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Introduction
Radiologists play a fundamental role in guiding the care of 
patients with infiltrating glioma, as imaging progression is 
often the first evidence of tumor progression, preceding any 
clinical signs of tumor growth. As such, patients undergo 
frequent imaging and decisions regarding whether to 
continue or change therapy are heavily influenced by the 
results of this imaging. Unfortunately, the radiographic 
findings of tumor progression are often ambiguous. Radiol-
ogists can facilitate optimal patient care by being aware 
of common mimics of tumor progression and response, 
and using this information to make confident diagnoses 
of progression or response when possible, or suggesting 
appropriate follow-up or additional testing when a defin-
itive conclusion is not possible. Much of the current liter-
ature concerning issues in glioma imaging deals with 
selected imaging pitfalls in isolation or offers potential solu-
tions aimed as use in clinical trials. We will review classic 
and novel pitfalls in glioma response assessment with an 
emphasis on routine clinical practice and discuss emerging 
imaging tools that may allow more specific diagnosis of 
tumor progression in the near future.

Importance of accurate diagnosis of 
progression
Infiltrating gliomas differ significantly in aggressiveness 
and response to therapy. The median survival after diag-
nosis of glioblastoma is less than 2 years, while patients 
with low-grade oligodendroglioma may live well in excess 
of a decade.1,2 In both of these scenarios, patients receive 
first-line therapy and are then observed until progression, 
at which time second-line therapy options are considered. 
The interval between imaging may be as short as 2 or 3 
months after initial therapy, or as infrequent as annually in 
low-grade tumors with demonstrated stability on previous 
imaging studies. While imaging is only one component 
of response assessment, considered along with clinical 
elements such as physical examination3 and corticoste-
roid use by the treating clinician or tumor board, results of 
imaging are often given significant weight by patients and 
clinicians.

If mimics of glioma progression occur during first-line 
therapy and are mistaken for true progression, they may 
lead to the erroneous discontinuation of effective therapy. 
If this occurs, patients may not receive the full benefit of 
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abstract

Neuroimaging plays a pivotal role in the care of patients with infiltrating gliomas, in whom imaging changes are often 
the first indications of tumor response or progression. Unfortunately, evaluation of glioma response is often not straight-
forward, even for experienced radiologists. Post-surgical or radiation-related changes may mimic the appearance of 
disease progression, while medications such as corticosteroids and antiangiogenic agents may mimic tumor response 
without truly arresting tumor growth or improving patient survival. Immunotherapy response can result in inflamma-
tory changes which manifest as progressively increasing tumor enhancement and edema over months. Many of these 
pitfalls can be minimized or avoided altogether by the use of modern brain tumor response criteria, while others will 
require new imaging tools before they can be fully addressed. Advanced MRI methods and novel positron emission 
tomography (PET) agents are proving important for this purpose, and their role will undoubtedly continue to grow in 
the future.
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first-line therapy. While there are no direct data measuring 
the survival impact of premature discontinuation of first-line 
therapy, the survival benefits conferred by the first-line treat-
ments for both low-grade and high-grade glioma exceed the 
benefits of any currently available salvage therapies.

Glioma progression mimics are also a significant issue for 
patients treated for recurrent disease. As the number of effec-
tive salvage glioma chemotherapeutic options is quite limited, 
not using each to its full capacity increases the likelihood that 
a patient will exhaust available treatment options early in the 
course of disease. Further, salvage treatments with surgical 
resection or repeat radiation therapy may be considered. While 
entirely appropriate in the correct clinical circumstances, both 
of these treatment options may result in morbidity, and in the 
absence of true progression the potential risks are not matched by 
any clinical benefit. Aside from the direct impact on the patient, 
incorrect assessment of tumor progression in patients enrolled 
in clinical trials has the potential to confound interpretation of 
the trial results, especially for trials in which progression-free 
survival is the primary endpoint.

Although the discussion above may seem to argue for a conser-
vative approach to diagnosing tumor progression, delayed diag-
nosis of progression can also be harmful to patients. Indeed, the 
entire point of glioma surveillance imaging is to identify early 
progression, allowing a change in therapy and preventing or 
delaying neurological decline. Once neuronal destruction has 
occurred, even the institution of effective therapy is unlikely to 
improve the resultant neurological deficits. Figure  1 is a sche-
matic representation of glioma follow-up imaging and the poten-
tial harms of early or delayed diagnosis of progression.

