BJR

Received: 24 March 2018 Revised: 24 September 2018 Accepted: 03 October 2018

Cite this article as:

Matsunaga Y, Chida K, Kondo Y, Kobayashi K, Kobayashi M, Minami K, et al. Diagnostic reference levels and achievable doses for common computed tomography examinations: Results from the Japanese nationwide dose survey. *Br J Radiol* 2019; **91**: 20180290.

FULL PAPER

Diagnostic reference levels and achievable doses for common computed tomography examinations: Results from the Japanese nationwide dose survey

^{1,2}YUTA MATSUNAGA, PhD, ²KOICHI CHIDA, PhD, ³YUYA KONDO, ⁴KENICHI KOBAYASHI, ⁵MASANAO KOBAYASHI, PhD, ⁵KAZUYUKI MINAMI, PhD, ⁵SHOICHI SUZUKI, PhD and ⁵YASUKI ASADA, PhD

¹Department of Imaging, Nagoya Kyoritsu Hospital, Nagoya, Japan

²Department of Radiological Technology, Faculty of Health Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan ³Graduate school of Health Sciences, Fujita Health University, Toyoake, Japan

⁴Department of Radiology, Fujita Health University Hospital, Toyoake, Japan

⁵Faculty of Radiological Technology, School of Health Science, Fujita Health University, Toyoake, Japan

Address correspondence to: Mr Yuta Matsunaga E-mail: frankie217612@gmail.com

Objective: To propose a new set of Japanese diagnostic reference levels (DRLs) and achievable doses (ADs) for 2017 and to verify the usefulness of Japanese DRLs (DRLs 2015) for CT, by investigating changes in the volume CT dose index (CTDI_{vol}) from 2014 to 2017.

Methods: Detailed information on the CT scan parameters used throughout Japan were obtained by questionnaire survey. The CTDI_{vol} and dose-length product for the 11 commonest adult and 6 commonest paediatric CT examinations were surveyed and compared with 2014 data and DRLs 2015.

Results: Evaluations of adult head (helical), and abdomen and pelvis without contrast agent, paediatric chest without contrast agent, and abdomen and pelvis without contrast agent showed a slightly lower mean

INTRODUCTION

Recently, CT using multidetector technology has become an important diagnostic examination method, as it supplies rapid multiplanar submillimetre resolution images of the whole body. However, CT is known to be a significant contributor to the individual and population exposure dose.¹

Since estimates of the cancer risk attributable to the use of diagnostic X-rays have been reported,^{2,3} radiological technologists should aim to optimize scan parameters in order to avoid excessive radiation exposure.^{4,5} In 1990, the International Commission on Radiological Protection (ICRP) recommended the use of diagnostic reference levels (DRLs) for patients.⁶ It is intended for use as a simple test to identify situations in which the patient dose levels are unusually high.⁷ The ICRP emphasized that DRLs "are not for $CTDI_{vol}$ in 2017 than in 2014 (*t*-test, p < 0.05). The interquartile range of $CTDI_{vol}$ for all 2017 examinations was lower than in 2014.

Conclusions: This study verified the lower mean, 75th percentile, and interquartile range by investigating changes in the $CTDI_{vol}$ from 2014 to 2017. The DRLs 2015 contributed to CT radiation dose reduction.

Advances in knowledge: The widespread implementation of iterative reconstruction algorithms and low-tube voltage in CT scanners is likely to facilitate further reduction in the CT radiation dose used in Japan. Although radiological technologists may require further education on appropriate CTDI_{vol} and DLP usage, the DRLs 2015 greatly contributed to the reduction of the CT radiation dose used in Japan.

regulatory or commercial purposes, not a dose constraint, and not linked to limits or constraints^{".8} DRLs are typically set at the 75th percentile of the dose distribution from a survey conducted across a broad user-base using a specified dose-measurement protocol

In 2014, Matsunaga et al^{1,9} surveyed the 75th percentile of the volume CT dose index (CTDI_{vol}) and the effective doses for head, chest, and abdominal non-contrast CT examinations of adults and 5-year-old children, based on a nationally distributed questionnaire in Japan.⁹ In 2015, the Japanese DRLs (hereafter called "DRLs 2015") for CT were established by the Japan Network for Research and Information on Medical Exposures, by cooperation of the related academic societies,¹⁰ for the first time. After their publication, the related academic societies gave numerous promotional lecture presentations throughout Japan to popularize

Examinations		Contrast agent	Note
	II J	Without	Routinenon-helical & helical
	Неаа	With	CT angiography
		Without	Routine
	Chest	With	Tumor
		Without	Routine
Adults	Abdomen and pelvis	With	Acute abdomen
		Without	Routine
	Coronary	With	Routine
	Chestand pelvis	Without	Routine
	Liver	Without & with	Multiphase
	Whole-body	Without	Trauma
	II J	Without	Routine Non-helical & helical
	Неаа	With	Tumour
	Chart	Without	Routine
Children(5 years)	Chest	With	Tumour
		Without	Routine
	Abdomen and peivis	With	Acute abdomen

the use of DRLs 2015, explaining the need for and methods used to achieve dose optimization. However, there are several issues with DRLs 2015. First, the DRLs 2015 were published based only on the 75th percentile of $\rm CTDI_{vol}$ and the dose–length product (DLP) in Japan. If the typical dose used at an institution exceeds the 75th percentile, it is possible to review it to determine

Figure 1. The distribution of 3000 facilities in Japan, divided into six regions. The outside circle in Figure 1 indicates the distribution of the 3000 participating facilities distributed throughout Japan, while the inside circle indicates the distribution of responses received from 497 institutions. CTDI_{vol}, volume CT dose index; DLP, dose-length product.

