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Introduction
Multiparameteric MRI (mpMR) of the prostate gland 
combining anatomical and functional imaging, including 
diffusion-weighted imaging (DWI) and dynamic contrast 
enhancement (DCE MR) has shown value in the detec-
tion, localization, risk stratification and staging of clinically 
significant prostate cancer (PCa).1,2 The Prostate Imaging 
Reporting and Data System (PI-RADS) provides a struc-
tured reporting system and evidence-based approach to 
the interpretation of prostate mpMR. DCE MR, commonly 
interpreted qualitatively has limited added value to mpMR 
and is considered a complementary, optional sequence in 
PI-RADS v. 2 (v2).3,4

Although PI-RADS v2 performs well in detecting clinically 
significant PCa, when assessing all category 3–5 lesions, its 
accuracy is only moderate.5 A recent study has suggested 
that qualitative visual assessment of DCE MR may improve 
the stratification of PI-RADS v2 category 3 (indeterminate) 
lesions.6 However, the impact of semi-quantitative or quan-
titative DCE MR assessment methods in clinical settings 
has not been well-established.7,8

The role of positron emission tomography (PET) in the 
management of PCa is evolving. In recent years, various 
radiotracers including 18F-flucholine PET have been eval-
uated, predominantly in the setting of biochemical recur-
rence after primary therapy. The basis for choline PET in 
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Objective: To describe dynamic 18F-flumethycholine PET 
(dPET) and dynamic contrast enhancement MR (DCE 
MR) parameters in localized high-risk prostate cancer 
(PCa), and determine whether these differ from normal 
prostate. Furthermore, to determine whether a correla-
tion exists between dPET and DCE MR parameters.
Methods: 41 consenting patients who underwent pros-
tate DCE MR and dPET were included in this institu-
tionally approved study. Intraprostatic lesions on MR 
were assigned a PI-RADS v2 score, and focal lesions on 
PET were documented. All lesions were correlated with 
pathology. Quantitative and semi-quantitative DCE MR 
and two-tissue compartmental model dPET parame-
ters were determined and tumor-to-normal gland ratios 
(T/N) for these parameters were calculated. Finally, dPET 
and DCE MR correlation was estimated using Spearman 
correlation coefficients.
Results: There were 46 malignant lesions per standard 
of reference. On dPET, peripheral zone (PZ) tumors had 

higher K1 (p < 0.001), and a T/N ratio ≥2 was significant 
(p < 0.001). On DCE MR, the parameters in, kep, Ktrans 
and quantitative iAUC were higher for PZ and non-PZ 
tumors than corresponding normal tissue (p < 0.001); for 
PZ tumors, a T/N ratio ≥ 1.5 for Ktrans and pei was signif-
icant (p = 0.0019 and 0.0026, respectively). Moderate 
Spearman correlation (0.40 < ρ < 0.59) was found 
between dPET K1 and DCE MR Ktrans and pei.
Conclusion: In patients with high-risk PCa, quantitative 
dPET and DCE-MR parameters in primary tumors differ 
from normal tissue. Only moderate correlation exists 
between K1 (dPET) and Ktrans and pei (DCE MR). The 
incremental value of any of these parameters to PI-RADS 
v2 warrants further investigation.
Advances in knowledge: Unique quantitative and 
semi-quantitative FCH PET/MR parameters in PCa differ 
from normal gland, and should be further investigated to 
determine their potential contribution to PI-RADS v2 in 
the detection of clinically significant PCa.
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PCa is the increase in choline transport and overexpression 
of choline kinase in tumor cells.9,10 Only a few studies have 
assessed the ability of choline PET to detect localized PCa.11–14 
Most authors have used qualitative assessment, with or without 
semi-quantitative measures, with moderate success. The overlap 
in radiotracer uptake between benign prostatic abnormalities 
(e.g. prostatitis, adenomatous hyperplasia) and malignancy 
appears to limit the specificity of choline PET. The performance 
of quantitative parameters obtained from dynamic PET (dPET) 
in the detection of PCa is not well-established, and to the best of 
our knowledge no prior studies have assessed 18F-flumethylcho-
line (FCH) dPET for this purpose.