Response assessment in the clinic
Most patients with glioma are treated with standard of care 
therapies and are not on clinical trials. In this setting, what 
patients and clinicians care about is the presence or absence of 
convincing evidence of tumor growth, i.e. imaging changes that 
cannot be explained by technical factors or the imaging pitfalls 
to be discussed. Thresholds for defining progression based on 

percentage change are useful only to the extent that they correlate 
with convincing growth.

Because the convincing growth standard is inherently subjec-
tive, more technical definitions of progression are necessary in 
clinical trials, where it is important that a uniform definition of 
progression is used. The Macdonald criteria were the first widely 
used glioma response criteria system, and incorporated bidi-
rectional measurement of contrast-enhancing tumor as well as 
information about patient clinical status and corticosteroid use.4 
The four categories of response recognized by the Macdonald 
criteria were complete response, which requires complete disap-
pearance of all enhancing disease; partial response, requiring 
≥50% decrease in the sum of products of two perpendicular 
dimensions of all measurable lesions; progression, defined by a 
≥ 25% increase in the sum of the products of all lesions or the 
development of a new lesion; and stable disease, which encom-
passes all other situations.

More recently, the Response Assessment in Neuro-Oncology 
(RANO) working group has released several brain tumor 
response criteria relevant to a variety of situations.5 The first 
RANO criteria to be published concerned high-grade gliomas 
and maintained the general structure of the Macdonald criteria, 
with four categories of response (CR, PR, SD, and PD).6 There are 
several differences between the RANO and Macdonald criteria, 
including assessment of non-enhancing disease and limits on 
declaring PD soon after the completion of radiation; these will 
be discussed in greater depth elsewhere in this review.

All of the widely used clinical trial glioma response criteria rely 
on changes in bidirectional measurements. The primary benefit 
of this approach is simplicity, allowing these criteria to be used 
across different institutions and imaging acquisition protocols. 
However, any bi-dimensional or three-plane measurement 
provides only an approximation of true tumor volume, and the 
selection of reproducible measurement planes can be difficult in 
irregularly shaped tumors.7 Aside from issues with measurement, 
standards based on percentage change impact tumors of varying 
sizes differently. A tumor measuring 1 cm by 1 cm at baseline 

Figure 1. Time to progression (TTP) and the adverse consequences of early or late diagnosis.
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only needs to grow slightly to demonstrate a 25% increase in the 
product of the perpendicular diameters, whereas a large tumor 
must grow more to meet this standard. Other potentially prob-
lematic measurements include tumors with cystic components 
and those abutting the enhancing walls of a resection cavity.8 In 
the future, volumetric measurements may prove useful in these 
situations, but this technique is not yet in widespread use.9

Response assessment pitfalls
Corticosteroid effect
Dexamethasone has been used for decades to treat edema asso-
ciated with high-grade brain tumors.10 Corticosteroids reduce 
vascular permeability, and can reduce both contrast enhance-
ment and peritumoral T2/ [fluid-attenuated inversion-recovery 
(FLAIR)] abnormality, mimicking tumor response to therapy. 
Conversely, corticosteroid dose reductions in patients with high-
grade gliomas may result in radiographic changes suggestive of 
tumor progression. Both the Macdonald and RANO response 
criteria incorporate information on corticosteroid dosing, but 
this information is not always available to radiologists at the 
time of MRI interpretation. Without corticosteroid dosing 
information it is not technically possible to assign a designa-
tion of progression or response, and a descriptive account of the 
changes is often more appropriate. Figure 2 shows examples of 
imaging change associated with corticosteroids in a patient with 
primary central nervous system lymphoma (PCNSL), the proto-
typical steroid-responsive intracranial tumor, and in a patient 
with anaplastic astrocytoma. This figure illustrates that substan-
tial and potentially misleading steroid responses can be seen in 
high-grade glioma. Corticosteroids are used far less frequently 
in patients with low-grade glioma, as the T2/FLAIR abnormality 

in low-grade glioma primarily indicates infiltrative tumor rather 
than vasogenic edema.

