate of tension development (305).

sMyBP-C is also subjected to phosphorylation within its NH,-terminus (10). Contrary to
cMyBP-C, however, sMyBP-C primarily undergoes phosphorylation in the Pro/Ala rich
region and to a lesser extent in the M-maotif (10). Three phosphorylation sites have been
identified in the Pro/Ala rich region, including Ser59, Ser62, and Thr84, whereas one site,
Ser204, has been reported in the M-motif. Ser59 and Ser62 are substrates of PKA, Thr84 is a
substrate of PKC, and Ser204 is a substrate of both PKA and PKC (10). Interestingly, Ser62
and Thr84 reside in constitutively expressed exons, and are present in all slow variants,
whereas Ser59 and Ser204 are located in alternatively spliced exons, and are present in
select slow variants (12).

Although the effects of phosphorylation of sSMyBP-C proteins are largely elusive, recent
work has demonstrated that the levels of phosphorylation of sMyBP-C are altered in
response to (patho)physiological stressors. Consistent with this, the overall phosphorylation
levels of sMyBP-C are significantly reduced in both fast- (e.g., Flexor Digitorum Brevis)
and slow-twitch (e.g., soleus) muscles as a function of aging, dystrophy, and distal
arthrogryposis (15), but increased in slow-twitch muscles in response to fatigue (15). Thus,
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the phosphorylation profile of sSMyBP-C is differentially altered depending on the muscle
and the exerted stressor.

Other PTM present in cMyBP-C—In addition to phosphorylation, cMyBP-C undergoes
additional PTM, including acetylation, citrullination, S-glutathiolation, S-nitrosylation, and
carbonylation (84).

Eight acetylation sites have been identified within cMyBP-C, with six of them residing in
the CO-C2 region, however, their exact effects are currently unknown (84). Interestingly, the
presence of increased acetylation of a ~40 kDa proteolytic fragment of cMyBP-C suggested
that acetylation may lead to decreased stability by promoting proteolysis, thereby acting
opposite to phosphorylation (84).

Citrullination of cMyBP-C has also been reported at Arg696 in the myocardium of patients
with rheumatoid arthritis, inflammatory myocarditis, and scleroderma (143), but the effects
of this modification on the functional properties or stability of the protein are still unknown.

The presence and effects of S-glutathiolation of cMyBP-C have recently been described with
the identification of three target sites; Cys-479, Cys-627, and Cys-655 (430). Isolated
myofibrils and detergent-extracted fiber bundles treated with oxidized glutathione increased
myofilament Ca2* sensitivity compared to controls (430). Moreover, S-nitrosylation of
Cys-1270 was found in murine hearts perfused with the S-nitrosylating agent S-
nitroglutathione, but whether this modification occurs /n vivois currently unknown (84,
285). Lastly, in addition to undergoing reversible oxidative modifications (e.g., S-
glutathiolation and S-nitrosylation), cMyBP-C is also subjected to irreversible oxidative
modification via carbonylation in spontaneously hypertensive tumor-bearing rats after 14
days of doxycycline treatment (27).

Contrary to cMyBP-C, there is no information about the presence of additional PTM (with
the exception of phosphorylation in sSMyBP-C) in the skeletal isoforms. Thus, extensive
work is required to decipher the roles of the different PTM in cMyBP-C, and examine their
potential presence and effects in the skeletal isoforms.

Mutations and myopathies

More than 500 mutations have been reported in MYBPC3that are primarily associated with
the development of HCM, and to a lesser extent with DCM and left ventricular
noncompaction (LVNC) (61, 84, 304, 341, 593). Since two relatively recent reviews list
known mutations until 2013 (223, 274), Table 9 includes additional mutations that were not
included or identified since then, while Figure 10 indicates the total number of currently
known mutations per domain.

HCM affects about 1:200 individuals (510), and is characterized primarily by left ventricular
hypertrophy (LVH). Clinical presentation can vary between asymptomatic and progressive
hypertrophy to heart failure (223). MYBPC3 mutations that cause HCM have been identified
in about 20% to 30% of all diagnosed HCM cases, second only to mutations in B-MyHC
(611) (please see above). DCM is also a heterogeneous group of inherited and idiopathic
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disorders that is characterized by cardiac dilation and reduced systolic function (611). Gene
mutations, including those found in MYBPCS3, are a likely cause of DCM, as it is estimated
that up to 35% of cases are familial (133). The clinical manifestations of individual
MYBPC3 mutations causing HCM and DCM are highly heterogeneous reflecting their
widespread distribution throughout the entire gene (84, 223).

Dominant nonsense mutations or insertion/deletions are commonly found in MYBPC3,
resulting in the generation of truncated proteins due to premature stop codons, exon
skipping, or frameshifts. The majority of these mutations function via haploinsufficiency
(41, 84, 304, 351). Consistent with this, the levels of mutant cMyBP-C proteins are
commonly reduced in cardiac biopsies of affected individuals (480). Notably, both the
ubiquitin-proteasomal axis and the nonsense-mediated mMRNA decay pathway mediate
degradation of mutant cMyBP-C proteins (351).

The mechanism through which haploinsufficiency of mutant A/YBPC3 underlies HCM has
gained considerable interest. /n7 vitro studies have shown that HCM-linked MYBPC3
mutations cause increased CaZ* sensitivity of contractile myofilaments, resulting in faster
cross-bridge turnover rate and incomplete relaxation (353). As such, myocardia from HCM
patients exhibit ~20% higher Ca* sensitivity compared to myocardia from normal subjects
(244, 261, 351, 571). It has therefore been proposed that A/YBPC3 mutations increase
myofibrillar CaZ* sensitivity, which is necessary and sufficient to induce HCM (351).
Notably, PKA-mediated phosphorylation of mutant cMyBP-C is significantly reduced in
human mutant myocardia (111, 351, 370). Given that restoration of phosphorylation of
mutant cMyBP-C returns myofilament Ca2* sensitivity to nearly normal levels (351), it has
been postulated that restoration of phosphorylation may be an effective treatment option for
MYBPC3linked HCM.

In addition to missense mutations, deletions have also been identified in MYBPC3. One
mouse model of interest lacks exon 30, which results in frameshift and the generation of a
truncated protein (365). Truncated cMyBP-C fails to incorporate into sarcomeres in murine
myocardia, similar to myocardia from affected individuals that present with autosomal
dominant familial HCM. Heterozygous mice develop HCM by 2 to 3 months of age,
whereas homozygous mice develop DCM, and display ventricular dysfunction at birth (365).
Altered gene expression in homozygous murine myocardia is typical of that seen in other
DCM maodels, including upregulation of embryonic or skeletal forms of actin, reversal of
MyHC isoforms, and increased levels of B-type natriuretic peptide (365). The notion that
force generation serves as a central signaling cue may explain the differential phenotypic
manifestations of exon 30 skipping in heterozygous versus homozygous mice. Accordingly,
in the heterozygous state impaired force production results in compensatory myocyte
hypertrophy. In the homozygous state, however, force production remains insufficient
despite myocyte growth, resulting in uncompensated hypertrophy, activation of myocyte
apoptosis, excessive fibrosis, and ultimately dilation and heart failure. Moreover, a 25-base
pair deletion in the branch point of intron 32 also leads to frameshift and the generation of a
truncated protein (580). This deletion is highly prevalent in South Asian countries estimated
to affect 55 million people (304), who present with HCM (125, 522, 578). Given that only
one of the five key residues mediating binding of the COOH-terminus of cMyBP-C to LMM
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is conserved, it has been suggested that the decreased affinity of the truncated protein for
LMM and failure to incorporate into sarcomeres may underlie the pathogenicity of this
deletion (304, 377).

Recently, dominant missense mutations in MYBPC1, which encodes sSMyBP-C, have been
linked to both distal arthrogryposis type-1 (DA-1) and distal arthrogryposis type-2 (DA-2)
(15,214,325). DA-1 affects approximately 1 in 10,000 individuals and results in contractures
often limited to distal muscles of the hands and feet. These include clubfoot, verticle talus,
camptodactyly, overriding fingers, and ulnar deviations of the fingers (214, 217, 282). Two
autosomal dominant missense mutations, Trp236Arg and Tyr856His, located in the M-motif
and Ig domain C8 domain, respectively, have been linked to DA-1 (214). Both mutations are
present in constitutively expressed exons and thus are contained in all slow variants
expressed in skeletal muscles (15,214). /n vitro binding and motility assays have
demonstrated that the Trp236Arg and Tyr856His mutations significantly diminish the ability
of the NH»- and COOH-termini of sMyBP-C, respectively, to bind actin and myosin and
regulate the formation of actomyosin cross-bridges (13). Notably, the expression levels of
mutant sSMyBP-C are significantly reduced in human biopsies of abductor hallucis, but not
gastrocnemius muscle (15). This is consistent with the selective effects of DA-1 on distal
muscles, and the lack of a myopathic phenotype in proximal muscles. Similarly, the
phosphorylation levels of mutant sSMyBP-C are significantly decreased in abductor hallucis,
varying between 30% and 70% for individual phosphosites, but not in gastrocnemius muscle
(15).

Two novel autosomal dominant missense mutations residing in Ig domain C2, Pro319Leu
and Glu359Lys, were also linked to DA-2 (325). DA-2 is a more severe form of DA, which
is also characterized by contractures of the hands and feet, but is often accompanied by mild
to severe craniofacial anomalies and/or scoliosis (35, 300). Even though the exact effects of
the Pro319Leu and Glu359Lys mutations are still unknown, their location suggests that they
may affect binding to the S2 portion of myosin and/or actin either by inducing an
unfavorable conformation (Pro319Leu) or altering surface electrostatic interactions
(Glu359Lys).

More recently, an autosomal recessive missense mutation, Glu186Lys, was identified in
MYBPCI that is located on the border of Ig domain C1 and the M-motif, and is causatively
linked to the development of arthrogryposis multiplex congenita (AMC) (136). Patients with
the Glu186Lys mutation display phentoypes similar to DA patients along with speech
impairment and seizures (136). Similar to the DA-2 mutations, little is known about the
molecular mechanisms leading to disease development.

In addition to the aforementioned mutations, a recessive nonsense mutation has been
described in Ig domain C2, Arg318X, resulting in the generation of a premature stop codon,
and the development of neonatal lethal congenital contractural syndrome-4 (LCCS-4) (349).
Given the recessive inheritance of LCCS-4, along with the absence of any phenotypic or
functional abnormalities in the heterozygous carriers, it is highly likely that the Arg318X
mutation results in loss of SMyBP-C rather than a poisonous truncated protein (7, 160, 422).
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MYBPCZ, encoding fMyBP-C, was also recently linked to an unclassified, neonatal lethal
DA in the form of a compound heterozygote (46). Specifically, a patient presenting with
narrow thorax, polyhydramnios during fetal development, and neonatal lethality was found
to possess two missense mutations in MYBPCZ, Thr2361le and Ser255Thr, located in the M-
motif. The same patient also contained an Arg7X homozygous mutation in the GPR126
gene, which encodes a G-protein coupled receptor that regulates neural, cardiac, and ear
development (46, 431). Although mutations in GPR126 have been associated with isolated
AMC (468), it is likely that the additional mutations in M YBPCZ2 contribute to the postnatal
lethality of the carrier due to accumulating anomalies in motor neurons and skeletal muscles
(46).

Taken together, it is clear that the regulation and roles of MyBP-C proteins are complex, and
that Ca2* and phosphorylation (and possibly additional PTM) impact the proteins’ ability to
regulate actomyosin binding and sliding. In that respect, SMyBP-C regulation may prove to
be even more intricate than that of cMyBP-C and fMyBP-C, as there are several slow
variants that undergo constitutive and unique phosphorylation events. While MYBPC3 has
been extensively studied due to the overwhelming number of HCM- and DCM-linked
mutations that have been identified, MYBPCI and MYBPCZhave only recently garnered
more attention given their involvement in severe and lethal forms of DA. Obviously, there is
still a lot to learn about the biology of the MyBP-C family. We expect that use of
sophisticated molecular, biochemical, biophysical, and computational approaches alongside
with the generation of the appropriate animal models will shed new light on the precise roles
of this family of thick filament regulators in health and disease.

Titin (aka Connectin)

Discovery

Connectin was first identified as an elastic protein of skeletal muscle in 1976 (356) and of
cardiac muscle in 1977 (357). Several years later, it was formally renamed titin after it was
purified from chicken myofibrils and its sarcomeric localization and molecular composition
were described, revealing that it is a giant filamentous protein and a major structural
component of myofibrils (583, 584). Encoded by the single 77N/ gene located on human
chromosome 2g31 and ranging from 27,000 to 35,000 amino acids in length, titins are the
largest known proteins with a total mass of 3 to 4 MDa (36).

Structure, localization, and isoforms

Titin extends longitudinally across the sarcomere with its NH,-terminus attached to the Z-
disk and its COOH-terminus anchored in the M-band, thus spanning an entire half
sarcomere (164). The region of titin that associates with the thick filament represents 2 MDa
(A-band) and 200 kDa (M-band) of titin’s total mass (36, 417). The COOH-termini of two
titin molecules overlap on either side of the M-band leading to a continuous titin filament
that closely associates with myosin and other sarcomeric proteins (36,173,417). Unlike the
NH,-terminus and middle segment, the structure of titin within the A-band and M-band is
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relatively rigid, inelastic, and constitutively expressed among isoforms with the exception of
M-band exon 5 (Mex5) (164, 286, 399, 600).