Examinations	и	Mean	CV (%)	25th percentile	AD (Median)	DRL (75th percentile)	IQR	AD/DRL	
Head without contras	tt agent				•				
CTDI _{vol} (mGy)	702	74.9	38.6	59.1	70.0	85.5	26.4	0.82	
DLP (mGy cm)	706	1153.5	59.3	867.9	1097.0	1359.8	491.9	0.81	
Head (non-helical) w	ithout contrast agent				•				
CTDIvol (mGy)	339	81.0	39.2	62.8	72.9	0.06	27.2	0.81	
DLP (mGy cm)	341	1010.9	68.7	800.0	1001.7	1214.0	414.0	0.83	
Head (helical) withou	t contrast agent				-				
CTDIvol (mGy)	363	69.2	35.6	56.0	66.2	80.0	24.0	0.83	
DLP (mGy cm)	365	1286.6	50.3	934.0	1235.0	1500.0	566.0	0.82	
Head CT angiography	v with contrast agent				•				
CTDIvol (mGy)	301	92.8	155.7	35.0	52.3	73.5	38.5	0.71	
DLP (mGy cm)	303	1027.0	72.1	584.4	858.0	1223.8	639.4	0.70	
Chest without contras	st agent								
CTDI _{vol} (mGy)	452	12.0	76.5	7.7	10.0	14.3	6.6	0.70	
DLP (mGy cm)	454	432.2	44.3	300.0	400.0	543.4	243.4	0.74	
Chest with contrast ag	gent (tumour)								
CTDI _{vol} (mGy)	320	14.7	92.6	8.6	11.3	16.5	7.9	0.68	
DLP (mGy cm)	322	597.4	70.1	355.3	476.1	652.7	297.4	0.73	
Abdomen and pelvis	without contrast agent								
CTDI _{vol} (mGy)	431	15.1	48.6	10.0	13.7	18.2	8.2	0.75	
DLP (mGy cm)	433	712.5	50.0	492.0	650.0	870.9	378.9	0.75	
Abdomen and pelvis	with contrast agent (acu	ute abdomen)							
CTDI _{vol} (mGy)	342	23.8	133.6	10.3	15.1	23.0	12.7	0.66	
DLP (mGy cm)	345	1039.4	76.7	539.1	827.7	1253.3	714.2	0.66	
Coronary artery with	out contrast agent								
CTDI _{vol} (mGy)	210	10.2	153.8	3.2	5.5	9.8	6.6	0.56	
DLP (mGy cm)	210	195.3	174.2	56.0	85.6	166.6	110.6	0.51	
Coronary artery with	contrast agent								
								(Continued)	

Table 2. (Continued)

Examinations	n	Mean	CV (%)	25th percentile	AD (Median)	DRL (75th percentile)	IQR	AD/DRL
CTDI _{vol} (mGy)	294	73.1	103.6	31.3	54.0	84.8	53.5	0.64
DLP (mGy cm)	294	945.7	72.0	450.5	823.1	1300.0	849.6	0.63
Chest and pelvis with	rout contrast agent							
CTDI _{vol} (mGy)	419	14.7	47.8	10.0	12.8	16.7	6.7	0.77
DLP (mGy cm)	421	953.4	38.9	700.0	882.0	1133.0	433.0	0.78
Liver with non-contr	ast and contrast agent							
CTDI _{vol} (mGy)	351	46.6	177.2	11.4	17.4	44.9	33.4	0.39
DLP (mGy cm)	356	1605.1	252.2	487.4	1040.7	1795.2	1307.9	0.58
Whole-body without	contrast agent (trauma							
CTDI _{vol} (mGy)	141	26.1	110.8	10.9	14.2	22.4	11.5	0.63
DLP (mGy cm)	142	1698.6	173.1	902.3	1147.0	1596.6	694.3	0.72
AD, achievable do: <i>n</i> indicates the nur	se; CTDI _{vol} , volume nber of CTDI _{vol} or [CT dose index; CV, DLP values.	coefficient of varia	ation; DLP, dose-len	gth product; DRL,	diagnostic referenc	e level; IQR, interq	uartile range;

6 yea	
4	
to	
cted	
restri	
<u>.v</u>	
range	
weight	
(the	
ns	
xaminatio	
Ð	
5	
child	
5-year-old	
for	
Г	
_{vol} and D	
CTDI	
of	
tions	
ibu	
Distri	
м.	
Table	

lable 3. Distributio	ns of CTDI _{vol} and D	JLP for 5-year-old c	child CT examinatic	ons (the weight rang	e is restricted to 4	-6 years ¹¹)		
Examinations	и	Mean	CV (%)	25th percentile	AD (Median)	DRL (75th percentile)	IQR	AD/DRL
Head without contra:	st agent							
CTDI _{vol} (mGy)	333	41.5	56.0	30.0	38.1	47.6	17.6	0.80
DLP (mGy cm)	336	602.3	50.5	403.5	568.3	753.9	350.3	0.75
Head (non-helical) w	ithout contrast agent							
CTDI _{vol} (mGy)	156	43.3	62.8	30.0	39.7	48.3	18.3	0.82
DLP (mGy cm)	158	506.2	53.9	357.0	486.7	649.8	292.8	0.75
Head (helical) withou	it contrast agent				•			
CTDI _{vol} (mGy)	177	39.9	47.7	30.0	37.9	46.7	16.7	0.81
DLP (mGy cm)	178	687.6	44.4	480.3	650.5	866.9	386.7	0.75
Head with contrast ag	gent (tumour)				•			
CTDI _{vol} (mGy)	98	42.1	61.4	28.9	37.1	47.3	18.3	0.78
DLP (mGy cm)	98	706.6	67.1	452.4	596.0	846.4	394.0	0.70
Chest without contra.	st agent							
CTDI _{vol} (mGy)	145	7.2	116.0	3.2	5.0	8.5	5.3	0.59
DLP (mGy cm)	147	178.6	94.6	88.0	136.1	235.0	147.0	0.58
Chest with contrast a	gent (tumour)							
CTDI _{vol} (mGy)	66	6.4	63.3	3.4	5.0	8.4	5.0	0.60
DLP (mGy cm)	66	175.8	70.8	97.6	144.6	232.3	134.7	0.62
Abdomen and pelvis	without contrast agent							
CTDI _{vol} (mGy)	150	8.6	101.8	3.4	5.8	11.2	7.8	0.52
DLP (mGy cm)	154	257.1	79.0	115.6	200.0	343.9	228.3	0.58
Abdomen and pelvis	with contrast agent (act	ute abdomen)						
CTDI _{vol} (mGy)	121	9.6	106.6	3.6	6.6	12.0	8.4	0.55
DLP (mGy cm)	121	340.9	100.3	129.7	250.0	410.4	280.7	0.61
AD, achievable dose; ۱ indicates the numbe	CV, coefficient of vari er of CTDI _{vol} or DLP v	iation; CTDI _{vol} , volume _/ alues.	e CT dose index; DLP,	dose-length product; [DRL, diagnostic refere	ence level; IQR, interqu	uartile range;	