Post-surgical change
Gross total resection of tumor, provided that it can be performed 
with minimal morbidity, significantly improves survival in 
patients with infiltrating glioma.11 Gross total resection of 
tumor is generally defined as resection of the contrast-en-
hancing portion of high-grade glioma or the resection of all 
T2/FLAIR abnormality in non-enhancing low-grade glioma. 
Extensive subtotal resection is likewise beneficial, while the 
benefit of less substantial debulking surgery remains controver-
sial.11–13 Following surgery, it is common to have either a thin 
rim or larger foci of devascularized tissue adjacent to the resec-
tion cavity, from either direct interruption of the blood supply 
or pressure necrosis.14 This tissue behaves radiographically just 
like infarcted tissue from any other cause, with early diffusion 
restriction, contrast enhancement in the subacute phase, and late 
findings of gliosis. This is important to note, since enhancement 
at the surgical site could represent either subacute post-surgical 
changes or early tumor progression in a patient post-resection 
who is not imaged until days to weeks after surgery. Post-surgical 
changes may occur regardless of tumor grade, but are more likely 
to present a diagnostic dilemma in patients who had contrast-en-
hancing tumors prior to surgery.

Fortunately, post-surgical change is the easiest of glioma imaging 
response pitfalls to avoid, by obtaining a baseline MRI soon after 
surgery. If an area of restricted diffusion on the post-operative 
MRI demonstrates contrast enhancement on the subsequent 
study, this suggests evolution of post-surgical changes. On the 

Figure 2. Significant response to corticosteroids in a patient with PCNSL, the prototypical steroid-responsive intracranial tumor 
(top), and in an anaplastic astrocytoma (bottom). In the anaplastic astrocytoma, the improvement was transient, in contrast to the 
prolonged effect in PCNSL. PCNSL, primary central nervous system lymphoma.
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other hand, new enhancement in an area that did not demon-
strate restricted diffusion is worrisome for progression. In recog-
nition of this issue, the National Comprehensive Cancer Network 
recommends that a post-operative MRI should be obtained 
within 24 to 72 h of surgery for determination of the extent of 
resection.15 Figure 3 demonstrates the characteristic evolution of 
post-operative changes mimicking progression.

Chemoradiotherapy-related change
Chemoradiotherapy-related changes are the prototypical, and 
still most common, imaging pitfall encountered in glioma 
response assessment imaging. The category of CRC includes 
pseudoprogression and radiation necrosis, terms that are used 
variably, and sometimes interchangeably, in the glioma literature. 
Most authors do distinguish between these entities, with a major 
difference being onset during or shortly after therapy for pseudo-
progression, and a greater delay for radiation necrosis.16

The term pseudoprogression generally refers to asymptomatic 
new or increased contrast enhancement that develops during 

or soon after chemoradiotherapy and then improves or resolves 
without further treatment (Figure 4).17 While pseudoprogression 
can occur after radiotherapy alone, it was first widely recognized 
after the adoption of concurrent radiation and oral temozolo-
mide chemotherapy as the standard-of-care treatment for newly 
diagnosed glioblastoma in the mid-2000s.18 In classic descrip-
tions, pseudoprogression is evident on the first post-chemora-
diotherapy MRI, usually obtained approximately 1 month after 
the end of radiation, then progressively improves or resolves 
thereafter. In reality the situation is more complicated. Onset of 
pseudoprogression may be delayed for several months, and the 
imaging findings may increase on serial scans before ultimately 
plateauing or resolving. Reported rates of pseudoprogression 
vary widely in the literature, from less than 10% to greater than 
30%, due to factors including heterogeneous patient popula-
tions, different imaging protocols, and divergent gold standard 
criteria.19 A recent meta-analysis of 73 high-grade glioma studies 
totaling 2603 patients found that 36% of patients demonstrated 
pseudoprogression (95% confidence interval 33–40%).20 Patients 
who experience pseudoprogression have been suggested to have 
better long-term survival than patients that do not, even after 
controlling for other important prognostic factors, which is intu-
itive presuming the radiographic findings of pseudoprogression 
reflect tumor response to therapy.21 This concept is likely gener-
alizable to pseudoprogression associated with immunotherapy, 
to be discussed later.