The primary objective in the current study was to describe quan-
titative dPET and DCE MR parameters in patients with high risk 
PCa, and to determine whether these parameters differ in normal 
prostate gland. A secondary exploratory aim was to determine 
whether a correlation exists between quantitative dPET and DCE 
MR parameters.

Methods and materials
Study design & population
This was a prospective institutionally approved, single-center, 
single-arm clinical trial evaluating the role of FCH PET/MR 
for staging high-risk PCa (hrPCa) [NCT#01993160]. The study 
was designed according to the 2015 guidelines for Standard for 
Reporting of Diagnostic Accuracy.15 Consecutive patients with 
previously untreated, biopsy proven hrPCa were accrued between 
January 2014 and July 2016. Patients were considered as having 
hrPCa if histologically proven adenocarcinoma of prostate and 
one or more of the following criteria were met: Gleason score 
(GS) ≥8; and/or clinical stage ≥T3a; and/or serum prostate-spe-
cific antigen (PSA) >20 ng ml−1. Exclusion criteria included prior 
therapy for PCa, or contraindication for contrast-enhanced MR. 
Although the study protocol included prostate and whole-body 
imaging, the present report focuses on evaluating the role of 
dPET and DCE MR of the prostate.

Imaging protocol
Patients were scanned on one of two imaging platforms: PET/
CT (Siemens Biograph mCT 40, Siemens Healthcare, Knox-
ville, TN) and 3 T MR (Magnetom Skyra, Siemens Healthcare, 
Erlangen, Germany), with imaging usually performed on same 
day (median, 0 d; range, 0–18 d) (n = 31); or integrated PET/
MR, when made available in the University Health Network 
(Biograph mMR, Siemens Healthcare, Erlangen, Germany) (n 
= 10). All patients received 20 mg of antiperistaltic agent hyos-
cine butylbromide (Buscopan; Boehringer Ingelheim, Germany) 
prior to the MR examination.

MR protocol
MRI was acquired in the supine position using a torso phased-
array coil placed anteriorly, and spine matrix array coil placed 
posteriorly. Pulse sequences acquired included sagittal and axial 
two-dimensional T2 weighted turbo spin echo, axial two-dimen-
sional diffusion-weighted single-shot echoplanar imaging, vari-
able flip-angle T1 mapping and DCE MR (Supplementary Table 
1). Gadobutrol (Gadovist; Bayer Healthcare, Toronto, ON) was 

administered at a dose of 0.1 mmol/kg body weight, and at a rate 
of 2 mL/sec followed by a 30 ml saline flush at 2 ml/s.

PET protocol
Injected dose of FCH was 3.6 MBq/kg body weight (maximum 
400 MBq). Pelvic dPET acquisition was obtained immediately 
after injection using list mode every minute for 10 min.16–18 For 
display purposes, list mode frames were divided into 4 frames of 
30 s, 4 frames of 60 s and 2 frames of 120 s each. To determine 
quantitative image derived input curves, list mode frames were 
also divided into 35 frames (24 frames × 5 s, 6 frames × 30 s, 5 
frames × 60 s). A static frame was acquired at a time between 
11.3 and 18.9 min, with the majority of patients having the static 
performed frame at 14 min. The dynamic phase together with 
the static frame were used for dynamic PET analysis. These were 
used to estimate arterial blood tracer activity in lieu of invasive 
blood sampling.19 In patients who underwent separate MR and 
PET/CT, unenhanced CT was obtained for scatter and attenu-
ation correction (120 kV, 40–100mA, 5.0 mm reconstructed 
section thickness, 2.0 mm overlap), and images were corrected 
for attenuation and reconstructed iteratively with time-of-flight 
(3 iterations and 21 subsets) using a 256 matrix and a 5 mm 
gaussian smooth. For patients who underwent integrated PET/
MR, MR-based attenuation correction maps were generated from 
2-point Dixon gradient-echo sequence in the coronal plane.20 
PET images were corrected for attenuation and reconstructed 
iteratively (3D OP-OSEM) with 3 iterations and 21 subsets using 
a 172 matrix and a 4 mm gaussian smooth. Whole body PET 
acquisition commenced immediately after the dPET.