Figure 2. Utilization rate of the IR. IR, iterative reconstruction.

whether the dose is optimal, unless there is a clinically reasonable cause. Because only the 75th percentile was published, concrete countermeasures for cases falling below the 75th percentile were not reported. Second, no more than six adult and three paediatric CT examinations are listed in the DRLs 2015, and the DRLs 2015 do not contain information about paediatric CT examinations employing contrast agent.

One powerful tool in further optimization involves publishing the achievable dose (AD). The AD is an optimization goal, based on survey data, and is typically defined as the median value (50th percentile) of the dose distribution of standard techniques and technologies that are widely used.

The aim of this study was to propose a new set of Japanese DRLs and ADs for 2017 and to verify the usefulness of the DRLs 2015 by investigating changes in the CTDI_{vol} from 2014 to 2017.

METHODS AND MATERIALS

National questionnaire survey

A questionnaire was sent to 3000 facilities throughout Japan by post. The data from each facility were collected; these data were the actual CTDI_{vol} and/or DLP values displayed on CT equipment at each examination. The distributed questionnaire contained detailed questions on the CT scan parameters employed, including the manufacturer, specific CT scanner model, tube voltage (kV), tube current (mA), rotation time, number of detector rows, beam width, pitch factor, reconstruction algorithm [iterative reconstruction (IR) or filtered back projection (FBP)], and the number of phases used. In cases of modulated tube current, the mean of the overall slices (mean tube current) was recorded. The results of this questionnaire survey were collected from June to December 2017. The questionnaire used sought to obtain data for scanning performed on standard patients (adults: 50–60 kg, 5-year-old children: 15-20 kg)¹¹ to obtain a representation of typical practice with non-contrast and contrast CT; the questionnaire did not include data on specialised examinations. For adults and 5-year-old children, the examination data are summarised in Table 1. "Acute abdomen" was described to differentiate between typical contrast CT examinations and specialised multiphase contrast CT examinations, such as liver, pancreas, and urinary organs. In this study, the collected CTDI_{vol} and DLP were based on calibration with a 32-cm-diameter phantom for adult body examinations and with a 16-cm-diameter phantom for head and paediatric examinations.

Analysis of collected data

The data from the CT evaluations, including the CTDI_{vol} and/ or DLP values displayed on CT equipment at each examination, were entered into an Excel spreadsheet (Microsoft Corp., Redmond, WA). The first quartile (25th percentile), median (50th percentile), and third quartile (75th percentile) of CTDI_{vol} and DLP values for each examination were calculated directly from the total dose distribution.

The statistical significance of differences between the two groups (IR *vs* FBP, voltages <120 kV *vs* voltages ≥120 kV, 2014 *vs* 2017 survey) was evaluated using Student's or Welch's *t*-test, following the *F*-test, which was used in the analysis of variance. Statistical analyses were performed using Student's *t*-test when the two groups had equal variances, whereas Welch's *t*-test was used for unequal variances. A *p*-value of <0.05 was considered to be statistically significant.

The results of this survey were compared with both the results of the 2014 survey by Matsunaga et al⁹ and the DRLs 2015 by Japan Network for Research and Information on Medical Exposures.¹⁰

uction algorithms
J reconstr
o using
and DLF
CTDI _{vol}
stributions of
l of the d
 Comparisor
е Ф

		<i>p</i> - value			c = 0.45		4	p = 0.00			<i>b</i> = 0.22			p = 0.11			cu.u > d			c0.0 > q			cu.u > q		-	p = 0.00		p = 0.60	
		Reduction Rate (%)		L C	ć. <i>č</i>	agent	Ċ	C:7	çent	Ţ	1.4	agent	0	0.61			7 .77	ur)	L L	C°C1	t agent	L 0 F	C.01	ute abdomen)		/*C1	igent	12.3	
	Gy cm)	CV (%)	contrast agent	54.4	59.7	ithout contrast	33.6	75.7	iout contrast ag	60.7	43.5	y with contrast	68.1	74.9	contrast agent	45.6	39.8	st agent (tumoi	69.7	71.8	vithout contras	40.2	55.8	ntrast agent (ac	72.6	80.7	hout contrast a	171.8	176.0
	DLP (m	Mean	Head without	1137.7	1179.4	non-helical) w	1009.8	1036.0	d (helical) with	1228.0	1326.6	CT angiograph	967.1	1111.0	Chest without	381.6	491.6	est with contra	552.7	653.8	en and pelvis v	652.9	801.2	pelvis with con	965.9	1145.9	nary artery wit	189.7	216.4
		Median		1100.0	1105.4	Head (1000.0	1016.0	Hea	1187.5	1292.5	Head (744.3	935.0		352.4	485.0	Ch	422.5	559.6	Abdom	608.8	700.0	Abdomen and	798.2	865.6	Coro	88.7	83.8
		и		186	472		77	239		109	233		156	138		242	182		182	126		233	175		198	132		124	76
thms		<i>p</i> - value			<0.0 > q			con > d			c0.0 > d			p = 0.8/			c0.0 > d			$cn \cdot n > d$		- 0 OE	cn·n > d		C - C - C - C - C - C - C - C - C - C -	p = 0.12		p = 0.83	
cruction algori		Reduction Rate (%)		c T T	17.2	agent		1/./	gent	0 7 1	14.8	agent	c	-0.0			6.12	ur)	, cc	4.07	it agent	C LC	C°C7	ute abdomen)	, 	C.77	ıgent	4.6	
using recons	l (mGy)	CV (%)	contrast agent	33.9	38.7	ithout contrast	37.7	39.0	nout contrast ag	29.2	36.5	ıy with contrast	159.1	152.3	contrast agent	72.0	56.8	ıst agent (tumo	85.0	99.1	without contras	35.7	53.0	ntrast agent (ac	124.9	142.6	thout contrast (163.2	138.5
ol and DLP u	$CTDI_{vo}$	Mean	Head without	65.0	78.5	(non-helical) w	69.2	84.1	ad (helical) witl	62.0	72.8	CT angiograph	95.3	92.5	Chest without	10.0	13.8	lest with contra	13.1	17.1	ren and pelvis	13.1	17.6	l pelvis with co	21.4	27.5	onary artery wi	10.2	10.7
ons of CTDI		Median		63.6	71.9	Head	67.7	75.8	He	61.2	70.0	Head	45.7	57.9		0.6	12.5	CI	10.0	13.9	Abdon	12.0	15.0	Abdomen and	14.0	16.9	Core	6.0	5.0
ne distributi		и		186	468		77	237		109	231		154	138		241	181		181	125		232	174		196	131		124	76
oarison of th				IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP
Table 4. Com			Adults																										