Other well-described late radiation sequelae include a delayed 
vasculopathy, resulting in cerebral infarction, and vascular 
proliferative lesions, such as capillary telangiactasias and 
cavernous malformations. These conditions tend to occur years 
after radiation and are thus seen more frequently in patients with 
lower grade tumors who have longer life expectancies. A spec-
trum of acute, late-onset neurological manifestations of brain 
irradiation, consisting of potentially reversible focal neurological 
deficits, seizures, and imaging abnormalities have been reported; 
however, the rarity of these conditions puts them beyond the 
scope of this review.22

The RANO working group proposed a definition of pseudo-
progression for the purpose of identifying tumor progression 

Figure 3. Axial diffusion-weighted image of a patient with glio-
blastoma obtained immediately after surgical resection (A) 
shows restricted diffusion about the periphery of the surgical 
cavity. Axial T1 weighted post-contrast image (B) obtained 
3 weeks after surgery for radiation planning demonstrates 
contrast enhancement in the areas of previous restricted dif-
fusion, consistent with subacute enhancing infarction, which 
would otherwise be ambiguous without the previous DWI. 
Follow-up axial T1 weighted post-contrast image (C) demon-
strates reduced contrast enhancement, consistent with evo-
lution of post-surgical changes. DWI, diffusion-weighted 
imaging.

Figure 4. Axial T1 weighted post-contrast images of a patient with glioblastoma (A-D). Pre-chemoradiotherapy (A). Initial 
post-chemoradiotherapy (B) images demonstrate significantly increased enhancement at the tumor site. Due to associated symp-
toms, the patient underwent resection of this region. Pathology showed primarily radiation effect. Post-operative MR (C) demon-
strates no significant residual disease, confirming the previous findings represented pseudoprogression. 2-year follow-up imaging 
(D) demonstrates stability despite lack of additional interval treatment.
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in clinical trials. Per RANO, in the setting of increased contrast 
enhancement at MRI within 12 weeks after the completion of 
chemoradiotherapy, progression can only be defined if the 
enhancement occurs outside of the high-dose radiation field or 
if there is unequivocal evidence of viable tumor on histopatho-
logical sampling.6 These rules apply to any new enhancement 
within the high-dose field, whether it is expansion of previous 
enhancement or a new focus of enhancement within a previously 
non-enhancing tumor. The essence of this definition can also be 
applied to patients treated outside of clinical trials, although in 
this case there is more room for individual judgement. While 
the RANO criteria effectively prevent the premature diagnosis 
of classical pseudoprogression as true progression, they are of 
limited utility for late pseudoprogression and radiation necrosis.

The vast majority of the literature regarding pseudoprogression 
concerns patients with glioblastoma, but World Health Organi-
zation grade II and III gliomas can also demonstrate pseudopro-
gression.23,24 Knowledge of patient tumor type and the expected 
behavior of that tumor is thus essential in predicting progres-
sion vs pseudoprogression. For example, oligodendroglioma [by 
definition isocitrate dehydrogenase (IDH)-mutant and 1p/19q 
co-deleted] is a treatment-responsive tumor with a much better 
prognosis than glioblastoma. Given the aggressive nature of 
glioblastoma, a patient may experience true tumor progression 
during or within months after completion of first-line therapy, 
while this would be distinctly unusual in oligodendroglioma. 
Similarly, in patients with glioblastoma, several reports have 
demonstrated that pseudoprogression occurs more commonly 
in methylguanine-DNA methyltransferase methylated tumors 
and more often in IDH-mutant tumors than in IDH wild-type 
tumors.25,26

Pseudoresponse to antiangiogenic therapy
Prior to the introduction of antiangiogenic therapies for high-
grade glioma, most notably bevacizumab (Avastin TM), 
radiographic response to treatment of infiltrating glioma was 
infrequently seen. Effective therapies were instead defined by 
their ability to induce a prolonged cessation of tumor growth. 
On the other hand, initiation of antiangiogenic therapy regularly 
results in significant radiographic improvements in both contrast 
enhancement and T2/FLAIR signal surrounding the enhancing 
core of a high-grade glioma.27 However, patients receiving anti-
angiogenic therapy may demonstrate discordant responses, 
wherein the degree of enhancement diminishes even as the bulk 
of T2/FLAIR hyperintense tumor increases, a situation termed 
“pseudoresponse” (Figure 5).