The region that spans the A-band, encoded by exons 252 to 357, is highly repetitive and
composed entirely of 1g and Fnlll domains that are organized in two types of super repeats
(Fig. 11) (306, 561). The first super repeat, Ig-(Fnlil),-1g-(Fnlll)3, occurs six times in
tandem and is located within the D-zone of the A-band. The second super repeat is located
in the C-zone and contains 11 copies of the domain pattern Ig-(Fnlll),-1g-(Fnlll)3-1g-
(Fnlll)3. Importantly, the second set of super repeats are spaced every 43 to 45 nm, which
matches the periodicity of MyBP-C that is tightly bound to myosin (please see above). This
suggests that titin is highly associated with the thick filament and its binding partners,
possibly acting as a scaffold or molecular blueprint for the assembly of A- and M-bands (51,
160, 168, 306, 398).

The most COOH-terminal portion of titin is localized to the M-band and is composed of a
Ser/Thr kinase domain and 10 Ig-Cll domains (referred to as M1-M10) that are interspersed
by seven unique interdomain sequences (Is1-7) (Fig. 11) (173).

The titin kinase (TK) domain is related to the MLCK family, and is encoded by the first
exon of the M-band portion of 77N (Mex1). MLCK Kkinases are typically regulated via
binding of CaZ*-calmodulin to their COOH-terminal regulatory tail, thereby displacing it
from the ATP binding site (269, 537). TK is unique since it is only weakly regulated by
Ca?*-calmodulin binding. Instead, it undergoes an alternative activation mechanism that
relieves the dual autoinhibition mediated by its regulatory tail and Tyr170 blocking the ATP
binding site and catalytic Asp127, respectively (169, 195, 362, 454). Specifically, TK is
activated upon exertion of mechanical force, which leads to unfolding of the regulatory
autoinhibitory tail and displacement from the ATP binding site (169, 195, 454). Tyr170 is
subsequently exposed and subjected to phosphorylation, possibly autophosphorylation,
allowing ATP to bind to the catalytic Asp127 (169, 195, 454).

Recent studies have questioned the activity of TK, since phosphorylation of Tcap, the main
substrate of TK, was found to be mediated by a different Ca2*/calmodulin activated kinase
that was present as a contaminant in the baculovirus expressed TK preparation (60).
Furthermore, efforts to identify potential TK substrates in differentiating myocytes or adult
gastrocnemius muscle were unsuccessful (60, 315). The observed inactivity of TK was
attributed to two residues present in the active site (Met34 and Glu147) that differ from
canonical kinase sequences (60). It was therefore proposed that TK is a pseudokinase that
may function as a binding scaffold for signaling proteins. Whether TK is an active or
inactive kinase is still debatable, and requires further experimentation, especially because the
zinc-finger proteins neighbor of BRCA1 gene 1 protein (Nbrl) and p62 have also been
shown to be TK substrates at least /n vitro (315); please see below.

Following the TK domain, there are 10 1g-Cll domains encoded by M-band exons 2—6
(Mex2-6). To date, Mex5, encoding 1s7, is the only thick-filament associated titin exon
known to be alternatively spliced (286). Skeletal muscles coexpress Mex5* and Mex5~
isoforms in different ratios (286). Slow-twitch muscles typically contain higher levels of
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Mex5™ titin, whereas fast-twitch muscles primarily express Mex5 titin (286). Similar to
slow-twitch muscles, cardiac muscle predominantly contains Mex5™ titin (286). Mex5 titin
is only observed postnatally, and is absent during embryonic development, suggesting that
its expression is developmentally regulated (286).

Binding partners

A number of binding partners have been identified within the A- and M-band portions of
titin (Fig. 12). In particular, titin contains binding sites for myosin and MyBP-C (both of
which were discussed earlier) within its A-band region, Ca?*-calmodulin, Nbr1, and p62
within its TK domain, and muscle ring finger (MuRF) proteins, myomesin, M-protein,
downregulated in rhabdomyosarcoma LIM protein/four and a half LIM domain-2 (DRAL/
FHL-2), bridging integrator protein 1 (Binl), calpain-3, myospryn, obscurin, and obscurin-
like 1 (Obsl1) within its M-band region. Below, we describe these interactions and their
functional relevance when known.

MuRFs (40-60 kDa)—Titin binds to members of the MuRF subfamily that consists of E3-
ubiquitin ligases (342). Specifically, the most COOH-terminal Ig domains located within the
A-band (A168-169) bind to the COOH-terminal helix of MuRF-1 /n vitro (87,397).
Interestingly, it was shown that constructs containing the region spanning A168 through the
TK domain exhibited enhanced binding to MuRF-1, indicating that TK might also contribute
to recruiting MuRF-1 to the A-band (60). The functional significance of this interaction has
not been directly tested, although it has been speculated that as an E3-ligase linked to
muscle atrophy, MuRF-1 is recruited to the A-band via its binding to titin where it may
regulate the degradation and turnover of myofibrillar proteins (59, 198, 316, 342, 397).

Moreover, /n vitro binding experiments have demonstrated that MuRF-2, which shares
homology with MuRF-1, binds to the titin A164-169 region (447). MuRF-2 appears to
interact transiently with titin, myosin, and the microtubule network during
myofibrillogenesis (447). As such, MuRF-2 initially associates with detyrosinated
microtubules at the onset of differentiation, and subsequently with the A-band region of titin
and myosin during late sarcomerogenesis, possibly acting as an adaptor mediating the
binding of titin and myosin in developing myofibrils in a microtubule-dependent manner.
However, upon transition of nascent myofibrils to mature myofibrils, MuRF-2 is no longer
present in the sarcomere (433,447). The transient interaction between titin and MuRF-2 in
the A-band is also regulated by mechanical stress (315). In the absence of a mechanical
stimulus, MuRF-2 translocates from the A-band to the nucleus, where it regulates the
transcription of myogenesis genes (further described below) (315).

Ca?*-calmodulin (~17 kDa)—The TK domain contains binding sites for Ca%*-
calmodulin within its regulatory tail (362). Binding of Ca2*-calmodulin was originally
thought to contribute to activation of TK by leading to displacement of its regulatory tail
from the ATP binding site, thereby relieving TK autoinhibition (362). However, extensive
biophysical studies reported that the displacement of the inhibitory tail occurs by a
mechanically induced conformational change (169, 195, 454). Thus, it appears that Ca2*-
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calmodulin binding is actually only a weak activator of TK, whereas the exact functional
significance of this interaction needs to be further assessed.

Nbrl (~120 kDa) and p62 (~62 kDa)—Nbrl, a zinc-finger protein that acts as an adaptor
to recruit polyubiquinated proteins for proteosomal degradation, also binds TK (267, 315,
591). Specifically, the NH,-terminal Phox/Bem1p domain of Nbrl that promotes the
formation of homo- or heterodimeric signaling complexes interacts with the mechanically
induced active conformation of TK (267, 308, 315, 509, 591). P62 is a related autophagic
cargo receptor zinc-finger protein that binds TK via forming a signaling complex with Nbrl
(315). Both Nbr1 and p62 are substrates of TK and their phosphorylation has been
demonstrated /n vitro although the physiological significance of these events is still
unknown (60, 315). In addition to regulating protein turnover via autophagy, p62 associates
with a number of signaling proteins including members of the mitogen-activated protein
kinase pathway, atypical PKCs, and MuRF family E3-ligases. Thus, the p62/TK interaction
could facilitate the integration of different signaling pathways at the M-band, reviewed in
(169).

Myomesin (~185 kDa) and M-protein (~165 kDa)—Myomesin and M-protein have
similar domain compositions consisting of Ig and Fnlll domains, and localize to the M-band
where they bind both titin and myosin (415, 417, 418). Solid phase binding assays have
demonstrated that myomesin binds to the M4 domain on titin via its Fnlll domains My4-
My6, therefore anchoring the COOH-terminus of titin to the M-band (417,418). This
interaction is negatively regulated by PKA-mediated phosphorylation of Ser-482, a residue
located in the linker region between myomesin domains My4 and My5 (418). Myomesin
and titin incorporate into M-bands early in myofibrillogenesis and potentially serve as a
scaffold for other sarcomeric proteins in the developing myofibril (80, 569). In support of
this, it was shown that titin and myomesin together recruit obscurin and Obsl1 to the M-band
(163). Similar to myomesin, M-protein binds titin (and myosin) at the M-band (80, 203—
205). Contrary to myomesin however that is ubiquitously expressed among striated muscles,
M-protein is only expressed in fast-twitch skeletal muscles and postnatal cardiac muscle (80,
203-205). Moreover, the interacting domains between titin and M-protein have yet to be
identified.

DRAL/FHL-2 (~32 kDa)—DRAL/FHL-2, a member of the FHL protein family is
primarily expressed in cardiac muscle, and binds titin at 1s2 between Ig domains M3 and M4
(310). In addition to binding titin, DRAL/FHL-2 associates with various metabolic enzymes
including CK, phosphofructokinase, and adenylate cyclase (310). Thus, it has been
speculated that via its interaction with titin, DRAL/FHL-2 targets these enzymes to
sarcomeric regions with high metabolic demands, like the M-band (310).

Binl (~65 kDa)—The SH3 domain of Binl, a tumor suppressor protein that was originally
identified as a binding partner of c-Myc, interacts with a set of phosphorylated Lys-Ser-Pro
(KSP) motifs within the Is4 domain, which is localized between M5 and M6 (141). The
phosphorylation of these Ser residues is developmentally regulated and is therefore thought
to play an important role in myofibrillogenesis (further described below) (173). Binl is also
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suggested to regulate myofibrillogenesis, as it is primarily expressed in differentiating
myoblasts, but not in developed myotubes (141). Moreover, Binl temporally associates with
cyclin-dependent kinase 5 (Cdk5), which is potentially involved in the phosphorylation of
Is4 (141). Thus, the interaction between Binl and titin could facilitate KSP phosphorylation
via recruiting Cdk5 in the M-band during development (141).

Calpain-3 (~95 kDa)—Calpain-3, a Ca2*-dependent cysteine protease, interacts with the
Is7 region of titin and Ig domain M9 facilitating the cleavage of both titin (294, 548) and its
interacting partner myospryn (please see below) in the M-band. Given that Mex5 encoding
Is7 is alternatively spliced in a developmental- and muscle-specific manner (286), it has
been proposed that titin cleavage may be regulated accordingly (93). Recent studies have
localized the exact cleavage sites of titin to fragments TSLEKSIV and SFMGISNM within
Is6 and Is7, respectively (93). Cleavage of these sites results in the production of COOH-
terminal titin fragments ranging in size from 13 to 45 kDa (93). Although the effects of
calpain-3 cleavage of titin are not yet established, it has been suggested to contribute to
sarcomeric remodeling by regulating the turnover rate of titin and its binding partners within
the M-band (93).

Myospryn (~413 kDa)—Yeast two-hybrid screen identified myospryn, which is
preferentially expressed in striated muscles, as a binding partner of both calpain-3 and M-
band titin (52, 497). The COOH-terminal region of myospryn, composed of a Ser-Pro-Arg-
Tyr domain and a partial Fnlll motif, supports binding to the extreme COOH-terminus of
titin region containing Ig domains M9 and M10 (497). In addition to binding titin, myospryn
binds to and is a substrate of calpain-3. Therefore, binding of the COOH-terminus of titin to
calpain-3 and myospryn may function to localize calpain-3 and myospryn in close proximity
within the M-band thereby modulating the turnover rate of the latter (497).

Obscurin (50-960 kDa) and Obsl1 (130-230 kDa)—Titin’s most COOH-terminal
domain, Ig M10, binds to the most NH,-terminal regions of both obscurin and Obsl1, as
determined via yeast two-hybrid screen (163). Obscurin is a giant protein that is involved in
sarcomeric organization, RhoA mediated signaling cascades, and cellular adhesion via its
kinase domains (please see below) (287, 435). Obsl1 is smaller, but structurally similar to
the NH,-terminal portion of obscurin (177). Both obscurin and obscll bind to titin via their
NH,-terminal Igl domains and also contain binding sites for myomesin within their 1g3
domains (163). Thus, it has been proposed that titin facilitates the formation of a ternary
complex between titin, myomesin, and obscurin/obsl1 in the M-band, and that this complex
plays key structural roles (163). This notion was supported by the diffuse localization of
endogenous obscurin and obsl1 when the minimal interacting domains of titin, myomesin, or
obscurin/obsl1 were overexpressed in cultured cardiomyocytes (163). In addition, disruption
of de novo sarcomeric organization was observed when these fragments were overexpressed
in developing myoblasts (163). Because no apparent changes were observed in the
localization of titin following overexpression of obscurin/obsl1 1g1, it was suggested that
titin (along with myomesin; please see below) functions to target obscurin/obsl1 to the M-
band (158). Consistent with this, earlier work had demonstrated that obscurins accumulate at
the M-band following the incorporation of titin’s COOH-terminus and myomesin (281).
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Furthermore, homozygous deletion of titin’s M-band region in mouse embryonic stem cells
led to disruption of both obscurin and myomesin localization at the M-band (405). Taken
together, this multiprotein complex consisting of the COOH-terminus of titin, myomesin,
obscurin, and obsl1 appears to be important in the assembly and stabilization of the M-band.

As a giant filamentous protein that extends from the Z-disk to the M-band, titin plays
multiple roles in the sarcomere. By harboring binding sites for a number of sarcomeric
proteins, titin has been suggested to act as a scaffold for the assembly and stabilization of
thick filaments (407). Moreover, it may function as a mechanosensor by participating in
various signaling pathways via its COOH-terminal TK domain (295, 315). Lastly, titin may
serve as a “molecular spring” via the extensive elastic elements located in its I-band region,
therefore determining muscle elasticity and resting tension of sarcomeres (95, 178, 191-193,
562). Given the focus of this review on the thick filament, we will solely discuss the role of
titin in the A- and M-band.