(Continued)

\sim
$\overline{\mathbf{O}}$
ā
4
_
\subseteq
÷
<u> </u>
0
()
9
\sim
<u> </u>
∇
d)
_
0
σ
Ë,
-

	<i>p</i> - value			c0.0 > d			c0.0 > d		- -	p = 0.84		07 0 -	p = 0.40			c0.0 > q		07 07	p = 0.40			cn · n > <i>d</i>		0 - -	$p = 0.1\delta$		<i>p</i> < 0.05		
	Reduction Rate (%)	ent	L L	1.65	gent		<i>V</i> .c1	agent	c L	¢.¢	rauma)		0.72		-	1.21	agent	C	<i>Y</i> ./	ent	C T	7.71	ur)	c I T	1/.2		36.6		
Gy cm)	CV (%)	ith contrast age	69.1	65.7	hout contrast a	37.5	37.3	st and contrast	297.9	185.4	ontrast agent (t	70.8	228.1	contrast agent	43.5	51.3	ithout contrast	44.2	53.9	out contrast ag	41.2	44.8	material (tumo	83.0	55.4	contrast agent	68.5	105.6	
DLP (m	Mean	onary artery w	787.4	1224.2	and pelvis wit	884.7	1052.2	rith non-contra	1587.9	1676.1	ody without co	1439.7	1987.2	Head without o	555.6	632.0	non-helical) w	486.0	527.4	d (helical) with	604.1	735.6	l with contrast	636.1	767.9	Chest without	148.1	233.4	
	Median	Cor	685.0	1050.0	Chest	835.5	985.1	Liver w	1057.5	974.9	Whole-t	1111.3	1275.0		502.5	599.0	Head (474.8	499.3	Head	600.0	680.0	Неас	523.3	655.8		120.0	169.0	
	и		187	66		233	163		200	141		82	52		95	221		39	110		56	111		42	55		92	49	
	<i>p</i> - value			c.0.0 > d			cu.u > d			<i>c</i> o.u = <i>q</i>		L C	p = 0.13			cu.u > d			cu.u > d			c0.0 > q			c0.0 > q		<i>p</i> < 0.05	L	
	Reduction Rate (%)	ent		33.6	gent		24.6	agent		4.1	rauma)	0	24.0			0.02	agent	• 00	20.4	ent	007	17.7	ur)	0	7.07		49.9		
(mGy)	CV (%)	ith contrast age	100.8	101.0	hout contrast a	46.3	45.3	ist and contrast	203.6	144.6	ontrast agent (t	103.1	102.5	contrast agent	41.7	59.4	ithout contrast	51.1	65.8	iout contrast ag	33.1	51.4	material (tumo	44.4	64.1	contrast agent	64.2	123.5	
CTDI _{vol}	Mean	conary artery w	61.9	93.3	t and pelvis wit	12.8	17.0	vith non-contra	45.7	47.6	oody without c	22.2	29.2	Head without	35.2	44.3	non-helical) w	36.3	45.6	d (helical) with	34.4	42.9	d with contrast	35.2	47.7	Chest without	5.2	10.4	
	Median	Col	50.4	66.6	Ches	11.7	15.0	Liver v	15.6	19.9	Whole-l	12.8	17.5		33.9	40.6	Head (34.1	41.1	Hea	33.1	40.0	Неа	34.5	41.9		4.5	7.0	
	и		187	66		232	162		198	138		81	52		94	219		38	109		56	110		42	55		91	48	
			IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP		IR	FBP	
									1					Children (5	years)						1			1			ı		

Table 4			

		и	Median	Mean	CV (%)	Reduction Rate (%)	<i>p</i> - value	и	Median	Mean	CV (%)	Reduction Rate (%)	<i>p</i> - value
			Ch	est with contra	st agent (tumo	ur)			Ch	est with contras	t agent (tumo)	ur)	
	IR	68	5.0	5.9	6.09		0 F C	68	144.0	176.3	76.5	-	
	FBP	29	5.5	7.5	65.2	7.07	b = 0.10	29	148.0	178.7	56.9	1.4	7 <i>6</i> .0 = <i>d</i>
			Abdom	ien and pelvis v	without contras	st agent			Abdom	en and pelvis w	ithout contras	it agent	
	IR	92	4.9	6.5	69.1		L C C	95	180.0	240.2	78.0	- - -	
	FBP	48	8.0	11.5	114.5	45.1	c0.0 > d	49	200.0	293.3	82.6	18.1	p = 0.18
			Abdomen and	pelvis with co.	ntrast agent (ac	ute abdomen)			Abdomen and	pelvis with con	trast agent (ac	ute abdomen)	
	IR	86	6.0	9.4	122.7	č	000	86	230.5	352.7	109.3	- / -	
	FBP	32	7.6	9.4	62.4	-0.4	p = 0.98	32	280.0	303.9	65.2	-10.1	/ c.u = q
CTDI _{vol} , volu	me CT dose ind	ex; DLP, dose	-length produc	:t; CV, coeffici	ent of variatic	nlR, iterative rec	onstruction	; FBP, filtered	back projectic				

RESULTS

The questionnaire was sent to 3000 facilities, and responses were received from 497 (16.6%). Sufficient details on the CTDIvol and DLP were provided by 439 of the 497 facilities (Figure 1). The collected data for 4961 scanner protocols from 439 facilities were analysed in this study.