Demographic and clinical data
Patient age, clinical stage, baseline serum PSA, biopsy-derived 
GS, sextant location of positive cores on biopsy and surgery 
(when available) were recorded.

Standard of reference
All lesions were scored according to PI-RADS v2. Patients 
scanned before the introduction of PI-RADS v2 had a second 
reading session retrospectively, with an updated PI-RADS v2 
score assigned. Correlation of MR- and/or PET-identified lesions 
was performed to focal and/or systematic biopsies using sextant 
zonal anatomy, or surgical pathology when available. Given the 
known difficulty in accurately localizing systematic biopsies 
to lesions, any biopsy-proven tumor within a sextant or adja-
cent sextant on same side was considered as having positive 
pathology.21 Lesions were considered to be malignant if they 
were assigned a PI-RADS v2 score of 5 with positive pathology; 
PI-RADS v2 score ≥3 with spatially consistent positive PET and 
pathology. Lesions deemed suspicious based on a single modality 
(either PET or MR) with equivocal or negative biopsy were 
considered indeterminate and were not analyzed in this study.

Image analysis
All prior imaging and clinical data was available to the readers 
at time of study interpretation. PET was read by a single fellow-
ship-trained radiologist with 15 years’ experience interpreting 
PET and abdominal imaging (UM). Prostate MR was inde-
pendently read by one of two fellowship-trained abdominal 
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radiologists with 16 years’ experience each (SG, KSJ). Dedicated 
fusion software was used to analyze PET (Thinking Systems 
MDStation v5.00b; Thinking Systems Corporation, St. Peters-
burg, FL or Mirada XD3 v3.6.8; Mirada Medical USA, Denver, 
CO). PET and MR data sets obtained separately were fused on 
Mirada XD3 v3.6.8 workstation, when needed. MR was reviewed 
on in-house PACS (Coral Workstation 3.6, University Health 
Network, Toronto, Canada). All suspicious lesions on MR and 
PET were grouped according to side and zone (peripheral zone 
(PZ) or non-PZ (=combining the transition zone, central zone 
and anterior fibromuscular stroma) and concordance between 
PET and MR lesions was recorded.

Dynamic PET quantitative analysis
PET images were transferred to a dedicated workstation (Clear-
Canvas Workstation 2.0, Synaptive Medical, Toronto, Canada), 
and ROIs were drawn by one of two radiologists (NT, JH) with 
contour accuracy confirmation by a third independent radiolo-
gist (UM).

Dynamic PET data were analyzed with a two-tissue compartment 
model (Figure 1).22,23 Cp and Cd are the FCH concentration in 
arterial blood and the diffusive compartment respectively, while 
Ct is that in the tumor compartment where Choline is bound. 
Rate constants k1, k2 and k3 describe the transport as illustrated 
in Figure 1. Backflux from the tumor to diffusive compartment 
is ignored for the 10 to 20 min duration of the dynamic study, 
as FCH is retained within cells in this initial period.16–18 ROIs 
drawn on PET images would comprise of all three compart-
ments. Hence, the operating equation can be written as:
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where CROI is FCH concentration over an ROI and Vp is the blood 
volume. Cp(t) was measured based on the dynamic PET images 
over an ROI drawn on the external iliac or proximal common 
femoral artery, with partial volume correction.24 Detailed deriva-
tion of Cp(t) is shown in (Supplementary Material 1). With CROI 
and Cp, an in-house non-linear optimization algorithm based on 
the constrained quasi-Newton method in the NAG library (The 
Numerical Algorithms Group (NAG), Oxford, United Kingdom) 
was used to determine the parameters (Vp, k1, k2 and k3). We 
used only k1 data in our study, as the main goal was to assess 
perfusion related parameters.