Structural roles—It was proposed early on that titin’s inextensible region localized to the
A- and M-band may act as a “molecular ruler” (600). According to the “molecular ruler”
hypothesis, titin participates in the assembly of the sarcomere during myofibrillogenesis and
acts as a scaffold to recruit myosin and other thick filament associated proteins. Specifically,
this model indicates that during myofibrillogenesis, the NHy-terminus of titin is first
incorporated into primitive Z-disks while the COOH-terminus is cotranslationally integrated
into A-and M-bands. Titin recruits myomesin to the developing M-band, and together act as
a scaffold for the incorporation and regular organization of myosin thick filaments into A-
bands, thereby establishing the dimensions of the forming sarcomeres (132, 163, 569). Thus,
through its close association with the thick filament and anchorage in the Z-disk, titin could
potentially set the length of sarcomeres and thick filaments. This model is supported by two
lines of evidence: immunolocalization experiments monitoring the sequential incorporation
of sarcomeric proteins in developing myocytes and embryonic chick hearts (132, 569), and
functional studies demonstrating disruption of thick filaments upon titin knock-down or
targeted deletion of its M-band region in cultured myoblasts and embryonic stem cells (374,
405, 437, 568). Notably though, later studies pointed out the important roles of additional
proteins in the regular assembly and maintenance of myosin thick filaments, including
obscurin, which exists in a complex with titin and myomesin at M-bands (275, 290, 291,
460).

Later studies however proposed an alternative model, referred to as the “premyofibril”
model suggesting that titin is not required for the initial assembly of sarcomeres (129, 407,
475). In situ examination of early myofibrillogenesis in embryonic avian hearts reported the
assembly of short myosin rods that are not associated with titin, supporting the hypothesis
that titin is not needed for the assembly of thick filaments (129). Consistent with this notion,
knockdown of both titin orthologs in zebrafish embryos (ftnaand tnb) did not affect the
initial assembly of myofibrils (507). Similarly, zebrafish embryos harboring a truncating
mutation in which the entire A-band region of the ftna ortholog was deleted displayed
normal thick filament organization (406). This phenotype persisted even following
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knockdown of the second ortholog, #tnb, although, some sarcomeric disorganization was
eventually observed in later stages of myofibrillogenesis (406). It has therefore been
suggested that thick filament-associated titin is involved in the long-term stabilization of the
myofibril rather than its assembly at least in zebrafish (407).

Regulatory roles—The TK domain is thought to function as a mechanosensor, linking
changes in mechanical stress to various signaling pathways (169, 195, 295). Specifically, TK
controls protein turnover and myogenic transcription by regulating the localization of the
Nbr1/p62/MuRF-2 protein complex (315). Upon activation by mechanical stretch, the TK
domain interacts with Nbrl, which acts as scaffold to target p62 and MuRF-2 to the M-band
(315). In the absence of a mechanical signal, the Nbr1/p62/MURF-2 complex dissociates
from TK and Nbr1/p62 and MuRF-2 translocate to the intercalated disc and the nucleus,
respectively (315). Nuclear accumulation of MuRF-2 is correlated with reduction of the
levels of nuclear serum response factor (SRF), thereby reducing SRF-mediated transcription
of myogenic genes (315). In addition, Nbr1/p62, which are substrates of TK /n vitro,
function as adaptor proteins in degradation pathways by interacting with polyubiquitinated
proteins and associating with the proteasome or the autophagosome (267, 315, 429, 508,
509, 591). Therefore, TK is implicated as a regulator of protein degradation and turnover
and muscle remodeling in response to changes in mechanical stress (169).

Moreover, studies utilizing an inducible, cardiac-specific, knockout TK mouse model
suggested a role for TK in Ca2* cycling and PKC signaling (432). In particular, mice lacking
TK exhibited reduced p-adrenergic response, and developed cardiac hypertrophy, fibrosis,
and ultimately heart failure (432). This disease phenotype was associated with decreased
expression of Ca2* cycling proteins including calmodulin, SERCA2, and phospholamban,
increased levels of PKCS and its targets, and reduced Ca2* transient amplitudes and kinetics
(432). Although it has yet to be determined how deletion of TK mechanistically affects Ca*
cycling and PKC signaling, it is intriguing to speculate that TK may act upstream of both
processes mediating their cross-talk.

Posttranslational modifications

There are relatively few PTM currently identified within the A-band and M-band segments
of titin (Fig. 13). Below, we briefly describe major PTM and their functional significance
when known.

Phosphorylation—Early studies demonstrated that four KSP motifs located within 1s4 in
the M-band portion of titin are subjected to phosphorylation in all four Ser residues
(Ser35236, Ser35243, Ser35249, and Ser35255; NP_001254479.2) in neonatal mouse
cardiac and psoas muscle via cell-division cycle protein 2 (Cdc2) kinase (173). Interestingly,
these phosphorylation events were primarily observed in lysates obtained from neonatal, but
not adult, muscles. Consistent with this, KSP motifs were highly phosphorylated in cultured
differentiating myoblasts, but not in mature myotubes (173). Thus, KSP phosphorylation is
developmentally regulated and possibly plays a role in myofbrillogenesis and myocyte
differentiation (173). It is important to note that several phosphorylation sites have also been
identified within the I-band portion of titin, which function to regulate passive tension by
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modulating the stiffness of titin’s elastic elements; given that herein we focus on the thick
filament-associated portion of titin, we refer the reader to an excellent review for the
presence and role of phosphorylation events within the I-band protion of titin (235).

Arginylation—Five arginylation sites were recently found within the A- and M-band
regions of titin in isolated mouse skeletal muscle myofibrils via mass spectrometry (321).
Four of these sites are localized to Fnlll domains in the A-band super repeats. Specifically,
Glu14609 resides in the first Fnlll domain of the seven-domain super repeat, Glu19156 and
Asp19159 are present in the first Fnlll domain of the 11-domain super repeat, and Asp27727
is localized in the ninth Fnlll domain of the 11-domain super repeat (321). The fifth site,
Asp32535, is present in the Is3 region between Ig domains M4 and M5 in the M-band (321).
Similarly, several arginylation sites on titin were discovered in mouse heart lysates residing
to Ig domains within its A-band portion and the TK domain in the M-band (320). In
particular, Leu7960 resides in the first g domain of the seven-domain super repeat,
Val15013 in the second Ig domain of the 11-domain super repeat, and Cys24818 in the TK
domain (residues correspond to the N2B-titin sequence NP_082280.2). Arginylation-
deficient mice, generated by the cardiac specific knockout of arginyl-transferase, develop
dilated cardiomyopathy with age, and exhibit defects in myofibrillar ultrastructure and
reduction in both active and passive force development (303). Similarly, isolated myofibrils
from a skeletal muscle specific knockout of arginyl-transferase exhibit reduced passive force
development (321). Given that titin is the primary regulator of passive force in the
sarcomere, it is likely that titin arginylation contributes to the regulation of passive stiffness
(320, 321). Since all of the arginylation sites localize to titin’s inextensible region, and not
the extensible 1-band region, it was further proposed that titin arginylation regulates passive
force possibly through modifying its anchorage to the thick filament (320, 321).

Mutations and myopathies

The majority of the mutations that have been identified in 77N/ to date are located within the
A- and M-band regions, totaling 145 and 30 mutations, respectively (Fig. 14) (95). These
mutations are commonly associated with either cardiac or skeletal myopathies, with only
few linked to both types (6, 95, 411). Several of the identified mutations have been
characterized as autosomal dominant, since patients develop the disease phenotype in the
heterozygous state. However, there is also a number of mutations that are inherited in a
recessive manner, and manifest a disease phenotype when homozygous or combined with
additional mutations in the 77/ gene as compound heterozygous (95). Since the functional
implications of most of these mutations are unknown, only select mutations will be
discussed below. Given that a recent review article reported all known 77/ mutations up to
2014 (95), Table 10 only includes mutations within the thick filament associated portion of
TTN identified after 2014.

An overwhelming number of mutations, totaling 132, has been identified in the A- and M-
band regions of titin that are linked to DCM, HCM, and arrhythmogenic right ventricular
cardiomyopathy (ARVC) (411). Approximately 126 of these mutations are associated with
DCM, which is mainly characterized by pathological dilation of the left ventricle and
impaired systolic function (77). Of these 126 mutations, 31 are missense mutations with 23
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clustering in Fnlll domains present in the C-zone (47, 182). Since these domains mediate
binding to myosin, it has been speculated that they might lead to defects in contractility,
however this has not yet been tested (47). The remaining DCM-associated mutations result
from frameshift (37), nonsense (45), and splicing (13) mutations that typically lead to
premature stop codons and truncations within the A- and M-band regions of titin (95, 157,
179, 180, 233, 263, 411, 572, 616). Truncated titin molecules missing COOH-terminal
epitopes most likely lack sufficient interactions with thick filaments, and therefore, may be
unable to appropriately span the sarcomere. This could potentially affect titin’s stability/
turnover and mechanosensing properties within the M-band (95, 233, 411).

Currently, there is no targeted treatment for titin-linked DCM. However, Gramlich and
colleagues recently developed an antisense exon-skipping oligonucleotide approach as a
potential therapy for treating truncating titin mutations (190). Importantly, this approach
prevented the development of DCM in mice heterozygous for the frameshift mutation
Ser14450fsX4, and partially restored sarcomeric organization in patient-derived
cardiomyocytes (180, 190). Mechanistically, the exon skipping approach functions via
splicing out exon 326 where a 2bp insertion leads to frameshift and the generation of a
premature stop codon (180,190). Exclusion of exon 326 recovers the reading frame and
prevents truncation of the COOH-terminus of titin. The authors therefore propose exon
skipping as a potential therapy for DCM truncating titinopathies.

A single frameshift mutation (Pro21689Profs*6) located in the A-band portion of titin has
been associated with HCM, a disease mainly characterized by LVH, fibrosis, and diastolic
dysfunction (77, 95, 233). Given that HCM-linked titinopathies are considerably less
common than DCM-linked titinopathies, it has recently been suggested that titin is a disease
modifier of HCM rather than the primary disease causing gene (178).

Moreover, five titin variants located within its A- and M-band regions have been found in
individuals with ARVC (549). ARVC is a disease typically caused by mutations in proteins
of the desmosomal complex, and is characterized by arrhythmia, right ventricular dilation,
progressive fibroadiposis, and sudden death (411). Although ARV C-linked titin mutations
that localize to the I-band have been shown to potentially affect titin stability, segregation
analysis, and functional studies are currently lacking for those found in the A-and M-bands
(411, 549).

Mutations in the A- and M-band regions of titin have also been linked to various skeletal
myopathies. A number of mutations in the M-band that localize to Mex5 or Mex6 have been
shown to segregate with tibial muscular dystrophy (TMD), a late-onset autosomal dominant
muscle-weakening disease that preferentially affects the tibialis anterior muscle (564-566).
These include frameshift (5), missense (3), nonsense (1), and in-frame indel (1) mutations
(121, 140, 215, 216, 448, 567). The in-frame indel is an 11-base pair mutation commonly
known as FINmaj resulting in substitution of four amino acids in Mex6 (216). FINmaj was
identified in a Finnish population and is currently the most extensively studied titin mutation
linked to a skeletal myopathy (216). Heterozygous individuals for the FINmaj mutation
develop TMD, while homozygous individuals manifest a more severe muscular dystrophy,
referred to as limb girdle muscular dystrophy type 2J (LGMD2J) (216). Consistent with this,
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the FINmaj mutation results in partial and complete loss of COOH-terminal titin epitopes in
the heterozygous and homozygous states, respectively, along with a secondary deficiency in
the levels of calpain-3, as reported in FINmaj knockin mice and LGMD2J muscle biopsies
(92, 216, 220). Recent /n vitro studies demonstrated that FINmaj leads to pathological titin
cleavage patterns within Is4 and Is5, which is likely responsible for the loss of titin’s
COOH-terminus (93). Moreover, binding between titin M10 and obscurin Ig1 was reduced
as a result of the FINmaj mutation /n vitro, and the localization of obscurin to the M-band in
LGMD2J muscle biopsies was disrupted (163). Thus, it is possible that FIN-maj and other
TMD/LGMD2J-linked mutations potentially disrupt M-band titin protein interactions.

Recently, five truncating mutations in Mex3 that are inherited in a recessive pattern were
identified in patients with an Emery-Dreifuss muscular dystrophy (EDMD)-like phenotype
(120). EDMD is a progressive, early onset muscular dystrophy that leads to limb-girdle
weakness, joint contractures, and cardiomyopathy (135). The affected individuals develop a
novel EDMD-like phenotype that display classical EDMD symptoms, yet have no effect on
the heart (120). Muscle samples from all patients display rimmed vacuoles, disrupted M-
band organization, and a secondary calpain-3 deficiency that likely results from the loss of
its titin binding site in the M-band (120).

A total of nine missense mutations present in the 119th Fnlll domain of the A-band and the
TK domain have been identified in patients with hereditary myopathy with early respiratory
failure (HMERF) (227, 260, 315, 421, 428, 441, 442, 557, 621). HMERF is characterized by
severe weakening of the respiratory muscles that eventually leads to respiratory failure, as
well as proximal and distal muscle weakness in the extremities (130). The majority (eight
out of nine) of the mutations leading to HMERF localize to the 119th Fnlll domain located
within the second set of super repeats in the A-band portion of titin. These mutations are
predicted to disrupt proper folding of the 119th Fnlll domain, as evidenced by structural
modeling analysis, and have been suggested to affect protein interactions mediated by it
(95,227,228). Moreover, a point mutation, Arg25026Trp, located in the regulatory tail of the
TK domain was identified in Swedish families with HMERF and found to disrupt Nbrl
binding /n vitro (315). However, later studies showed that these individuals harbor a second
missense mutation in the same 77N allele, Pro30091Leu, that is localized to the 119th Fnllil
“hot spot” (227), therefore placing the pathogenicity of the Arg25026Trp TK mutation into
question (95, 311, 440).