The distributions of CTDI_{vol} and DLP for adults and 5-year-old children are summarized in Tables 2 and 3, respectively. The data are presented in terms of the number of data points, mean, coefficient of variation (CV), 25th percentile, AD (median), DRL (75th percentile), interquartile range (IQR; the difference between the 75th and 25th percentiles), and the ratio between the AD and DRL. The mean CTDI_{vol} and DLP values for all examinations were higher than the medians.

The median value (mean value) of the number of phases used for abdominal and pelvic CT with contrast agent (acute abdomen) and liver CT without and with contrast agent for adults were 2 (1.8) and 4 (3.6), respectively. The median number of phases used for liver CT with and without contrast agent (4) was the highest among contrast CT examinations. The median values of other contrast CT examinations for both adults and children were for a single phase.

Figure 2 compares the utilization rate of the IR and FBP in this study with the results of the 2014 survey by Matsunaga et al.⁹ The rate of utilization of IR for each examination in adults and children in this study was increased as compared to the 2014 survey. Table 4 lists the mean CTDI_{vol} and DLP for adult and paediatric examinations, classified in terms of the image analysis algorithm used: IR or FBP. For adult examinations using IR, both the mean CTDI_{vol} and DLP values for chest evaluations without contrast agent, with contrast agent (tumour), abdomen and pelvis evaluations without contrast agent, coronary artery evaluations with contrast agent, and chest and pelvis evaluations without contrast agent examinations were significantly lower than those for adult examinations using FBP (*t*-test, p < 0.05, Table 4). For paediatric examinations using IR, both the mean CTDI_{vol} and DLP values for evaluations of the head without contrast agent, head (helical) without contrast agent, and chest without contrast agent were significantly lower than those of paediatric examinations using FBP (*t*-test, *p* < 0.05, Table 4).

A tube voltage of 120 kV or more was used in the majority of facilities for all anatomical regions, including contrast agent examinations. However, voltages < 120 kV were used in a higher percentage of contrast agent examinations than non-contrast agent examinations; in particular, these voltages were used in a higher percentage of CT examinations of children than of adults. Figure 3 compares the utilization rate of tube voltages \geq 120 kV and <120 kV in this study with the results of the 2014 survey by Matsunaga et al.⁹ The rate of utilization of voltages < 120 kV for each examination in adults and children in this study was increased as compared to the 2014 survey. The mean CTDI_{vol} and DLP values for most CT examinations using voltages < 120 kV were significantly lower than those using ≥ 120 kV (*t*-test, p < 0.05, Table 5). In CT

DLP values

CTDI_{vol} or

n indicates the number of

DLP (mGy cm)

CTDIvol (mGy)

examinations using voltages < 120 kV, the utilization rate of IR was approximately 70%.

Multidetector row CT (MDCT) with 64 or more, but fewer than 256 rows, was most frequently used (65% of facilities), while MDCT with 16 or more, but fewer than 64 rows, or with 256 rows and more, were the second and third most frequently used, respectively. Figure 4 compares the number of detector rows in this study with the results of the 2014 survey by Matsunaga et al.⁹ The number of detector rows in this study were similar to the results of the 2014 survey. However, the use of MDCT with fewer than 16 rows was slightly decreased and the use of MDCT with 256 rows or more were slightly increased as compared to the 2014 survey.

The changes in the mean CTDI_{vol} values for each examination from 2014 to 2017 are given in Figure 5. For all examinations in 2017, the median and 75th percentile values were lower than or nearly identical to those published in 2014⁹ and the DRLs 2015.¹⁰ The evaluations of adult head (helical), abdomen and pelvis without contrast agent, paediatric chest without contrast agent, and abdomen and pelvis without contrast agent showed a slightly lower mean CTDI_{vol} in 2017 than in 2014 (*t*-test, *p* < 0.05).

Figure 6 compares the IQR of the CTDI_{vol} for each examination in this study with the results of the 2014 survey by Matsunaga et al.⁹ The IQR of CTDI_{vol} for each examination in 2017 were lower than those in 2014.

Figure 7 compares the DRL of the CTDI_{vol} and DLP in this study, with the DRL taken from surveys conducted in other countries.¹²⁻¹⁴ The DRL for adult and paediatric head CT examinations in Japan were higher than the values of similar published studies originating from other countries.¹²⁻¹⁴

DISCUSSION

The ratio of DRLs and ADs in the CTDI_{vol} for examinations of adults and 5-year-old children were identical to those of the DLPs for most examinations. However, the ratio of DRLs and ADs in the CTDI_{vol} for liver examinations with and without contrast agent was too low when comparing the DLP. It is possible that the lack of knowledge among radiological technologists about the CTDI_{vol} for liver evaluations with and without contrast agent was too low when comparing the DLP. It is possible that the lack of knowledge among radiological technologists about the CTDI_{vol} for liver evaluations with and without contrast agent would be lower. On the other hand, the DLP is a parameter involving the dose and scan length. The DRL in the DLP may be correctly reflected, since DLPs are not related to the number of phases.

The IQR for the CTDI_{vol} and DLP for coronary artery examinations with contrast agent was higher than these values for other examinations. There were statistically significant differences in both the mean CTDI_{vol} and DLP values for coronary artery evaluations with contrast agent between facilities employing IR or employing FBP algorithms (Table 4). Moreover, the dose gaps may have widened according to the scan method used in the different facilities. Prospective ECG gating allows the X-ray beams to be turned on during preselected phases in the cardiac cycles, and has been shown by various studies to reduce the radiation dose by 52 to 85%,¹⁵ while maintaining equivalent diagnostic accuracy, as compared with retrospective scanning. In the next survey of the CTDI_{vol} and DLP values for coronary artery evaluations, with contrast agent, the scan method needs to evaluate prospective and retrospective ECG scanning separately.