The term pseudoresponse was coined to indicate discordance 
between imaging and tumor behavior, analogous to the well-rec-
ognized phenomenon of pseudoprogression.28 However, the 
situation of response to antiangiogenic agents is more complex. 
The “response” component of pseudoresponse typically occurs 
early, with maximal imaging improvement generally apparent 
on the first post-treatment imaging. Evidence of non-enhancing 
progression, on the other hand, can be delayed by months. Early 
on, the increase in non-enhancing tumor bulk may be masked by 
a simultaneous decrease in peritumoral vasogenic edema; subtle 

progression later may be mistaken for technical scan-to-scan 
variability or evolving radiation-related changes. By the time 
mass-like T2/FLAIR progression is unambiguously present, anti-
angiogenic therapy may have been ongoing for weeks or months. 
As such, descriptive terms such as non-enhancing progression or 
infiltrative tumor growth may be preferable to pseudoresponse.

The RANO criteria contains language addressing this non-en-
hancing growth in patients on antiangiogenic therapies, noting 
that along with definitions of progression based on enhancing 
disease, progression may also be defined as a “significant increase” 
in T2/FLAIR disease burden that cannot be attributed to changes 
in corticosteroid dosing or comorbid events.6 Recently, the 
importance of early recognition of non-enhancing tumor growth 
has been questioned, given the subjective nature of identifying 
a “significant increase”, similar performance of RANO and 
Macdonald criteria for prediction of overall survival, and lack of 
proven effective treatment options after bevacizumab failure.29,30 
At present, however, progression of non-enhancing disease is 
considered clinically important progression, and radiologists 
must carefully assess the T2/FLAIR tumor burden in any patient 
on antiangiogenic therapy. Several recent randomized clin-
ical trials failed to demonstrate any survival benefit associated 
with bevacizumab therapy in patients with newly-diagnosed or 
recurrent glioblastoma, and it is possible that decreasing bevaci-
zumab use in the future will eventually make the phenomenon of 

Figure 5. T1 weighted post-contrast (A and C) and FLAIR (B 
and D) MR images obtained before (A–B) and after (C–D) 
bevacizumab therapy. The degree of contrast enhancement 
is mildly reduced after treatment, but the extent of infiltrative 
mass-like FLAIR abnormality has increased, particularly in the 
left basal ganglia. This suggests non-enhancing tumor pro-
gression. FLAIR, fluid-attenuated inversion-recovery.
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glioblastoma pseudoresponse one of primarily historical interest. 
Of note, bevacizumab is rarely used to treat low-grade glioma.

Indolent progression
Low-grade infiltrating gliomas carry a much better prognosis 
than high-grade tumors, but nonetheless demonstrate inevitable 
progression.31 A common error, facilitated by many radiology 
imaging review systems, is to evaluate the current imaging 
study along with only one or two of the most recent studies for 
comparison. While this approach may be sufficient in high-grade 
tumors, it is not adequate in slowly growing tumors. In these 
cases, additional comparison should be made to older images, 
ideally with reference to the first MRI study obtained after the 
most recent therapeutic intervention. Although this pitfall is 
well-known, “missed” progression still occurs in clinical practice 
and may only be recognized in retrospect after a patient develops 
new symptoms or new contrast enhancement (Figure  6). A 
potential solution to this issue, beyond increased vigilance on the 
part of the interpreting radiologist, is to design imaging systems 
that automatically retrieve relevant older studies for comparison.

Alternating electric field therapy
Alternating electric field therapy, also known as tumor treating 
fields, represents a relatively new and novel treatment for high-
grade infiltrating gliomas.32 Currently, the only commercially 
available system is the Optune™ device. This FDA approved 
device for newly diagnosed and recurrent glioblastoma consists 
of electrode arrays connected to a battery pack. A patient treated 
with alternating electric field therapy wears the scalp electrode 
arrays for 18 or more hours each day. The proposed mechanism 
of action is impairment of microtubule function and subsequent 
disruption of cellular mitosis. As the electrode array is removed 
prior to MR imaging, treatment with alternating electric fields 
will be apparent only through a review of the clinical record. 
This is important, as tumor growth within the first 4 weeks after 
initiation of therapy does not necessarily predict long-term treat-
ment failure.33 As such, it may be useful to obtain an updated 
“baseline” MR after a month of treatment.