Six titin mutations in the A- or M-band regions were also identified in families with
centronuclear myopathy (CNM), a disease characterized by centrally located myonuclei and
muscle weakness that begins in childhood (88). These mutations, both frameshift and
nonsense, are predicted to form truncated titin molecules (88). Consistent with this,
immunofluorescence experiments of patient biopsies demonstrated the absence of titin’s
COOH-terminus and its COOH-terminal binding partner, calpain-3 (88). Importantly, the
CNM-linked mutations are inherited in a recessive manner, and all affected individuals are
compound heterozygotes bearing additional mutations in the titin gene (88, 95).

Lastly, nine titin mutations, eight of which are located within the A-and M-band portions of
titin, have been linked to multiminicore disease with associated heart disease (82, 94). This
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disorder, also known as Salih myopathy, is characterized by congenital muscle weakness and
early-onset fatal cardiomyopathy (493, 538). These mutations, both missense and frameshift,
are the only known titin mutations to affect both skeletal and cardiac muscles. They are
inherited recessively and only manifest the disease phenotype when homozygous or
associated with additional titin mutations as compound heterozygous. Most of these
mutations lead to premature stop codons and truncations, and often result in sarcomeric
disarray and malfunction (82, 94).

As the largest known protein composed of 27,000 to 35,000 amino acids spanning the entire
half sarcomere, titin plays key roles both as a scaffold and ruler for the regular assembly and
maintenance of thick filaments, and as a sighaling mediator. Consistent with this, hundreds
of mutations have been identified within the thick filament associated region of titin that lead
to both cardiac and skeletal muscle disorders. Due to titin’s size and the fact that patients
with 77N mutations frequently contain additional mutations in titin or other sarcomeric
proteins, the effects of these mutations on muscle function have been difficult to study.
Furthermore, other than utilizing exon skipping as a therapy for truncating titinopathies, the
availability of targeted therapies is currently lacking. Future work should focus both on
understanding the mechanisms of how 77N mutations lead to disease development as well
as the establishment of targeted treatments for titin-linked myopathies.

Myomesin was serendipitously discovered almost four decades ago during the
characterization of M-protein in cross-striated muscles, as it was detected by monoclonal
antibodies directed to M-protein (139, 206, 358, 535, 560). Following its molecular
characterization, it was shown that myomesin encompasses a group of proteins that are
expressed in striated muscles (16) where they cross-link myosin filaments (418, 419), and
maintain their proper alignment particularly during eccentric contraction (17, 170, 171).

Structure, isoforms, and localization

The myomesin family consists of a group of modular proteins mainly composed of Ig and
Fnlll domains that reside in sarcomeric M-bands (16). Using comparative sequence analysis,
three myomesin isoforms have been identified, including myomesin (myomesin-1), M-
protein (myomesin-2), and myomesin-3, which are encoded by different M YOM isogenes
(504). Myomesin (~185 kDa) is encoded by MYOM!I, and is expressed in all vertebrate
skeletal and cardiac muscles both during development and at maturity (16, 18). In contrast,
M-protein (~165 kDa) encoded by MYOMZ2and myomesin-3 (~162 kDa) encoded by
MYOMS3 exhibit muscle type and developmental stage specific distribution. Specifically, M-
protein is predominantly expressed in adult cardiac and fast-twitch skeletal muscles with the
highest expression in type-11B fibers (80, 204, 504), while myomesin-3 is preferentially
found in embryonic and postnatal skeletal muscles, and in adult slow-twitch and extraocular
muscles with the highest expression in type 1A fibers (504).
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All three myomesin isoforms have similar architectures, and are composed of 13 domains
that include a nonmodular NHo-terminal region My1, followed by an array of Ig and Fnlll
domains arranged in the following order 21g (My2-My3)-5Fnlll (My4-My8)-51g (My9-
My13) (Fig. 15) (504). Of the 13 domains, My1 is predicted to be intrinsically disordered,
and is highly different among the three isoforms sharing a 25% to 28% homology, while the
Ig and Fnlll domains show significant similarity ranging between 38% to 51% and 40% to
52%, respectively (504).

A splicing variant of myomesin has also been identified, referred to as embryonic heart
(EH)-myomesin, because it is the major isoform expressed during EH development, and its
expression is rapidly downregulated after birth (16). EH-myomesin contains a unique
unstructured ~100-residue long Ser/Pro-rich insertion between Fnlll domains My6 and My7
(Fig. 15). Using biophysical tools, this insertion was shown to be intrinsically disordered and
possess elastic properties similar to the extensible Pro-Glu-Val-Lys (PEVK) region of titin
that resides in the I-band (502). In addition to its expression in EH, EH-myomesin is also
found in adult slow-twitch skeletal myofibers, and its expression profile follows a reciprocal
pattern to that of M-protein with fibers expressing EH-myomesin lacking M-protein, and
vice versa (18).

Binding partners

The myomesin isoforms contain multiple Ig and Fnlll domains, which may serve as binding
sites for several proteins residing in thick filaments. Specifically, myomesin contains binding
sites for myosin (discussed in the Myosin section), titin (discussed in the 77tin section),
obscurin and obsl1, M-CK, myofibrillogenesis regulator-1 (MR-1), and dysferlin (Fig. 16).
Below we describe the main binding partners of the myomesin proteins and the potential
significance of these interactions.

Obscurin (~50-960 kDa) and Obsl1 (~130-230 kDa)—Obscurin is the third member
of the family of giant sarcomeric proteins expressed in vertebrate striated muscles (287), and
plays both structural and regulatory roles (288). Given its tight association with the thick
filament, a comprehensive description of obscurin is provided below. Recent work has
shown that myomesin interacts with obscurin, and its close homologue, obsl-1 (163, 177).
The linker region between Fnlll domains My4 and My5 of myomesin binds to the NHo-
terminal 1g3 domain of obscurin and obsl1 (163). Notably, these interactions are specific for
MYOM!1, possibly due to the low homology that the linker regions of the three myomesin
isoforms share, and are not regulated via phosphorylation (163).

Downregulation of myomesin in NRCs greatly affects the localization of endogenous
obscurin and obsl-1, which appear diffuse in the cytoplasm (163). Overexpression of the
myomesin, obscurin, or obsl-1 binding sites has similar effects in the distribution of
endogenous obscurin and obsl-1, but not of myomesin (163). Among the three binding sites,
overexpression of the myomesin My4-My5 linker has the most striking effect (163),
suggesting that myomesin (along with titin as discussed above) facilitates the proper
targeting and incorporation of obscurin and obsl-1 to M-bands (163). This is consistent with
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the sequential appearance of titin, myomesin, and obscurin at M-bands during
myofibrillogenesis (62, 63, 289).

M-CK (~43 kDa)—CK is an enzyme involved in cellular energy metabolism that catalyzes
the reversible conversion of creatine and ATP to phosphocreatine and ADP (278, 582). CK
comprises a group of isoforms that express in a tissue-specific manner. In mature muscle, M-
CK is the predominant isoform, 5% to 10% of which is bound to the myofibrillar M-band,
whereas the remaining 90% to 95% is soluble in the sarcoplasm (243). Both myomesin and
M-protein directly bind to M-CK that serves as an effective intramyofibrillar energy-
generation system required to support the ATPase activity of MyHC (242). Four highly
conserved Lys residues (i.e., Lys8, Lys24, Lys104, and Lys115) in M-CK are essential for its
interaction with the central My7-My8 Fnlll domains of myomesin and My6-My8 Fnll|
domains of M-protein (242). Interestingly though, the binding affinities of the M-CK/
myomesin and M-CK/M-protein interactions are distinct, as indicated by their Kyvalues
calculated to be ~75 nmol/L and ~1pmol/L at pH 6.8, respectively (242). Both interactions
are dynamic with a strong pH-dependence. Accordingly, M-CK binds stronger to either
myomesin isoform when the pH is lowered from 7.0 to 6.7 (242). Given that under high
workload such as muscle contraction, ATPases hydrolyze ATP to ADP+H™, sequentially
leading to a moderate acidic microenvironment, it is likely that the dynamic nature of the M-
CK/myomesin and M-CK/M-protein interactions depends on the intramuscular pH, perhaps
reflecting the changes in energy demand during contraction and relaxation (242).

MR-1 (~17 kDa)—MR-1 is expressed across different tissues with a greater abundance in
striated muscles (324). MR-1 levels are significantly increased in hypertrophic rat
myocardium induced by abdominal aortic stenosis and NRCs following angiotensin 11
stimulation, possibly playing a role in the pathogenesis of cardiac hypertrophy (331) by
promoting sarcomere growth and remodeling (587). /n vitro studies have demonstrated that
MR-1 interacts directly with myomesin (324). Moreover, earlier work has shown that
myomesin localizes to the nucleus in NRC contrary to mature cardiomyocytes where it
resides in the cytoplasm occupying M-bands (473). Overexpression of MR-1 in NRC
induced translocation of myomesin from the nucleus to the cytoplasm (587), which may
explain the MR-1-promoted sarcomere reorganization seen in hypertrophic animal models.
Sumoylation of myomesin by small ubiquitin-like modifier-1 (SUMO-1) has also been
implicated in the cytosolic translocation of myomesin at maturity (473). Indeed,
overexpression of SUMO-1 in NRC elicited the same effect on myomesin’s localization as
overexpression of MR-1. However, overexpression of SUMO-1 failed to induce cytoplasmic
translocation of myomesin if MR-1 was downregulated, suggesting that MR-1 acts upstream
of SUMO-1, although the exact mode of action requires further investigation (587).

Dysferlin (~237 KDa)—Dysferlin, encoded by the DYSF gene, is a major player in
sarcolemma repair (37). Decreased or null expression of dysferlin due to mutations in the
DYSF gene has been associated with the development of severe muscle disorders, called
dysferlinopathies (45,330). Biochemical and imaging approaches have demonstrated that M-
protein interacts directly with dysferlin (154), potentially contributing to the anchoring of
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the sarcolemma with superficial myofibrils, although further work is required to establish
this.

Thick filament assembly and cross-linking—Several studies have indicated that
myomesin has structural and cross-linking roles in striated muscles (62, 63, 163, 289,
312,418,419). Specifically, three lines of evidence have highlighted the essential role of
myomesin in thick filament assembly and stabilization, including: (i) its early expression
and incorporation into M-bands during myofibrillogenesis (62, 63, 289), (ii) its direct
interaction with other M-band proteins and myosin (please see above) (163, 418, 419), and
(iii) the presence of disorganized M- and A-bands in NRC following manipulation of its
expression (i.e., overexpression of the My4-My5 linker or downregulation of the protein)
(163). In addition to its structural role, myomesin serves as a cross-linker of neighboring
myosin filaments (171). Based on sophisticated biochemical and biophysical methods, a
three-dimensional model of the M-band has been proposed indicating that neighboring
myaosin filaments are connected by myomesin molecules that bind to myosin via the NH,»-
terminal My1 domain (in the case of myomesin) or My2-My3 region (in the case of M-
protein), which form antiparallel homotypic dimers via their COOH-terminal My13 domains
(312, 445, 446). Notably, no heterotypic dimers have been observed even though the three
isoforms share ~50% identity in their My13 domains (504). Therefore, myomesin is
considered as the main thick filament cross-linker in the M-band, similar to a-actinin in the
Z-disk (312). Consistent with the ability of myomesin to homodimerize, X-ray
crystallography demonstrated that the COOH-terminal My12-My13 region self-assembles
into an end-to-end dimer with a length of 14.3 nm (446). Similar structural examination of
the My9-My13 region revealed that it adopts a unique arrangement referred to as “ball-and-
spring,” in which the Ig domains are interspersed by a long a-helix, thus forming an end-to-
end dimer that is folded into an irregular superhelical coil (445).

Thick filament elasticity—Examination of the biophysical properties of the Ig and Fnllil
domains of myomesin demonstrated that they display similar unfolding and refolding
properties as the respective domains of the I-band portion of titin (502). Moreover, the
unique 100-amino acids long segment present between My6 and My7 in EH-myomesin
exhibits a random coil conformation resembling an entropic chain (502), and may behave
similar to the PEVK region of the I-band portion of titin (502). More importantly, X-ray
crystallography and secondary structure prediction indicated that the linker regions between
the COOH-terminal Ig domains My9-My13 are arranged as long a-helices (446) that can
undergo rapid unfolding/refolding at relatively low forces (15-40 pN) (53, 445, 608). On the
contrary, the forces required to unfold Ig domains (~80 pN) (502) or to dissociate myomesin
dimers (>130 pN) (53, 445, 608) are comparatively higher. As a consequence of the
reversible elongation of its linker regions, myomesin is capable of extending ~2.5-fold of its
original length (445). Thus, the extensibility of the a-helical linkers protects the myomesin
dimers from dissociating at physiological forces (53, 445), which is crucial for maintaining
the stability of thick filaments during force production. Taken together, these studies
highlight the role of myomesin as an elastic spring in the M-band, similar to titin in the I-
band.
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Mutations and myopathies

Given the essential role of myomesin in sarcomeres, the MYOM1 gene has been screened
for genetic variants associated with muscle disease, leading to the identification of three
mutations that are linked to HCM, DCM, and myotonic dystrophy type 1 (DM1) (Fig. 17
and Table 11) (284, 352, 513, 520). Of note, it is surprising that although MYOM1 plays key
roles in sarcomeric structure and function, the number of mutations that have been identified
to date are small.

Genomic DNA screening of 188 unrelated Caucasian HCM patients identified a missense
mutation, Val1490lle, in MYOM!I1 located in My12 that cosegregates with congenital HCM
(520). Evaluation of recombinant myomesin fragments containing the Val1490lle mutation
via circular dichroism revealed that although their secondary structure is indistinguishable
from wild type, they unfold more rapidly, indicating that Val1490lle promotes the
dissociation of dimers, thereby reduces their thermal stability (520). Consistent with this
finding, the Kyof mutant homodimers was modestly increased compared to wild type,
although it still remained in the low micromolar range (520). Given the relatively reduced
ability of mutant myomesin to form stable homodimers, it was postulated that the
Val1490lle mutation contributes to the pathogenesis of HCM by impacting the organization
and stability of thick filaments during force development (520). Contrary to MYOM],
MYOM?Z, and MYOMS3have not yet been screened for potential mutations in HCM patients.