Compared to the rates of reduction of CTDI_{vol} when using the IR algorithm in adults in 2014 (12–28%), those in 2017 were high or nearly identical (14.1–27.9%). The adult CTDI_{vol} and CVs when using the IR algorithm in 2017 were lower than or

				CTD	Ivol (mGy)					DLP	(mGy cm)		
		и	Median	Mean	CV (%)	Reduction rate (%)	<i>p</i> -value	И	Median	Mean	CV (%)	Reduction rate (%)	<i>p</i> -value
Adults				Head with	out contrast a	ıgent				Head witho	ut contrast a	gent	
	kV <120	7	42.0	47.4	30.8	C I T		7	740.0	876.1	37.2	(000
	$kV \ge 120$	691	70.1	75.2	38.4	0.76	cn.u > d	695	1100.0	1155.1	59.4	7.47	p = 0.28
			Hei	ad CT angiogr	aphy with cor	ntrast agent			Неа	d CT angiogra	phy with co	ntrast agent	
	kV <120	41	32.0	46.0	99.3	r L L		42	547.3	658.8	67.2	000	
	$kV \ge 120$	251	54.0	102.5	149.5	1.66	c0.0 > d	252	889.5	1101.0	69.2	40.2	c0.0 > <i>q</i>
				Chest with	out contrast a	ıgent				Chest withc	out contrast a	ıgent	
	kV < 120	10	8.9	8.5	32.3	FOC		10	325.0	340.1	37.6		10
	$kV \ge 120$	440	10.1	12.0	76.6	1.47	cn•n > d	442	400.0	434.0	44.3	0.12	p = 0.12
				Chest with con	ntrast agent (t	tumour)			0	chest with con	trast agent (1	tumour)	
	kV < 120	20	9.3	19.2	138.7	- CC		20	405.7	568.0	93.5	L	0 10
	$kV \ge 120$	296	11.5	14.5	85.2		c+.0 = d	298	478.3	601.8	68.3	0.0	c / • 0 = d
			Abd	omen and pelv	vis without cc	ontrast agent			Abdo	men and pelv	is without co	ontrast agent	
	kV < 120	12	9.0	9.6	38.7	0 7 0		12	445.0	497.8	35.8	0000	
	$kV \ge 120$	417	13.9	15.3	48.1	0.00	cn*n > d	419	652.3	719.1	49.8	0.00	cn . n > d
			Abdomen a	ind pelvis with	contrast age	nt (acute abdomen)			Abdomen ar	nd pelvis with	contrast age	nt (acute abdomen)	
													continued)

Table 5. Comparison of the distributions of $CTDI_{vol}$ and DLP classified in terms of tube voltage used

9.9 11.2	Mean	۲ <u>۱</u>	ol (mGy) CV	Reduction	<i>p</i> -value	u	Median	DLP Mean	CV CV	Reduction	<i>p</i> -value
20 19			(%)	rate (%)	T				(%)	rate (%)	T
	9.9	11.2	49.5	C 7 J	4 / 0 DE	19	450.0	554.4	69.1	C 01	4 / 0 0E
20 322	15.6	24.5	132.7	24.2	c0.0 > q	325	850.9	1070.9	75.3	40.2	cn*n > <i>d</i>
)	Coronary arter	y without cont	rast agent			Co	ronary artery	without cont	trast agent	
120 7	5.2	9.1	89.8	L 		7	62.8	219.2	144.4	c c T	70 0
120 202	5.6	10.2	154.5	C.11	c8.0 = d	202	88.0	195.3	175.0	-12.5	p = 0.80
		Coronary arte	ery with contra	ıst agent				oronary arter	y with contra	ast agent	
120 35	34.0	36.2	74.1			35	492.0	516.0	77.6	0	
120 256	57.4	78.3	100.6	Q.CC	c0.0 > q	256	921.9	1011.8	68.3	49.0	cn:n > <i>d</i>
)	thest and pelvi	s without cont	rast agent			Ch	est and pelvis	without cont	trast agent	
120 10	10.5	10.4	17.1	T CC		10	781.4	761.8	24.9	L C C	
120 407	13.0	14.8	47.8	29.4	c0.0 > d	409	884.0	958.6	38.9	C.U2	cn.n > <i>d</i>
	Liv	er with non-co	ontrast and co	ntrast agent			Live	with non-co	ntrast and co	ntrast agent	
120 16	10.7	19.4	85.6	L C		16	459.0	736.8	73.6	L	
120 330	17.7	48.0	175.2	1.40	c0.0 > q	335	1054.9	1653.6	250.2	1 .cc	cn:n > <i>d</i>
	Wh	ole-body withc	out contrast ag	ent (trauma)			Whol	e-body withou	ut contrast ag	gent (trauma)	
120 5	11.6	12.2	27.6	54.1	p < 0.05	5	1000.0	952.4	27.1	44.8	p < 0.05
136	14.5	26.6	110.2			137	1162.0	1725.8	173.2		

Table 5. (Continued)