Immunomodulatory therapy
Over the last decade, immunotherapy approaches to cancer 
treatment have been successfully translated into practice, with 
proven efficacy in tumors such as melanoma, lung cancer, 

prostate cancer, and renal cell carcinoma. The category of immu-
nomodulatory therapy includes treatments that work by a variety 
of mechanisms, including tumor vaccines, immune checkpoint 
inhibitors, and modified T cells.34 While no immunotherapy 
regimen has yet received FDA approval for use in patients with 
infiltrating glioma, there are numerous ongoing clinical trials, 
and immunotherapies approved for other tumors may be used 
on an off-label basis in patients with glioblastoma. Currently, 
immunotherapy clinical trials and off-label use almost exclu-
sively involve patients with high-grade tumors.

As immunotherapy induces a tumor-specific immune response, 
successful treatment often results in inflammatory changes char-
acterized by increased contrast enhancement and edema.35 In 
contrast to the relatively predictable temporal course of radio-
chemotherapy-related pseudoprogression, the pseudoprogres-
sion equivalent associated with immunotherapy may be more 
delayed from the onset of therapy and may progress for longer 
periods of time, presenting significant difficulty for specific 
differentiation of treatment effect from tumor growth (Figure 7).

The RANO working group released recommendations titled 
Immunotherapy Response Assessment in Neuro-Oncology 
to help standardize how this issue is resolved in the context of 
clinical trials.36 Per Immunotherapy Response Assessment in 
Neuro-Oncology, if radiographic progression unaccompanied 
by a significant clinical decline occurs within the first 6 months 
of an immunotherapy regimen, treatment should be continued 
and the patient should be re-imaged 3 months later unless there 
is clinical decline. If further radiographic evidence of progres-
sion is noted at 3 months, then date of progression is backdated 
to the time of the original MR scan.

Imaging tools
Standard anatomic MR imaging is the technique of choice for 
glioma follow-up, and neither the Macdonald nor the RANO 
criteria for response assessment directly incorporate imaging 
techniques beyond post-contrast T1 weighted imaging (both 
Macdonald and RANO) and T2/FLAIR imaging (RANO only). 
Nonetheless, most MR protocols also include diffusion-weighted 
imaging (DWI), and many centers routinely obtain perfusion 
imaging and/or MR spectroscopy in patients with brain tumors. 

Figure 6. Serial T2 weighted FLAIR MR images (some interval scans omitted) over several years, demonstrating a case of indolent 
progression in a low-grade astrocytoma. The change between any two scans within this time sequence is minimal, demonstrating 
the need for comparison to more remote imaging studies in order to detect slow and subtle change over time. FLAIR, fluid-atten-
uated inversion-recovery.
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Positron emission tomography (PET) imaging is also advancing 
rapidly, although it remains less frequently obtained than MR in 
patients with brain tumors. Each of these techniques offers the 
possibility of interrogating tumor physiology rather than simply 
anatomy, and it is likely that physiological imaging will continue 
to play an increasing role in glioma response assessment.

Advanced MR techniques
Perfusion MR can be used to quantify cerebral blood flow. 
Generally speaking, cerebral blood volume (CBV) is expected 
to be higher in viable glioma tissue than in radiation necrosis, 
although the situation is less clear in pseudoprogression.37–44 In 
practice, there is frequently overlap between CBV values in viable 
glioblastoma and radiation-induced changes, partly because 
treated tumor tends to contain both viable tumor cells and 
radiation effect rather than either in isolation. Specificity may 

be improved by techniques such as histogram and voxel-wise 
analyses of perfusion data, but these are post-processing inten-
sive.45,46 Longitudinal quantitative analysis of perfusion changes 
within a lesion can be useful in characterizing tumor stability 
or progression, provided a sufficiently reproducible perfusion 
technique is used.47 Most glioma perfusion imaging is obtained 
with dynamic susceptibility contrast technique. Nevertheless, the 
more technically demanding dynamic contrast-enhanced perfu-
sion imaging method allows measurement of volume transfer 
coefficient ktrans and initial area under the curve, both of which 
may be useful in differentiating recurrent glioblastoma from 
treatment-related changes.43,48–50 Figure 8 shows an example of 
evolving pseudoprogression with corresponding CBV perfusion 
images. While a valuable method, perfusion MR has a number 
of potential drawbacks.51 First, selection of the region of interest 
for analysis is operator-dependent, and region of interest-based 

Figure 7. Two patients with glioblastoma treated with immunotherapy who demonstrated increased enhancement on axial T1 
weighted post-gadolinium images after multiple cycles of immunotherapy. Both patients went on to surgery; pathology of Patient 
A demonstrated treatment effect while Patient B had recurrent tumor.