Moreover, whole exon sequencing of 30 samples obtained from end-stage heart failure
patients diagnosed with familial or idiopathic DCM identified a missense mutation,
Glu247Lys, residing in the nonmodular NHy-terminal My1 domain of myomesin in a patient
with familial DCM (352). The functional ramifications of the Glu247Lys mutation however
are currently elusive. Notably, similar screening was performed for MYOM?Z, but no
mutations were identified.

In addition to the presence of mutations in M/YOM], the levels of EH-myomesin are
significantly increased in biopsies from human failing hearts due to DCM (503).
Importantly, upregulation of EH-myomesin coincides with upregulation of a longer, more
compliant titin isoform (345, 409), suggesting that these alterations may be adaptive
responses of the strained dilated myocardium (503).

Alterations in myomesin have been also described in skeletal muscles leading to DM1. DM1
is an autosomal dominant disease, which is caused by expansion of the CTG repeat in the
3’-UTR of the dystrophia myotonica protein kinase (DMPK) gene (29, 71, 76, 221).
Aberrant alternative splicing is a distinctive feature of DM1 as the expanded CUG repeats
bind and therefore sequester the muscleblind-like family of RNA splice regulators, resulting
in deregulation of normal exon shuffling (127). More than 30 genes have been identified to
be abnormally spliced in DM1 (465), including MYOM1 (284). Specifically, inclusion of
exon 17a was significantly increased in DM1 skeletal muscles, compared to wild type.
Inclusion of exon 17a in DM1 muscles leads to insertion of a 60 to 100 amino acids long
peptide between My6 and My7 of myomesin, the pathological significance of this insertion
however is currently unknown (284).
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Mounting evidence has accumulated over the last decades indicating that myomesin plays
key roles in thick filament assembly, cross-linking, and stability in addition to serving as
elastic spring in M-bands. Thus, it is not surprising that similar to other thick filament
associated proteins, myomesin is also causatively linked to hereditary myopathies. Actually,
the small number of mutations that has been described in MYOM!J alongside the lack of
myopathy-causing mutations in MYOMZand MYOMS3 suggests that a focused interrogation
of the involvement of the MM YOM genes in the development of cardiac and skeletal
myopathies is warranted. Alternatively, mutations in the M YOM genes may be embryonic
lethal, which may preclude their identification. Consequently, early genetic screening may
be highly informative for identifying novel disease-causing mutations in the MYOM genes.

Obscurin is the most recently discovered, and the third member of the family of giant
sarcomeric proteins expressed in vertebrate striated muscles, along with titin and nebulin
(287). Obscurin was named after the adjective “obscure,” meaning “difficult to see or make
out,” “not well known,” and “not easily understood” due to its complexity (617). Similar to
titin, obscurin is a modular protein composed of tandem adhesion and signaling domains,
and plays both structural and regulatory roles (288).

Structure, localization, and isoforms

Obscurin is encoded by the OBSCN gene, which is localized on human chromosome 1942
(162). The OBSCN gene contains 117 exons that are subjected to extensive alternative
splicing, giving rise to multiple protein isoforms, classified as giant (~720-970 kDa),
intermediate (~290-550 kDa), and small (~50-250 kDa) obscurins (14, 162, 617). The
prototypical obscurin, referred to as obscurin-A (~720 kDa), contains tandem Ig and Fnll|
domains followed by an array of signaling motifs (Fig. 18). In particular, the NH,-terminus
and middle of the molecule consists of 59 Ig and 3 Fnlll domains, followed by an IQ rich
domain that binds calmodulin, a SH3 domain, a rho guanine nucleotide exchange factor
(Rho-GEF) motif, and a pleckstrin homology (PH) domain. The extreme COOH-terminus of
obscurin-A contains a 417-amino-acid-long nonmodular region that carries binding sites for
ankyrins (162,287,288,293,617). Obscurin-B (~870 kDa) is also a giant isoform originating
from OBSCNthat shares the same architecture with obscurin-A with the exception of its
COOH-terminus that contains two Ser/Thr kinases, referred to as Kinasel and Kinase2,
which are preceded by Ig and Ig/Fnlll domains, respectively (485) (Fig. 18). Kinasel and
Kinase2 belong to the MLCK subfamily, and can also be expressed as smaller isoforms that
contain one or both domains, referred to as single (~55 kDa, containing only Kinase2) and
double (~145 kDa, containing partial Kinasel and Kinase?2) kinase isoforms (65,69,485)
(Fig. 18). Notably, the presence of multiple promoters and translation initiation sites in the
OBSCN gene along with the fact that individual domains are encoded by single exons may
give rise to a large number of alternatively spliced obscurin isoforms. Consistent with this,
several immunoreactive obscurin bands have been identified in muscle and nonmuscle
tissues that may contain distinct combinations of adhesion and signaling motifs (14, 69,
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435). Along these lines a recent study reported the presence of two small obscurin isoforms
in cardiac muscle, obscurin-40 and obscurin-80 that are enriched at the intercalated disc,
bind specifically to phosphatidylinositol bisphosphates (PIP2s) via their PH domain, and
contribute to the regulation of cardiomyocyte size and coupling by modulating the
PIBK/AKT/mTOR pathway (8).

Initial studies on obscurins’ localization in adult mouse myocardium revealed that they
primarily concentrate at M-bands (32, 64, 163, 288, 617). Their distribution is more variable
during cardiac development, however, with obscurin epitopes accumulating transiently at Z-
disks early on (65). Subsequent studies of adult rat cardiac and skeletal muscles with
antibodies to the COOH-terminus detected obscurins simultaneously at M-bands and Z-
disks, whereas antibodies to the NH,-terminus and the Rho-GEF domain localized obscurins
at M-bands (288, 617), and antibodies to the 1g58/1g59/Fnll160 cassette identified obscurins
at the edge of the I-band and the Z-disk (36). Moreover, detailed examination of the
distribution of obscurins in adult rat skeletal myofibers demonstrated that at resting
sarcomere lengths obscurin-A primarily concentrates at M-bands, whereas obscurin-B
localizes at M-bands and A/l junctions. Interestingly though, following stretch both giant
obscurins are detected at M-bands and I-bands near A/l junctions, while obscurin-B is also
found at the periphery of Z-disks near the Z/I junction (69). Thus, it is possible that
stretching of the muscle may either result in redistribution of obscurins along the sarcomere
or unmask previously hidden epitopes.

Later studies examined the subcellular localization of obscurins in humans (81). Obscurins
showed a preferential concentration at M-bands in both developing and adult skeletal and
cardiac human muscles. Interestingly, these studies further indicated the presence of
obscurins at the sarcolemma and the postsynaptic region of the neuromuscular junction (81),
although the exact molecular identity of these isoforms is still unknown.

Obscurins assume a reticular distribution in cross-sections of striated muscles, suggesting
that they are positioned at the surface of the myofibril rather than within it (68,81,288,293).
It has therefore been postulated that unlike titin and nebulin, which are integral components
of sarcomeres, obscurins concentrate at the periphery of M-bands and Z-disks, possibly
defining the diameter of myofibrils (1-2 um; (288, 293)). Given the length of an individual
obscurin molecule (~208 nm), it has been speculated that obscurins may form
homooligomers or associate with other sarcomeric proteins to form a “ring” big enough to
envelop myofibrils (288, 293). Although still speculative, such a scenario is tempting given
the unique localization of obscurins at the perimeter of M-bands and Z-disks and their
tandem adhesion and signaling domains that could provide binding sites for proteins located
in different subcellular compartments.

Binding partners

Obscurins contain multiple adhesion and signaling motifs, which may function as binding
sites for other proteins. Given their unique location, obscurins are well suited to connect the
sarcomeric cytoskeleton with the surrounding myoplasm. Specifically, obscurins contain
binding sites for sarcomeric (MyBP-C, titin, and myomesin; discussed in the relative
sections above), membrane-associated (ankyrins, N-cadherin, and the p1 subunit of Na*/K*
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ATPase; NKA-B1) and signaling (RhoA, Ran binding protein 9, and calmodulin) proteins. In
addition, a number of binding partners have been identified for the nonvertebrate obscurin
orthologue UNC-89, including sarcomeric (paramyosin) and signaling (RHO-1, small C-
terminal domain phosphatase like-1; SCPL-1), LIM-9, copine domain protein atypical-1;
CPNA-1, béllchen; Ball, and multiple ankyrin repeats single K-homology domain protein;
MASK proteins and as well as ligases (bric-a-brac/tramtrack/broad complex (BTB)-domain
protein maternal effect lethal-26; MEL-26) (Fig. 19). Below we describe the main binding
partners of obscurins and the potential roles of these interactions, when known.

Membrane-associated proteins

Ankyrins (17.5-220 kDa).: Early work had suggested that the SR is intimately associated
with the nearby sarcomeric cytoskeleton; however, it was relatively recently that molecular
links between the two compartments were identified. Two independent studies reported that
the nonmodular COOH-terminus of obscurin-A directly interacts with small ankyrin 1
(sAnk1, also referred to as Ank1.5, encoded by ANKI), an integral protein of the SR
membrane (32, 293). Immunofluorescence labeling of adult skeletal and cardiac muscles
supported the physical proximity of the two proteins, as SAnk1/Ank1.5 exhibited a reticular
distribution at the level of M-bands and Z-disks, similar to obscurin-A (293). Interestingly,
two distinct binding sites for sAnk1/Ank1.5 have been identified in the COOH-terminus of
obscurin. Kontrogianni-Konstantopoulos et al. found that a 120-residue long sequence of
obscurin-A encompassing amino acids 6316 to 6436 (binding site 1, BS1) binds directly to a
70-residue long fragment in the cytoplasmic tail of sAnk1/Ank1.5 containing amino acids 61
to 130, with a Kyof ~130 nmol/L (293). BS1 is composed of two positively charged regions
containing high contents of Lys and Arg residues, referred to as ankyrin-like repeats, ALRs,
located on the surface of the molecule (66). Conversely, Bagnato et al. showed that a 25-
residue long sequence of obscurin-A including amino acids 6236 to 6260 (binding site 2,
BS2), interacts with a 22-residue-long fragment in the cytoplasmic domain of sSAnk1/Ank1.5
comprising amino acids 102 to 123 (32), with a Kyof ~380 nmol/L (75). A follow-up study
further pinpointed the minimal binding region within BS1 to include amino acids 6316 to
6345 and to contain a high a-helical content (75). Four charged residues (Glu6327,
Glu6329, Glu6330, and Lys6338) within the minimal obscurin BS1 region (74) and four
hydrophobic residues (Val70, Phe71, 1s0102, and 1s0103) present in the ARL motifs of
sAnk1/Ank1.5 mediate binding of the two proteins (602), highlighting the contribution of
electrostatic interactions. Opposite to sAnk1/Ank1.5, ANK1 splice variants Ank1.6 and
Ank1.7 fail to bind obscurin-A in vitro (32), whereas Ank1.9 binds to obscurin-A with a
lower affinity than sAnk1/Ank1.5 (25, 287).

The expression of SAnk1/Ank1.5 is significantly reduced in both skeletal and cardiac
muscles from an obscurin null (obscn™~) mouse model suggesting that in the absence of
obscurins sAnk1/Ank1.5 is subjected to faster turnover (313). Consistent with this, Lange
and colleagues demonstrated that SAnk1/Ank1.5 associates with the E3 ligase cullin-3
residing at Z-disks via the adaptor protein potassium (K*) channel tetramerization domain
containing 6 (KCTD®6), which targets it for ubiquitylation and degradation (314). When
obscurin-A is present, it sequesters the sSAnk1/Ank1.5-KCTD6 complex to the M-band
(314). However, when obscurin-A is absent, the SAnk1/Ank1/5-KCTD6 complex is released
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from the M-band, translocating to the Z-disk where it associates with cullin-3 that mediates
the increased degradation of sAnk1/Ank1.5 (314).

In addition to the ANK splice variants, SAnk1/Ank1.5 and Ank1.9, ANKZ2 (more
commonly referred to as ANKB) splice variants also interact with obscurins (117, 607). The
AnkB subfamily is important for normal cardiac physiology by targeting ion channels and
transporters in excitable cells (116). The predominant cardiac isoform, AnkB-220, contains a
unique COOH-terminal fragment encoded by a novel exon, referred to as exon 43", which
supports binding to the COOH-terminus of obscurin-A (117). Immunologogical and
biochemical studies demonstrated that AnkB-220 is targeted to the M-band via its
interaction with obscurin-A where it recruits protein phosphatase 2A (117). Similar to
AnkB-220, AnkB-212 is targeted to the M-band via its association with the COOH-terminus
of obscurin-A; however, the functional importance of the obscurin-A/AnkB-212 binding
remains unclear (607).

N-cadherin (97-100 kDa).: Recent work by Hu et al. showed that Kinasel present at the
COOH-terminus of obscurin-B undergoes autophosphorylation, and binds directly to and
phosphorylates the cytoplasmic domain of N-cadherin (248). Although the physiological
significance of this PTM is currently unknown, given that N-cadherin is a major component
of adherens junctions, it is tempting to speculate that obscurin-B may play important roles in
the regulation of cell adhesion and communication via its Kinasel domain (248).

NKA-B1 (~35 kDa).: Hu et al. also reported that Kinase2 binds to the extracellular domain
of NKA-B1 (248). Although Kinase2 appears to be an active kinase since it also undergoes
autophosphorylation, it failed to phosphorylate the NKA-B1 in vitro (248). Thus, it is
possible that the Kinase2/NKA-B1 interaction may have important regulatory consequences
on the activity of NKA-B1 by precluding its phosphorylation by other kinases.