12 of 17 birpublications.org/bjr

				CTD	I _{vol} (mGy)					DLP	(mGy cm)		
		и	Median	Mean	CV (%)	Reduction rate (%)	<i>p</i> -value	u	Median	Mean	CV (%)	Reduction rate (%)	<i>p</i> -value
				Head with	out contrast a	gent				Head witho	ut contrast a	gent	
	kV <120	35	29.8	29.8	40.3	T C C		36	476.5	466.0	38.0	1	
	$kV \ge 120$	298	39.3	42.9	55.6	50.4	c0.0 > <i>q</i>	300	596.6	618.6	50.4	24./	c0.0 > d
			He	ad (non-helica	() without co	ntrast agent			Head	l (non-helical) without cor	ıtrast agent	
	kV <120	14	25.0	28.2	54.6	C E C		14	435.0	405.8	47.6	L.	
	$kV \ge 120$	142	40.6	44.8	61.6	37.2	c0.0 > <i>q</i>	142	490.0	516.7	53.9	6.12	p = 0.14
			I	Head (helical)	vithout contr	ast agent			He	ad (helical) w	vithout contra	ast agent	
	kV <120	21	30.5	30.9	28.4	I C		21	550.0	509.1	30.5	LL CC C	
	$kV \ge 120$	156	38.3	41.1	48.0	24.7	c0.0 > <i>q</i>	157	663.8	711.5	44.0	c.87	c0.0 > d
				lead with cont	rast material	(tumour)			He	ad with contr	ast material ((tumour)	
	kV <120	12	30.9	31.9	22.9			12	524.5	555.0	54.9	i S	
Children	$kV \ge 120$	86	37.8	43.5	62.4	20.8	c0.0 > <i>q</i>	86	610.6	727.8	67.4	7.27	p = 0.24
(5 years)				Chest with	out contrast a	igent				Chest withc	out contrast a	gent	
	kV <120	46	3.5	5.9	213.9	č		46	9.66	140.1	147.3	, co	C C
	$kV \ge 120$	66	5.7	7.8	69.2	24.4	cc.0 = q	101	160.0	196.2	74.8	0.02	p = 0.10
				Chest with con	ntrast agent (1	umour)			0	hest with con	trast agent (t	umour)	
	kV <120	32	3.6	5.0	68.6		10 0 F	32	114.6	132.1	60.8	c cc	
	$kV \ge 120$	66	6.0	7.1	58.9	0.67	cn:n > d	66	157.9	198.0	68.9	C.CC	c0.0 > <i>d</i>
			Abd	omen and pelv	is without co	ntrast agent			Abdo	men and pelv	is without co	ntrast agent	
	kV <120	47	4.6	7.3	172.3	Ţ		47	139.4	211.3	103.6		
	$kV \ge 120$	103	7.0	9.2	70.2	71.1	7 <i>c</i> .0 = <i>d</i>	107	240.0	277.3	69.8	Q.C7	p = 0.00
			Abdomen a	ind pelvis with	contrast age	nt (acute abdomen)			Abdomen an	d pelvis with	contrast ager	nt (acute abdomen)	
	kV <120	43	4.0	6.2	96.7			43	151.8	215.6	75.2	c Ľ	
	$kV \ge 120$	77	9.2	11.6	6.66	C.04	cu.u > q	77	300.5	413.2	95.0	¢, /4	cn•n > d
CTDI _{vol} , volur n indicates th	ne CT dose inc e number of C	dex; DLP, do CTDI _{vol} or DI	ose-length pro LP values.	duct;									

Table 5. (Continued)

Figure 4. Distribution of CT scanners according to the number of detector rows. DRL, diagnostic reference level.

identical to those used in 2014, except for the CVs of chest evaluations. In 2014, Matsunaga et al⁹ reported that there were no statistically significant differences when using IR or FBP for any of the paediatric CT examinations, except for those involving the abdomen. However, the paediatric CTDI_{vol} and CVs when using the IR algorithm in 2017 were markedly lower than those in 2014, except for the CVs of head (non-helical) examinations. Many facilities using the IR algorithm may reduce the diagnostic radiation dose in particular paediatric examinations. In recent years, the utilization rate of IR algorithms has been gradually increasing (Figure 2) and when these algorithms are widely employed in CT equipment, the diagnostic radiation dose could be further reduced.

Tube voltages < 120 kV were frequently used for paediatric CT examinations, including head examinations, in 2017. Moreover, the tube voltages < 120 kV were more frequently used to scan adults with or without contrast agent, perhaps because

Figure 6. The interquartile range of CTDI_{vol} for each examination compared with the 2014 survey. CTDI_{vol}, volume CT dose index.

low-tube voltage CT came into widespread use for improving image quality. Furthermore, the implementation of the IR algorithm contributed to the spread of the low-tube voltage CT. In CT examinations using voltages < 120 kV, the utilization rate of IR was approximately 70%. Low-tube voltage results in higher X-ray absorbance by the body than high-tube voltage; low-tube

Figure 7. Domestic and international diagnostic reference levels comparisons.¹²⁻¹⁴ This study was based on standard-sized (50-60 kg) patients. The ACR DIR¹³ are based on the size bin containing median-sized patients. (head: median lateral thickness was 15 cm; other: the water-equivalent diameter median diameter was 31 cm) American College of Radiology-the American Association of Physicists in Medicine (AAPM)¹⁴: patient lateral dimensions are for average patients of the specified age. UK¹²: no condition specified patient size. AAPM, AmericanAssociation of Physicists in Medicine; ACR, American College of Radiology; DIR, dose index registry.

voltage may thus not be suitable for patients with high body mass indices, because of increased image noise.^{16,17} Therefore, the combination of low-tube voltage and IR algorithm is widely used in CT equipment. Moreover, although the number of adult head CT examinations without contrast media using voltages < 120 kV was small, low-tube voltage CT was effective for reducing the CTDI_{vol} and DLP in both adult and child evaluations. However, low-tube voltage CT is not necessarily better than tube voltages \geq 120 kV. Because low-tube voltage CT may suffer from severe streak artifacts caused by metallic surgical materials or enhanced calcium artifacts,¹⁸ the radiological technologist should not select low-tube voltage without careful consideration. Attention should be given to reducing the radiation dose while obtaining image quality that is adequate for diagnosis.

In 2014, further optimization of CT examination protocols was required for adult head and abdominal examinations, as well as for paediatric chest and abdominal examinations.⁹ In terms of the CTDI_{vol} values for adult and paediatric chest as well as abdominal and pelvic examinations, and the IQR of CTDIvol for each examination in 2017, many facilities had reduced their CT radiation doses after publication of the DRLs 2015. The data collected in this study differed from those obtained by surveys conducted in other countries¹²⁻¹⁴ in terms of population size, scanner types, examination techniques, and patients' weights. In terms of adult head examinations in Japan, many facilities are thought to use a protocol that evaluates early ischemic change, in a routine manner. The CT dose in the protocol for diagnosing acute phase cerebral infarction is higher than that for detecting cerebral haemorrhage. Although the weight of patients in our study was substantially lower than that in other studies, the DRL quantities were significantly higher in this study. This is likely due to a lack of dose optimization, rather than differences in examination techniques, as compared with other countries. With the aim of dose optimization, both ADs and DRLs are provided to encourage facilities to optimize the dose to a lower level than that indicated by the ADs and DRLs. However, the patient dose must not be reduced to such an extent that the images become non-diagnostic.¹³ When the facility's median DRL value is lower than the AD, the image quality might be affected adversely. Image quality should be considered as a greater priority when additional optimisation efforts are being considered.⁷

Although radiological technologists may require further education on appropriate CTDI_{vol} and DLP usage, the DRLs 2015 greatly contributed to the reduction in the CT radiation dose used in Japan.