Figure 8. Axial T1 weighted post-contrast and axial MR perfusion rCBV image pairs from time points prior to chemoradiotherapy 
(A & B), 1 month after the end of chemoradiotherapy (C & D), and 3 months after the end of chemoradiotherapy (E & F). The initial 
post-treatment images show increased enhancement but reduced rCBV, suggestive of pseudoprogression. This is confirmed by 
decreased enhancement and continued decreased rCBV on the subsequent study. rCBV, relative cerebral blood volume.

http://birpublications.org/bjr


8 of 13 birpublications.org/bjr Br J Radiol;91:20180730

BJR  Johnson et al

methods may yield different results than histogram analysis.52 
Secondly, the technical parameters of image acquisition such 
as the use of pre-load dosing can impact the results.53 Finally, 
different perfusion analysis software packages may produce 
significantly different results, even when processing identical raw 
MR perfusion data.54

DWI, and in particular apparent diffusion coefficient (ADC) 
imaging, can offer insight into glioma response assessment. 
High-grade gliomas grow with increased cell density relative to 
normal brain, manifesting as restricted diffusion and low ADC 
values.55

Advanced analysis techniques, such as histogram analysis and 
functional diffusion maps,56–61 may improve the ability of ADC 
analysis to differentiate recurrent tumor from treatment-related 
changes (Figure 9).55 Diffusion and ADC analysis results may be 
confounded by the complex relationship between tumor hetero-
geneity and diffusion characteristics, as edema and necrosis 
can increase ADC values, while recently infarcted tissue (e.g. in 
the post-surgical setting or due to vascular occlusion) demon-
strates markedly reduced ADC values. Further, various b-value 
levels for ADC analysis have been investigated, and there is not 
currently a consensus on the optimal technique.62

MR spectroscopy (MRS) allows for the non-invasive detec-
tion and quantification of metabolites within tumor tissue and 
normal brain. Commonly assessed metabolites include choline, 
creatine, N-acetylaspartate (NAA), and lactate. The relative 
ratios of these differ in normal brain, tumor, and areas of radi-
ation effect. In gliomas, increasing tumor grade correlates with 
increasing lactate and lipids and decreasing NAA and creatine.63 
Choline-NAA and choline-creatine ratios thus increase with 
tumor grade, and the ratios may be more useful than absolute 
metabolite concentrations. Radiation necrosis characteristically 
demonstrates reduced choline-creatine and choline-NAA ratios 
relative to recurrent tumor, as well as an elevated lipid-lactate 
peak.64 While a meta-analysis of glioma MRS studies reported 
excellent sensitivity and specificity for the technique,65 use of and 

enthusiasm for MRS varies widely in practice, and it is very rarely 
employed in patients with brain tumors at the author’s institu-
tion. A practical limitation of MRS for the question of progres-
sion vs pseudoprogression is that almost all patients who have 
recently received chemoradiotherapy have a mixture of treat-
ment effect and viable tumor at pathology.

Gliomas harboring mutations in the IDH gene, including all 
oligodendrogliomas, most astrocytomas, and a minority of glio-
blastomas, contain elevated levels of 2-hydroxyglutarate (2HG) 
relative to gliomas with non-mutated IDH.66 MRS can be used 
to assess 2HG levels, although the technique is challenging as the 
size of the 2HG MRS peak is quite small relative to the more 
commonly assessed metabolites.67,68 Longitudinal quantifica-
tion of 2HG concentrations may prove useful in tumor response 
assessment. For example, decreasing levels have been noted after 
treatment whereas rising levels may precede other MR evidence 
of tumor progression.69 While this technique remains largely 
investigational, it has been incorporated into clinical practice in 
some centers.70

Positron Emission Tomography
The majority of PET imaging obtained in patients with cancer 
utilizes 18F-Fluorodeoxyglucose (FDG), allowing for the differ-
entiation of hypermetabolic tumor from lesser metabolism 
in normal tissues. While this approach has been explored in 
patients with brain tumors, high levels of FDG metabolism in 
normal brain result in relatively unfavorable tumor-to-back-
ground ratios. Thus, the limited specificity of this technique has 
precluded its use in routine clinical practice.71,72