Signaling proteins

RhoA (~22 kDa)—In addition to binding sarcomeric and membrane-associated proteins,
obscurins interact with signaling proteins. Through their RhoGEF motif, obscurins
selectively bind to and activate RhoA, but not racl or cdc-42, in vitro (155). This is
consistent with the coincident distribution of obscurins and RhoA at the level of M-bands in
both developing and mature myofibers (155). Overexpression of the obscurin RhoGEF motif
in adult rat tibialis anterior muscle enhances RhoA expression and activity as evidenced by
the increased levels of GTP-bound RhoA, and leads to redistribution of RhoA to Z-disks, I-
bands, and Z/1 junctions, in addition to M-bands (155). Increased RhoA activity (due to
overexpression of the obscurin RhoGEF motif) alters the expression and localization of its
downstream effectors, Rho-kinase 1 (ROCK1) and citron kinase (CRIK). Specifically,
ROCKU1 levels increase while CRIK levels decrease (155). Moreover, ROCK1 localizes to
Z/1 junctions, I-bands and minimally to M-bands following RhoGEF overexpression, instead
of Z-disks, while CRIK is undetectable at A- and M-bands due to its diminished levels.
These cellular alterations are reminiscent to those induced by large-strain lengthening
contractions, suggesting that regulation of RhoA activity via the obscurin RhoGEF motif is
essential in modulating contractility (155).
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In addition to binding and activating RhoA, the obscurin RhoGEF maotif interacts with and
activates TC10 that also belongs to the Rho family of GTPases (104). TC10 appears after the
fusion of myoblasts, and its expression is maintained in differentiating and mature myotubes
(103). Downregulation or overexpression of a dominant-negative form of TC10 in human
myotubes demonstrated that it is essential for myofibril assembly, indicating that the
interaction of obscurin RhoGEF and TC10 may play key roles in sarcomerogenesis (104).

RanBP9 (~78 kDa)—RanBP9 is a modular scaffolding protein that interacts with a variety
of signaling proteins (404). Bowman and colleagues identified RanBP9 as a binding partner
of the RhoGEF motif of obscurins (68). Kinetic evaluation of the RanBP9/obscurin-RhoGEF
interaction indicated that is relatively weak and dynamic with a Kyof ~1.9 pmol/L.
Consistent with their biochemical interaction, obscurins and RanBP9 colocalize in cultures
of skeletal myotubes at the level of M-bands (68). Overexpression of the obscurin-RhoGEF
motif or the RanBP9 obscurin-RhoGEF binding site in primary cultures of skeletal
myotubes inhibited the incorporation of the NH,-terminus of titin into developing Z-disks
(68). Given that both recombinant proteins bind to the NH,-terminal Z1/Z2 region of titin, it
is likely that obscurin, titin, and RanBP9 form a complex that assists titin’s integration into
Z-disks (68).

Calmodulin (~17 kDa)—Yeast two-hybrid screening and /in vitro binding assays indicated
that calmodulin is a ligand for the obscurin 1Q domain, and that their interaction is
insensitive to the presence of Ca2*. However, the functional significance of this interaction
has not been explored yet (617).

Binding partners of nonvertebrate obscurins

Although this review primarily focuses on the mammalian thick filaments and associated
proteins, a lot of work has been done on the nonvertebrate obscurin orthologue UNC-89, and
mainly in C. elegans where it was first identified (49, 360, 455). We therefore provide a
short description of the UNC-89 binding partners that have been identified today.

Sarcomeric proteins

Paramyosin (~100 kDa)—Paramyosin is orthologous to the rod portion of vertebrate
MyHC, and is only found in invertebrate thick filaments. Yeast two-hybrid screening
revealed that paramyosin binds to a segment of UNC-89 that includes the SH3-double
homology (DH)-PH cassette (457). Further biochemical characterization of this interaction
demonstrated that an a-helical segment (amino acids 294-376) of paramyosin interacts with
the SH3 domain of UNC-89 with a Kyof ~1.1 umol/L (457). Loss of giant UNC-89
isoforms or overexpression of the UNC-89 SH3 domain in body wall muscles of C. elegans
leads to aggregation or mislocalization of paramyosin, respectively, suggesting that binding
of paramyosin to UNC-89 is critical for its proper incorporation into sarcomeres (457).

Signaling proteins

RHO-1 (~22 kDa)—Similar to mammalian obscurins, the orthologous C. elegans UNC-89
DH-PH cassette binds to and activates RHO-1 (the C. efegans orthologue of RhoA), but not
CED (the C. elegans orthologue of Rac), MIG-2 (the C. elegans orthologue of RhoG), or
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CDC-42 (the C. elegans orthologue of Cdc-42). Notably, the DH domain alone induces a
comparable GTP/GDP exchange activity for RHO-1 (456). UNC-89 su75 mutant worms,
lacking giant UNC-89 isoforms, contained severely disorganized thick filaments (523).
Similarly, down-regulation of RHO-1 also resulted in disrupted thick filaments, indicating
that the interaction between the UNC-89 DH-PH cassette and RHO-1 is important in thick
filament formation and maintenance (456).

SCPL-1 (~54 kDa) and LIM-9 (~74 kDa)—SCPL-1 was identified as a novel binding
partner of both Kinasel (presumed to be catalytically inactive) and Kinase2 (presumed to be
catalytically active) of the C. elegans UNC-89 protein (458). Interestingly though, both
interactions require the presence of the preceding Ig and Fnlll domains (458). SCPL-1
localizes to M-bands in body wall skeletal muscles, where UNC-89 also resides. In addition
to binding SCPL-1, UNC-89 Kinasel or interkinase region directly interacts with the
cytoskeletal protein LIM-9, which is orthologous to the vertebrate FHL domain protein
(609). LIM-9 resides partially at the M-band and was originally identified as a binding
partner for UNC-97 and UNC-96 (459). It has been implicated in mediating cell-substratum
attachments via indirectly associating with integrins, thus potentially playing a role in force
transmission (459, 609). Although the ability of UNC-89 to dimerize has not been proven, it
was proposed that the interactions of the COOH-terminal kinase domains with L1M-9 and
SCPL-1 may function to stabilize UNC-89 dimers (609). Downregulation of SCPL-1 has no
effect on the structure and function of body wall muscles (458), however overexpression of
SCPL-1 results in dissolution of M-bands and loss of UNC-89 (609). Thus, it is possible that
excessive levels of SCPL-1 may prevent the formation of the UNC-89/SCPL-1/LIM-9
ternary complex, thereby disrupting the normal linkages of UNC-89 via their kinase
domains (609).

CPNA-1 (~125 kDa)—CPNA-1, containing a copine domain, is identified as a component
of the integrin adhesion complex (590). CPNA-1 is present at M-bands and dense bodies
(the analogous structure of the vertebrate Z-disk) of C. elegans body-wall muscles, and is
implicated in thick filament stability during embryonic muscle development (590). The Ig1-
Ig3 domains of UNC-89 bind to the copine domain of CPNA-1 (590). In addition to
UNC-89, CPNA-1 interacts with other M-band proteins, such as SCPL-1, LIM-9, UNC-96,
and PAT6 (the orthologue of vertebrate actopaxin), suggesting that it may function as a
linker between the integrin complex and the sarcomeric cytoskeleton, therefore contributing
to the proper localization and stability of the former (590).

Ball (~66 kDa) and MASK (~387 kDa)—Ball and MASK localize to M-bands and Z-
disks, and were identified as binding partners of the Drosophila UNC-89. Ball is an active
Ser/Thr kinase that directly binds to Kinasel domain of Drosophila UNC-89, while MASK
is an ankyrin repeat protein that interacts with both UNC-89 kinase domains (276).
Downregulation of Ball or MASK in indirect flight muscles (IFMs) causes major sarcomeric
disorganization, manifested as fragmentation or aggregation of Z-disks, shifting of M-bands,
and dissolution of H-zones (276). Interestingly, UNC-89 was still localized to M-bands in
Ball or MASK knockdown IFM, suggesting that it mediates targeting of Ball and MASK to
M-bands, but not vice versa. Consistent with this, Ball exhibited a diffuse distribution in the
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cytoplasm, and MASK was nearly lost with residual protein concentrating in puncta over M-
bands in UNC-89 knockdown IFM (276).

E3 ubiquitin ligases

BTB-domain protein MEL-26 (~45 kDa).: Yeast two-hybrid screen and /n vitro binding
assays showed that two regions of UNC-89, 1g2-1g3 and 1g53-FNI112, interact with the NH,-
terminal meprin associated Traf homology (MATH) domain of MEL-26, a substrate
recognition protein for cullin 3. Cullins are conserved scaffolds mediating the assembly of
the ubiquitin protein degradation machinery including E3 ubiqui-tin ligases (603). In
addition to binding UNC-89, the MEL-26 MATH domain also binds to meiosis defective-1
(MEI-1) protein that is orthologous to the vertebrate microtubule-severing enzyme katanin,
and plays key roles in meiotic spindle formation and the assembly of thick filaments
(128,603). C. elegans mutants lacking giant UNC-89 proteins exhibit decreased levels of
MEI-1 (603), suggesting a possible role for the UNC-89/MEL-26 interaction in preventing
the degradation of MEI-1 via the MEL-26/cullin 3 ubiquitination complex (603).

Although none of the above interactions has been confirmed in vertebrates to date, the
majority of the identified binding partners are highly conserved among species, suggesting
that they may also interact with obscurins. In agreement with this, Lange et al. reported that
degradation of sAnk1.5 is dependent upon obscurin, and is promoted by a cullin 3 substrate
recognition protein, KCTD®6 (314). Therefore, both invertebrate UNC-89 and vertebrate
obscurin regulate ubiquitin-mediated protein degradation in striated muscles.

Along the same lines, a recent study focusing on breast epithelial cells demonstrated that the
PH domain of obscurins binds directly to the SH3 domain of the p85-regulatory component
of phosphatildyl inositol 3 kinase (P13K) with a Kyof ~50 nmol/L (516). Loss of obscurins
from breast epithelium results in increased activation of the PI3K cascade contributing to
enhanced tumorigenicity and metastasis, suggesting that obscurins act upstream of the PI3K
cascade regulating its activation (436, 516, 517). Given that the PI3K pathway is a major
driver of growth and proliferation in multiple tissues, it is highly likely that obscurins
modulate the activity of PI3K in cardiac and skeletal muscles, too.

Thick filament assembly—The essential role of obscurins in thick filament assembly
and stabilization was suggested early on from /n vitro developmental studies using mouse
C2C12 skeletal myotubes and primary cultures of NRC (62, 63, 289). In both cell systems,
myomesin, the COOH-terminus of titin, and obscurins are incorporated into developing M-
bands (24-48 h postinitiation of differentiation) before sarcomeric myosin assembles into
regular A-bands (72-96 h postinitiation of differentiation) (62, 63, 289). Later studies
further underscored the essential roles of obscurins in thick filament assembly, as
downregulation of obscurins or overexpression of the COOH-terminus of obscurin-A
resulted in dissolute A- and M-bands or failure of myosin to assemble into periodic A-bands,
respectively (290, 291). Consistent with these observations, coimmuno-precipitation
experiments revealed that obscurins and myosin exist in a complex in adult skeletal muscles,
although their direct interaction has not been confirmed yet (290). In addition to their roles
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in the formation and stability of A- and M-bands, obscurins are implicated in the fusion and
lateral connection of myofibrils /in vitro (62, 63). This notion is further supported by a study
in zebrafish, which showed that depletion of obscurins by morpholino injection resulted in
defective alignment of newly formed skeletal and cardiac myofibrils (460). Taken together,
these studies suggest that obscurins play key scaffolding roles in the incorporation of myosin
into A-bands, the assembly and maintenance of M-bands, and the lateral alignment of
myofibrils.

Surprisingly, obscn™~ mice displayed a mild myopathic phenotype under sedentary
conditions as evidenced by the presence of centralized myonuclei, primarily due to
malformed and misaligned SR membranes (please see below) although sarcomeric
organization and function were preserved (313). A possible explanation for the mild
phenotype of the obscn™~ mice is the presence of nontargeted obscurin isoforms, such as the
small kinases. Alternatively, it is likely that obsl1, an obscurin homologue that also consists
of tandem Ig and Fnlll domains and localizes to M-bands, may compensate for the loss of
obscurins (14, 457). However, when obscn™~ mice were challenged with exhaustive
exercise, their tolerance was markedly reduced compared to wild-type animals, as a function
of the intensity of the running protocol and aging (463). Ultrastructural evaluation of obsc™~
diaphragm (but not hindlimb) muscles following intense exercise revealed that sarcomeric
M-bands and H-zones appear wavy and less defined, suggesting that obscurins are essential
to maintain the integrity of diaphragm muscle against damage induced by mechanical stress
(463).

Contrary to the obscn™~ mouse model that exhibits no major structural alterations,
spontaneous C. elegans null UNC-89 mutants display impaired locomotion and paralysis
(592). Consistent with this phenotype, M- and A-bands fail to form and residual thick
filaments are disorganized in the muscles of mutant worms (49, 458, 592). In agreement
with the phenotypic defects observed in the spontaneous UNC-89 mutant worms,
downregulation of UNC-89 in adult C. efegans or Drosophila embryos yields similar effects
(275, 523).