The collected data also included data obtained using automatic tube current modulation. The International Electrotechnical Commission (IEC) has defined CTDI_{vol} for a tube current-modulated examination (in the standard 60601-2-44 Amd.1 edition 3 of the IEC¹⁹) as the CTDI_{vol} based on a single average tube current value of the entire scan. However, some CT scanners used in Japan indicate the maximum CTDI_{vol} value of the entire scan, because the IEC did not define CTDI_{vol} for a tube current modulated examination until edition 2.1. Thus, it is possible that the CTDI_{vol} values prior to edition 2.1 of the IEC standards were overestimated. DLP does not vary due to differences in the edition of the IEC standards.

CONCLUSION

In this report, a new set of Japanese DRLs and ADs for the 11 commonest adult and 6 commonest paediatric CT examinations were proposed, based on the results of a national questionnaire survey. This study verified the lower mean, 75th percentile, and IQR by investigating changes in the CTDI_{vol} from 2014 to 2017. The DRLs 2015 contributed to CT radiation dose reduction. The widespread implementation of IR algorithms and low-tube voltage in CT scanners is likely to facilitate further reduction in the radiation dose used in CT in Japan.

COMPETING INTERESTS

The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

REFERENCES

- Matsunaga Y, Kawaguchi A, Kobayashi K, Kobayashi M, Asada Y, Minami K, et al. Effective radiation doses of CT examinations in Japan: a nationwide questionnaire-based study. *Br J Radiol* 2016; 89: 20150671. doi: https://doi.org/10.1259/bjr.20150671
- Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. *Lancet* 2004; 363: 345–51. doi: https://doi.org/10.1016/ S0140-6736(04)15433-0
- Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. *Lancet* 2012; 380:

499–505. doi: https://doi.org/10.1016/S0140-6736(12)60815-0

- Chida K, Ohno T, Kakizaki S, Takegawa M, Yuuki H, Nakada M, et al. Radiation dose to the pediatric cardiac catheterization and intervention patient. *AJR Am J Roentgenol* 2010; **195**: 1175–9. doi: https://doi.org/10. 2214/AJR.10.4466
- The international commission on radiological protection. The 2007 recommendations of the international commission on radiological protection. *ICRP publication* 2007; **103**: 1–321.
- The International Commission on Radiological Protection 1990 Recommendations of the international

commission on radiological protection. *ICRP publication* 1991; **60**: 1–201.

- The international commission on radiological protection. Diagnostic reference levels in medical imaging. *ICRP publication* 2017; 135: 1–144.
- Ann ICRP. The international commission on radiological protection. diagnostic reference levels in medical imaging: Review and additional advice. *ICRP publication* 2001; 31: 33–52.
- Matsunaga Y, Kawaguchi A, Kobayashi K, Kinomura Y, Kobayashi M, Asada Y, et al. Survey of volume CT dose index in Japan in 2014. *Br J Radiol* 2015; 88: 20150219. doi: https://doi.org/10.1259/bjr.20150219

BJR

- Japan Network for Research and Information on Medical Exposures. *Diagnostic reference levels based on latest surveys in Japan — Japan DRLs 2015*; 2015.
- Portal Site of Official Statistics of Japan. (Internet home page). 2018. Available from: https://www.e-stat.go.jp/SG1/estat/ eStatTopPortalE.do.
- Shrimpton PC, Hillier MC, Meeson S, Golding SJ. Doses from computed tomography (CT) examinations in the UK – 2011 review about public health England. *Public Heal Engl* 2014: 1–123.
- Kanal KM, Butler PF, Sengupta D, Bhargavan-Chatfield M, Coombs LP, Morin RL. U.S. diagnostic reference levels and achievable doses for 10 adult CT examinations. *Radiology* 2017; 284: 120–33. doi: https://doi.org/10.1148/radiol. 2017161911

- ACR-AAPM ACR-AAPM practice parameter for diagnostic reference levels and achievable doses in medical x-ray imaging. *ACR* 2013: 1–9.
- Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. *Curr Cardiol Rep* 2010; **12**: 68–75. doi: https://doi.org/10.1007/ s11886-009-0075-z
- Feuchtner GM, Jodocy D, Klauser A, Haberfellner B, Aglan I, Spoeck A, et al. Radiation dose reduction by using 100-kV tube voltage in cardiac 64-slice computed tomography: a comparative study. *Eur J Radiol* 2010; 75: e51–e56. doi: https://doi. org/10.1016/j.ejrad.2009.07.012
- Berlin SC, Weinert DM, Vasavada PS, Martinez-Rios C, Parikh RA, Wien MA, et al. Successful dose reduction using reduced tube voltage with hybrid iterative reconstruction

in pediatric abdominal CT. *AJR Am J Roentgenol* 2015; **205**: 392–9. doi: https://doi. org/10.2214/AJR.14.12698

- Horiguchi J, Fujioka C, Kiguchi M, Yamamoto H, Kitagawa T, Kohno S, et al. Prospective ECG-triggered axial CT at 140kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT. *Eur Radiol* 2009; 19: 2363–72. doi: https://doi.org/10.1007/ s00330-009-1419-1
- International Electrotechnical Commission Commission. Medical electrical equipment, part 2-20 44: Particular requirements for the safety of x-ray equipment for computed21 tomography. *IEC Publication No. 60601-2-44 Amd* 3(3 ed).