The three most frequently used non-FDG PET agents in glioma 
are the amino acid agents O-(2-18 F-fluoroethyl)-l-tyrosine 
(FET), 3,4-dihydroxy-6-18 F-fluoro-l-phenylalanine (FDOPA), 
and11 C-methionine (MET). FET, FDOPA, and MET are all 
transported into cells by the LAT1/2 L-type amino acid trans-
porter system, which is upregulated in glioma. These agents 
have demonstrated utility in surgical/radiation planning as well 
as response assessment.73 While the specificity of amino acid 

Figure 9. Coronal T1 weighted post-contrast image (A) of a patient with glioblastoma demonstrates a focus of enhancement along 
the right lateral ventricle, deep to the resection cavity, which was new since the most recent comparison imaging. Perfusion MR 
image (B) demonstrates increased rCBV and the ADC map (C) shows restricted diffusion, both consistent with progressive, cellu-
lar, vascular tumor. ADC, apparent diffusion coefficient; rCBV, relative cerebral blood volume.
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PET for progression vs pseudoprogression is superior to FDG 
PET, it is not perfect and uptake in inflammatory tissue remains 
a potential confounder.74 Currently, none of these amino acid 
PET tracers is FDA approved for use in the US, although they 
are clinically available elsewhere and their use in multiple clin-
ical settings is recommended by the European Association for 
Neuro-Oncology.75 Figure  10 demonstrates examples of FDG 
and FDOPA PET imaging in patients with recurrent glioma.

Numerous additional PET agents have potential utility in glioma 
imaging. The amino acid PET agent18 F-fluciclovine (FACBC), 
which is FDA approved for prostate cancer imaging, primarily 

utilizes the glutamine transporter ASCT2 rather than the previ-
ously discussed LAT1/2 transport system and has shown early 
promise in glioma imaging.76 Various PET agents targeting 
prostate specific membrane antigen have been shown to bind to 
tumor blood vessels, including those in glioma, and at least one 
of these agents is likely to gain FDA approval in the foreseeable 
future.77 A wide variety of other PET agents have been described, 
allowing imaging of DNA replication, neoangiogenesis, and 
hypoxia, amongst other targets.74

Figure 10. Axial T1 weighted post-contrast MR (A) and FDG PET/CT images of a patient with a right parieto-occipital GBM demon-
strate tumor hypermetabolism on a background of normal, relatively high cerebral metabolism. Axial T1 weighted post-contrast 
MR (C) and FDOPA PET/CT (D) images of a different patient with GBM show focal FDOPA uptake in a contrast-enhancing nodule 
along the anterior border of the left frontal tumor resection cavity, indicative of recurrent disease. Of note, different PET dis-
play color palettes are used for the example FDG and FDOPA studies. FDG, 18F-Fluorodeoxyglucose; FDOPA, 3,4-dihydroxy-6-18 
F-fluoro-l-phenylalanine; GBM, glioblastoma multiforme.

http://birpublications.org/bjr


10 of 13 birpublications.org/bjr Br J Radiol;91:20180730

BJR  Johnson et al

Machine learning
The topics of artificial intelligence and machine learning have 
recently generated a great deal of interest in radiology gener-
ally and brain tumor imaging in specific.78 While much of the 
current literature regarding machine learning in patients with 
glioma has concerned radiogenomics or tumor segmentation, 
several publications have examined it as a tool for differentiation 
of tumor progression vs pseudoprogression.79,80 While this is a 
rapidly advancing area of research, further replication and vali-
dation of the results will be necessary before machine learning 
approaches can be incorporated into routine clinical practice.

Conclusion
Neuroradiology plays an important role in the management of 
patients with glioma. Imaging changes may be the first sign of 
tumor growth, and patients can be harmed by either delayed 
or erroneous identification of progression. Familiarity with 
common, predictable imaging pitfalls can directly affect treat-
ment decisions. Clear communication of the radiographic 

impression to the treating clinician, with analysis of specific 
differences from prior imaging in relation to the clinical context, 
is imperative. A thorough review of the patient medical record 
and a detailed understanding of the imaging implications of 
common tumor treatments can help clinicians and radiologists 
avoid many of the pitfalls in glioma response assessment. In the 
longer term, volumetric analysis and advanced MR and PET 
imaging techniques may allow more precise and specific identifi-
cation of tumor progression.
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