Sarcomeric anchoring and alignment of the sarcoplasmic reticulum—In
addition to its essential role in thick filament assembly and stabilization, obscurin-A has an
established role in anchoring the myofibrillar cytoskeleton with the SR membranes via its
direct interaction with sAnk1/Ank1.5. Downregulation of obscurins in primary cultures of
rat skeletal myotubes resulted in failure of sSAnk1/Ank1.5 to integrate in the developing SR
membranes and align over M-bands and Z-disks (291). Given that sAnk1/Ank1.5 is one of
the first proteins to incorporate in the SR membranes (181), it becomes apparent that the
sAnk1/Ank1.5-obscurin interaction is essential for the formation and myofibrillar anchoring
of the SR network. In agreement with these findings, downregulation of obscurin-A in
zebrafish embryos results in disorganized SR membranes in developing skeletal muscles
(460). More importantly, the localization and expression levels of sAnk1/Ank1.5 are
significantly altered in obscn™~ null skeletal muscles; instead of its typical concentration at
the level of M-bands and Z-disks, sSAnk1/Ank1.5 exhibits a diffuse cytosolic distribution
with occasional accumulation over I-bands (313). In addition to its mislocalization, the
amounts of sAnk1/Ank1.5 are markedly reduced in obscn™~ null skeletal and cardiac
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muscles due to its increased turnover mediated by the KCTD®6/cullin-3 complex, as
discussed above (313). Consistent with the key role of the sAnk1/Ank1.5-obscurin-A
interaction in the formation and sarcomeric alignment of the SR /n vitro (291),
ultrastructural evaluation of obscn™~ null TA muscles showed that the morphology of the
longitudinal, but not the junctional, SR is changed by displaying significantly reduced
extension over sarcomeres (313). Similarly, depletion of UNC-89 in C. elegans results in
mislocalized sarco/endoplasmic reticulum Ca?*-ATPase (SERCA) and ryanodine receptor
(RyR), and impaired Ca2* cycling, as shown by the presence of reduced Ca?* transients
(525). Collectively, these studies suggest an important role for obscurin-A in the regular
assembly and sarcomeric anchoring of the SR membranes via its interaction with sAnk1/
Ank1.5.

Additional functions—While the roles of obscurins in thick filament assembly and the
myofibrillar alignment of the SR membranes have been extensively studied, their roles in
other cellular processes, such as maintenance of sarcolemma integrity and cell adhesion,
have just started to emerge. Accordingly, a recent study proposed that in skeletal muscle
obscurin-A binds to and targets AnkB to M-bands, where it interacts with dynactin4 to
organize the underlying subsarcolemmal microtubule lattice (464). Remarkably, the entire
subsarcolemmal microtubule network is severely disrupted in obscn™~ null skeletal muscles
following exertion of physiological stress via exercise, and AnkB along with dystrophin fail
to target to their typical locations at M-bands and costameres, respectively (464). Given that
the microtubule network confers stability to sarcolemma allowing it to withstand the
mechanical stress imposed during repeating cycles of contraction and relaxation, these
findings suggest that loss of obscurins enhances sarcolemmal fragility (464).

Moreover, giant obscurin-B was recently involved in the regulation of cell adhesion via its
kinase domains and their ability to phosphorylate N-cadherin in the case of Kinasel and
interact with NKA-B1 in the case of Kinase2, as discussed above (248). Although the
functional significance of these interactions remains to be examined, work in breast
epithelial cells has demonstrated that obscurins play major scaffolding roles in the
membrane localization of the cadherin/catenin complex, while their loss leads to
disintegration of adherens junctions (517).

Taken together, obscurins appear to have structural and regulatory roles in striated muscles
mediated via their multiple adhesion and signaling motifs that provide binding sites for
diverse proteins located in different subcellular compartments.

Posttranslational modifications

Little is known about the regulation of obscurins via PTM. We herein discuss early and
recent findings indicating that obscurins may be regulated via phosphorylation (Fig. 20 and
Table 12). It is important to note that both kinase domains present in obscurin-B undergo
autophosphorylation /n vitro (248), although the functional relevance of these events is
currently unknown.

Phosphorylation—Early studies have pointed out the presence of several copies of the
Ser-Pro-X-Arg consensus sequence in the nonmodular COOH-terminus of obscurin-A that
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serves as recognition site for extracellular signal-regulated kinase (617). Consistent with
this, phosphoproteomic analysis of human skeletal muscles from healthy volunteers revealed
the presence of several phosphorylation sites in obscurins (238). Similarly, using
phosphoproteomic analysis a recent study also reported the presence of multiple
phosphorylation sites throughout the length of giant obscurins in both rat and human skeletal
muscles (339). Although these findings highlight the potential role of phosphorylation in the
regulation of obscurins, the kinases and the biological significance of these PTM are still
elusive (238, 339).

Interestingly, a recent study indicated that obscurins are substrates of GSK-3p, which
phosphorylates residue Serd829 (Accession #: Q5VST9, corresponding to Ser4809 in canine
obscurin) residing between 1g47 and the 1Q domains (281). This phosphorylation event
appears to be of high-functional significance, as it was identified in a canine model subjected
to tachypacing-induced heart failure concurrent with ventricular dyssynchrony (HFgys) after
cardiac resynchronization therapy (CRT) (281). HFgys cardiac myofilaments display
impaired maximal Ca%*-activated force and reduced Ca?* sensitivity, which are reversed by
CRT that corrects discoordinate contraction via the application of biventricular stimulation
(273). Molecularly, CRT appears to act (at least in part) via increased activation of GSK-3
that phosphorylates and therefore regulates several myofilament proteins (281). Thus,
phosphorylation of obscurins by GSK-3p may contribute to restoring myofilament Ca2*
sensitivity in the HFgys model (281).

Mutations and myopathies

The involvement of obscurins in myopathies has only been recently interrogated, leading to
the identification of 15 mutations in the OBSCN gene that are linked to different forms of
cardiomyopathy including HCM, DCM, and LVNC (Fig. 21 and Table 13) (23, 352, 481,
610).

The first disease-linked OBSCN mutations were identified in a patient with HCM (23).
Specifically, two missense mutations, Arg4344Gln (c.13031 G > A in exon 51) and
Alad484Thr (c.13450 G > A in exon 52) were identified by linkage analysis (23). The
Arg4344GIn and Ala4484Thr substitutions are located in 1g58 and 1959, respectively, which
have been reported to mediate binding to titin’s Z9/710 region, as earlier discussed (617). /n
vitro binding studies, however, demonstrated that only the Arg4344GIn mutation diminishes,
yet modestly, the obscurin/titin interaction (23). Notably, a knockin animal model containing
the Arg4344GIn mutation was recently generated to examine the functional ramifications of
this mutation; please note that the wild-type mouse genome contains the Ala4484Thr
substitution, further suggesting that it is a polymorphism rather than a disease-driving
mutation. The expression levels and localization of titin were indistinguishable between wild
type and homozygous knockin animals. Interestingly, examination of homozygous knockin
animals demonstrated that they develop arrhythmia by 1 year of age under sedentary
conditions, accompanied by frequent episodes of premature ventricular contractions (249).
Consistent with this, isolated cardiomyocytes exhibited enhanced Ca?* transients and
accelerated contractility kinetics due to increased levels and activity of SERCA2 pump
(249). Detailed structural and biochemical work further indicated that the increased
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SERCAZ2 activity might result from sequestration of phospholamban, its major regulator in
cardiac cells, due to enhanced binding of mutant obscurins to phospholamban (249).
Moreover, young adult homozygous knockin animals subjected to pathological stress in the
form of pressure overload developed a DCM-like phenotype characterized by cardiac
remodeling (249). Thus, it becomes apparent that obscurins play important regulatory roles
in cardiac muscle, which are compromised in disease, by contributing to the maintenance of
Ca%* homeostasis.

Almost a decade after the identification of the Arg4344GIn and Ala4484Thr mutations, the
OBSCNwas screened for the presence of additional HCM-linked mutations. Xu and
colleagues performed whole exome sequencing in samples obtained from 74 Chinese
patients presenting with sporadic HCM (610). OBSCN was identified in the top 10 putative
HCM-associated genes out of 92 candidate genes (610). In particular, six rare pathogenic
dominant mutations were described, including four frameshift (Ala996fs, Ala1088fs,
Alal272fs, and Alal640fs) and two missense (Arg5215His and Gly7500Arg) mutations
(610), although their specific mechanisms of action are currently unknown.

Moreover, whole exon sequencing of explanted heart samples obtained from 30 end-stage
heart failure patients diagnosed with familial DCM and three HCM myectomy patients along
with six control donor heart samples was used to identify possible disease-causing mutations
in 58 genes previously associated with cardiomyopathy (352). Five missense mutations
(Glu963Lys, Val2161Asp, Phe2809Val, Asp5966Asn, and Arg4856His) were identified in
four DCM patients with two (V2161Asp and Phe2809Val) exhibiting compound
heterozygosity. It is worth mentioning that Phe2809Val and Arg4856His are classified as
nondisease-related due to high prevalence and lack of conservation among species,
respectively (352). Interestingly, the expression levels of obscurin proteins were significantly
decreased in DCM samples carrying the Glu963Lys, Val2161Asp/Phe2809Val and
Asp5966Asn mutations compared to DCM samples without OBSCN mutations, HCM
samples or healthy controls suggesting that these mutations may function via
haploinsufficiency (352).

To further explore the presence of OBSCN mutations in patients with heart disease,
Rowland and colleagues used the TruSight One-Sequence panel querying 4813
cardiomyopathic genes in a population of 335 patients diagnosed with DCM (325 patients)
or LVNC (10 patients) (481). Four new dominant OBSCN variations were identified in four
probands, including three frameshift mutations (Thr7266Argfs*ter53, Ser7947Profs*ter82,
and Ala7950Profs*ter79) and one splicing variant (c. 25367-1 G>C) (481). Notably, among
the four affected probands, only one was diagnosed with DCM (Ala7950Profs*ter79) while
the other three suffered from LVNC (Thr7266Argfs*ter53, Ser7947Profs*ter82, and c.
25367-1 G>C). All four mutations affect residues located between 1g67 and 1g69 located in
the COOH-terminus of obscurin-B, however their molecular manifestations are currently
elusive. Given the prevalence of DCM samples in the panel (325 out of 335) compared to
LVNC samples (10 out of 335), it is tempting to speculate that OBSCN mutations may be
more commonly associated with the pathogenesis of LVNC rather than DCM or HCM (481).
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Conclusions

Obscurins are the most recently discovered giant sarcomeric proteins. Although we still need
to learn a lot about their molecular diversity, interacting partners, regulation, roles, and
disease involvement, it is apparent that they play key roles in several processes, ranging from
muscle assembly and maintenance to Ca2* regulation and cellular adhesion. Consistent with
their essential roles in striated muscles, accumulating evidence links mutations in OBSCN
with different forms of cardiomyopathy although their molecular and cellular manifestations
are currently elusive. Sophisticated biochemical and biophysical studies along with the
generation of the appropriate animal models and the use of human biopsies (when available)
are therefore needed to provide mechanistic insights on how individual mutations contribute
to disease pathogenesis.
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Major teaching points

1.

Didactic Synopsis

Sarcomeres consist of ordered arrays of thick myosin and thin actin filaments
along with accessory proteins.

Myosin, the backbone of thick filaments, slides past actin filaments by
hydrolyzing ATP to mediate muscle contraction.

Four other proteins that are bound to thick filaments play structural and
regulatory roles.

a. Myosin binding protein-C binds to myosin and actin filaments
contributing to their stabilization and modulating cross-bridge
cycling.

b. Titin binds to myosin and functions as a scaffold, signaling mediator,
and mechanosensor.

c. Myomesin forms antiparallel homodimers, cross-linking myosin,
and contributing to the elasticity of thick filaments.

d. Obscurin wraps around myofilaments over M-bands, contributing to
the maintenance and alignment of thick filaments with internal
membranes.

The functions of myosin and its accessory proteins are regulated via
alternative splicing and posttranslational modifications.

Mutations in the respective genes are causatively linked to the development of
skeletal and cardiac myopathies.
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Actin

Sarcoplasmic reticulum

Schematic representation of a half sarcomere depicting the position of the Z-disk, I-band, A-
band, and M-band. Myosin thick filaments and associated proteins are shown in color
including myosin heads (green), myosin rods (petrol), regulatory light chains (magenta),
essential light chains (peach), MyBP-C (purple), myomesin (orange), titin (yellow), and
obscurin (light blue), while actin thin filaments and the surrounding sarcoplasmic reticulum
are shown in different shades of grey; the structure of the half sarcomere was generated by e-

heart.org bearing minor modifications.
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Figure 2.

SH3-like domain

Myosin motor domain

IQ motif

Coiled-coil (Myosin tail)

EF hand

Domain organization of MyHC, ELC, and RLC. (A) The NH,-terminus of sarcomeric
MyHC contains an SH3-like domain, followed by the motor head domain containing the
converter segment, a lever arm consisting of two 1Q motifs, and a coiled-coil region.
Proteolytic cleavage of MyHC vyields three fragments: HMM-S1, HMM-S2, and LMM. The
S1 segment contains the SH3-like domain, the motor head domain and the lever arm. The S2
and LMM fragments contain the NH»- and COOH-terminal portions of the coiled-coil
region, respectively. (B) Both ELC and RLC contain EF-hand motifs. ELC isoforms may
contain two EF-hand motifs, such as MYL1, or one EF-hand motif, such as MYL3 and

MY L4; however, all RLC isoforms carry two EF-hand motifs, with MYL2 containing longer

EF-hand motifs compared to MYL7 and MY LPF.
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Figure 3.

u Coiled-coil (Myosin tail)

|] EF hand

Binding partners of myosin heavy and light chains in striated muscles. (A) A number of
interacting partners have been identified for MyHC, including actin binding to the motor
head domain, MyBP-C and MyBP-H binding to the coiled-coil region containing both the
S2 and LMM fragments, myomesin binding to the coiled-coil LMM region, titin binding to
S1 and LMM, nonerythroid 4.1R, MuRF1 and MuRF3 binding to HMM, and AMPD
binding to S2. ELC and RLC bind to the NH,- and COOH -terminal 1Q motifs of MyHC,
respectively, via their EF-hand motifs. Although Akt2, HspB2, and caspase-3 interact with
MyHC, the exact binding sites have not been characterized yet. (B) The binding partners of
ELC and RLC are less studied; ELC interacts with actin via its nonmodular NH,-terminus,
and RLC interacts with cardiac MyBP-C, MuRF1, and MuRF2, however the exact binding

sites have yet to be determined.
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(D)
'R &

Power stroke

Figure 4.
Schematic representation of the generation of power stroke. (A) Actomyosin interaction is

inhibited upon binding of ATP to myosin. At this stage, the myosin ATPase site is partially
open and inactive. (B) During recovery stroke, the converter segment of myosin is subjected
to a 65° rotation resulting in closing of the myosin ATPase site and ATP hydrolysis. (C)
While the hydrolysis products, ADP and inorganic phosphate, are still bound to the myosin
globular head domain, the head domain weakly associates with actin and triggers the release
of inorganic phosphate. Concomitantly, conformational changes of the head domain lead to
enhanced actin binding, followed by release of ADP, the generation of power stroke, and
muscle contraction. (D) The globular head domain of myosin is still attached to actin
postpower stroke awaiting the addition of another ATP molecule and the initiation of a new
cycle.
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Posttranslational modifications of human myosin heavy and light chains. Given that only
acetylation and phosphorylation sites are known for the human isoforms, the figure only
denotes those; Tables 4 and 5 however includes additional modifications identified in other
mammalian species. (A) Acetylation (Ac) and phosphorylation (P) sites of the human
myosin heavy and light chains are depicted onto the myosin domains; color coding was used
to note the different isoforms. With the exception of MYH7, acetylation and phosphorylation
sites are mainly concentrated in the LMM coiled-coil region. In MYH7, however,
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acetylation and phosphorylation sites are present throughout the entire length of the protein.
(B) Acetrylation and phosphorylation sites are concentrated in the nonmodular NH; -
terminus and the first EF-hand motif of MYL1, but only in the nonmodular NH,-terminus of
MYL3; no posttranslational modifications have been identified for MYL4. (C) Acetylation
and phosphorylation sites are scattered across the entire length of MYL2 and MYLPF;
similar to MY'L4, there are no known posttranslational modifications for MYL7.
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I HMM-S1 | HMM-S2 LMM—4—m78Mm —
MYHI 0 0 0 00 0 0
MYH2 0 0 4 10 2 2
MYH3 0 0 20 1 4 2 5
MYH4 0 0 0 00 0 0
MYH6 1 1 11 1 3 7 9
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Figure 6.

(C)  Regulatory light chain

1H]

MYL2 5663 3
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Myosin motor domain

1Q motif

Coiled-coil (Myosin tail)

EF hand

Number of mutations identified to date in individual domains of the myosin heavy (A) and
light chain [(B) and (C)] isoforms expressed in human striated muscles. The total count
noted includes missense mutations and single amino acid duplications and deletions, since
these types of mutations account for >90% of the total number of mutations identified in the

myosin family.
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Wang et al.
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Figure 7.

Schematic representation of the three MyBP-C isoforms. The black and white horizontal
rectangles correspond to the Pro/Ala rich region and the M-motif, while the yellow and dark
blue vertical rectangles represent Ig and Fnlll domains, respectively. Colored zigzagged
lines in SMyBP-C represent alternatively spliced insertions. fMyBP-C and cMyBP-C share a
conserved linker region between C4 and C5, denoted in red. CO and cardiac specific regions

in cMyBP-C are shown in light blue.
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Page 98

Obscurin (sMyBP-C v1)

cMyBP-C

Actin (cMyBP-C)

Figure 8.
Binding partners of the three MyBP-C isoforms. Binding regions are shown on the cMyBP-

C isoform to also include interactions mediated by CO. Binding to all partners has been
determined for both cMyBP-C and sMyBP-C unless binding is located within a cardiac
specific region (light blue) or noted only for sMyBP-C. Much less research has focused on
confirming or identifying binding partners of fMyBP-C.
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Figure 9.

Posttranslational modifications identified in cMyBP-C and sMyBP-C. Phosphorylation sites
in sMyBP-C and cMyBP-C (green) are located within their NH,-terminal regions.
Acetylation of lysine residues in cMyBP-C (purple) is primarily located in the NH,-terminus
and Ig domain C7. S-glutathiolation of cMyBP-C (orange) occurs in the central region of the
protein within Ig domains C3-C5. One citrulination site (blue) and one S-nitrosylation site
(gray) are located within the COOH-terminus of cMyBP-C. There are no known
posttranslational modifications in fMyBP-C.
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Figure 10.

Iustration of the individual (sMyBP-C and fMyBP-C) or number and type (cMyBP-C) of
mutations per domain that have been identified to date in the MyBP-C family.
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Figure 11.
Domain schematic of titin within the thick filament. The various domains are depicted as

differently colored rectangles with 1g domains shown in yellow, Fnlll domains in dark blue,
the kinase domain in pink, and interdomain sequences in orange. The two titin super repeats
are also illustrated with the first one denoted by a single and the second one by a double
zigzagged line connecting the respective Ig and FNIII domains.
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Figure 12.
Binding partners of titin in the thick filament. In the A-band, the Fnlll domains of titin’s

super repeats bind to the myosin S1 and LMM regions. Titin also provides regularly spaced
binding sites for MyBPC in the first g domain of each second super repeat, leading to its
periodic localization in the C-zone of the A-band. The Ig and Fnlll domains located directly
COOH terminally to the second super repeat mediate binding to MuRF-1 and -2. In the M-
band, the titin kinase interacts with Ca?*/calmodulin and Nbr1/p62. The rest of the M-band
portion of titin provides binding sites for DRAL/FHL2, myomesin, Binl, myospryn,
calpain-3, obscurin, and obsl1. The exact binding site for M-protein in the COOH-terminus
of titin has not yet been identified.
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Figure 13.

Posttranslational modifications of titin within the thick filament. The only known
phosphorylation sites within this region are localized to the M-band, and include
phosphorylation of the four Ser residues (Ser35236, Ser35243, Ser35249, and Ser35255;
NP_001254479.2) located in the four KSP motifis present in Is4, and of Tyr-170 located in
the P+1 loop of the titin kinase domain. Moreover, eight arginylation sites are spread
throughout the A- and M-band portions of titin. Four of these sites (Glu14609, Glu19156,
Asp19159, and Asp27727; NP_035782.3) are found within Fnlll domains of the first and
second super-repeat regions, while the fifth site (Asp32535; NP_035782.3) is located in Is3.
The remaining three arginylation sites are present in Ig domains in the first and second
super-repeat regions (L7960 and VV15013; NP_082280.2) and the titin kinase (C24818;
NP_082280.2).
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Figure 14.
Number of mutations identified to date in individual domains of titin within the thick

filament. The number of missense, nonsense, indel, or splice mutations present in each
domain is depicted below the schematic.
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Figure 15.
Schematic representation of the three myomesin isoforms: myomesin, M-protein, and

myomesin-3. The yellow and dark blue rectangles correspond to Ig and Fnlll domains,
respectively, the black zigzagged line represents the nonmodular NH,-terminal domain, and
the red curvy line between domains My6 and My?7 illustrates the Ser/Pro-rich insertion
present in EH-myomesin.
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Figure 16.
Interacting partners of the myomesin isoforms and their respective binding sites. All three

proteins form homotypic dimers via their COOH-terminal Ig domain My13. Moreover, a
number of binding sites have been identified primarily on myomesin that mediate binding to
other M-band proteins. These include the nonmodular My1 region of myomesin and Ig
domains My2-My3 of M-protein that bind to LMM, the Fnlll domains My7-My8 of
myomesin and My6-My8 of M-protein that interact with M-CK, the linker region between
Fnlll domains My4-My5 of myomesin that binds to the 1g3 domain of obscurin and obsl-1,
and the Fnlll My4-My®6 region of myomesin that interacts with the Ig domain M4 of titin.
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Figure 17.
Ilustration of the mutations that have been identified in MYOM1 encoding myomesin and

their location. There are no known myopathy-causing mutations for MYOMZ2 encoding M-
protein and MYOM3encoding myomesin-3.
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Figure 18.

Schematic representation of giant obscurin-A and obscurin-B and small double kinase and
single kinase. Domains are shown as colored rectangles: Ig (yellow), Fnlll (dark blue), I1Q
(green), SH3 (red), RhoGEF (purple), PH (light blue), and kinase (pink). The nonmodular
region at the extreme COOH-terminus of obscurin A is denoted as black line.
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Figure 19.
Interacting partners of obscurins in striated muscles. The NH,-terminus of obscurins

provides binding sites for several proteins residing in the M-band, including the extreme
COOH-terminus of titin (obscurin Ig1/titin M10), sMyBP-C v1 (obscurin 1g2/sMyBP-C v1
C10) and myomesin (obscurin 1g3/My4-5). Obscurin 1g58/1g59 domains also interact with
titin Z1g9/Z1g10 domains at the level of Z/I junctions. Moreover, a number of binding
partners have been identified for the obscurin signaling motifs. Accordingly, the obscurin
RhoGEF motif mediates binding to GTPases RhoA and TC10 and the anchoring protein
RanBP9, and the obscurin 1Q domain binds calmodulin in a Ca2*- independent manner.
Notably, isoform-specific interactions have also been characterized, including the presence
of multiple ankyrin binding sites in the nonmodular COOH-terminus of obscurin-A, and the
ability of Kinasel and Kinase2 of obscurin-B to interact with the cytoplasmic domain of N-
cadherin and the extracellular domain of the NKA-B1 subunit, respectively. The binding
partners of the invertebrate obscurin orthlogue UNC89 are also shown in red color, although
these have not yet been confirmed in vertebrates; please note that the structural architecture
of the invertebrate UNC-89 isoforms is different from the vertebrate obscurins, however the
domains per se are conserved.
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Posttranslational modifications of obscurins. To date, the only known modification that
obscurins undergo is phosphorylation. A number of phosphorylation sites (shown in green)
have been identified via phosphoproteomic analysis that exhibit a preferential accumulation
within or proximal to the signaling motifs present in the COOH-terminus. However, these
have not been confirmed via biochemical or molecular methods with the exception of a
phosphorylation event involving Ser4829 that is mediated by GSK-3p and was identified in

a tachypacing-induced heart failure model.
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Figure 21.

Ilustration of the OBSCN mutations and their location that have been linked with the
development of different forms of cardiomyopathy. Mutations associated with HCM are
shown in red, mutations associated with DCM are shown in blue, and mutations associated
with LVNC are shown in black. Three additional polymorphisms have been described as
compound heterozygous, and are shown in green; fs: frameshift.
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Table 7
Mutations Identified in Myosin Light Chains
Mutation Domain  Disease Reference
MYL2
Missense mutations
A2T HCM Wang et al., 2014
A13T HCM Poetter et al., 1996
F18L HCM Flavigny et al., 1998
M20L HCM Olivotto et al., 2008
E22K HCM Poetter et al., 1996
135V EF-hand HCM Berge and Leren, 2014
R40K EF-hand HCM Berge and Leren, 2014
144M EF-hand HCM Santos et al., 2012
N47K EF-hand HCM Anderson et al., 2001
R58Q EF-hand HCM Flavigny et al., 1998
M69l EF-hand HCM Wang et al., 2014
P74L HCM Wang et al., 2014
G87E HCM Zouetal., 2013
G87W HCM Wang et al., 2014
A93V HCM Berge and Leren, 2014
D94A DCM Huang et al., 2015
P95A HCM Poetter et al., 1996
A102T EF-hand HCM Coppini et al., 2014
K104E EF-hand HCM Anderson et al., 2001
E134A EF-hand HCM Olivotto et al., 2008
H161R HCM Helms et al., 2014
G162R HCM Olivotto et al., 2008
D166V HCM Richard et al., 2003
Nonsense mutations
R58Stop EF-hand HCM Berge and Leren, 2014

Frameshift mutations

P144Lfs*2; D145Tfs*2

EF-hand

CM,; infantile type 1
muscle fiber disease

Wetermen et al., 2013

MYL3

Missense mutations

E56G
A57G
A57D
R63C
V79I

R94H

Compr Physiol. Author manuscript; available in PMC 2019 March 13.

HCM
HCM
HCM
HCM
HCM
HCM

Richard et al., 2003
Leeetal., 2001
Rubattu et al., 2016
Chiou et al., 2015
Andersen et al., 2012
Fokstuen et al., 2008
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Mutation Domain  Disease Reference
D126G DCM Zhao et al., 2015
G128C HCM Garcia-Pavia et al., 2011
E143K EF-hand HCM Olson et al., 2002
M149T EF-hand HCM Zou et al., 2013
M1491 EF-hand HCM Wang et al., 2014
M149V EF-hand HCM Poetter et al., 1996
E152K EF-hand HCM Kaski et al., 2009
R154C EF-hand HCM Zou et al., 2013
R154H EF-hand HCM Poetter et al., 1996
H155D EF-hand HCM Kaski et al., 2009
V156L EF-hand HCM Wang et al., 2014
G161C EF-hand HCM Wang et al., 2014
M173V EF-hand HCM Morita et al., 2006
E177G EF-hand HCM Jay etal., 2013
N180H EF-hand HCM Wang et al., 2014
MYL4
Missense mutations
E11K AF Orr et al., 2016
Frameshift mutations
C78Wfs*29 AF Gudbjartsson et al., 2015

Abbreviations: CM, cardiomyopathy; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; AF, atrial fibrillation.
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Table 11
Mutations Identified in Myomesin
Mutation Domain Disease  Reference
Missense mutations
V14901 My12 (Ig) HCM Siegert et al., 2011
E247K My1 (nonmodular) DCM Marston et al., 2015

Splicing mutations

Inclusion of exon 17a  Between My6 (Fnlll) and My7 (Fnlll) DM1 Koebis et al., 2011

Abbreviations: My, Myomesin; Ig, immunoglobulin; Fnlll, fibronectin-111; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy;
DM1, myotonic dystrophy type 1.
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