DCE-MR quantitative analysis
MR images were transferred to a Siemens Syngo MR platform, 
which includes a dedicated module for dynamic analyses of DCE 
MR (Tissue4D; Siemens Healthcare, Erlangen, Germany). For 
quantitative analysis of lesions’ perfusion parameters, a volume of 
interest (VOI) was manually drawn on T2 weighted axial images 
to cover as much of the tumor volume as possible. If technically 
feasible, further separate VOIs were drawn to include normal PZ 
and normal non-PZ. Similar to PET, VOIs were drawn by one of 
two radiologists with contour accuracy confirmation by a third 
radiologist. Enhancement kinetics were based on the two-com-
partmental pharmacokinetic model described by Tofts.25,26 
The arterial input function (AIF) was chosen as “intermediate”, 
the default population averaged options offered by Tissue4D 
software, to achieve reproducibility across the study popula-
tion (Figure  2).27 Semi-quantitative parameters obtained were: 
washin (in); washout (out); positive enhancement integral (pei); 
arrival time (at); time to peak (ttp); and area under the curve 
(iAUC). Quantitative parameters (Tofts model) included: transfer 
constant from plasma to extracellular extravascular (EES) space 
(Ktrans); volume of EES per unit volume of tissue (Kep); flux rate 
constant between EES and plasma (Ve); and iAUC.

Data analysis and statistical method
The association between dPET/DCE MR parameters and PCa 
was examined using paired t-test. Tumor to normal background 
ratios for the quantitative and semi-quantitiatve dPET and DCE 
MR parameters were determined. Two-sided one sample signed 
test was used to calculate tumor to normal ratio cut-off signifi-
cance for PCa. Correlation between dPET and DCE MR param-
eters was estimated using spearman correlation coefficients. All 
tests were two-tailed, with p < 0.05 considered statistically signif-
icant. All analyses were performed using SAS 9.2 (SAS Institute 
Inc., Cary, NCA) and R 3.0.0 (The R Foundation for Statistical 
Computing, Vienna, Austria). Further analysis exploring a poten-
tial correlation between primary and total GS with the DCE and 
dPET parameters found to be significant was performed using 
Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA)

Figure 1. Two tissue compartmental model illustration. Cp and 
Cd are FCH concentration in arterial blood and the diffusive 
compartment. Ct is the FCH concentration in the tumor com-
partment. Rate constants k1, k2 and k3 denote the transport in 
the directions shown. FCH, 18F-flumethylcholine.

Figure 2. Peripheral zone dynamic PET K1 value in the study 
cohort, comparing values in normal tissue and in tumors. PET, 
positron emission tomography; PZ, peripheral zone.

http://birpublications.org/bjr
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Results
41 consenting patients underwent both DCE MR and dPET of 
the prostate, and were included in the current analysis (median 
age, 65 years; range 50–82). Median serum PSA at enrollment 
and GS were 21.0 ng ml−1 (range, 2.99–160 ng ml−1) and 7 
(range, 7–9), respectively. One patient had his prostate diffusely 
replaced by tumor, and no normal tissue could be identified on 
either dPET or DCE MR dPET data was available for all but three 
patients, including the aforementioned patient, in which dPET 
data were corrupt, and normal PZ and normal non-PZ could not 
be contoured in two and five patients, respectively. Overall, 63 
lesions were identified on at least one modality. Each patient had 
at least one lesion with a PI-RADS v2 score of 4 (10 lesions) or 5 
(40 lesions). Furthermore, there were four lesions with PI-RADS 
v2 score of 3, and nine other lesions that could only be identified 
on PET with no MR correlate. Of the 63 lesions, 46 were consid-
ered as definite tumors according to the standard of reference, of 
which 39/46 (84.8%) were assigned PI-RADS v2 score of 5; 5/46 
(10.9%) were assigned a PI-RADS v2 score of 4 and 2/46 (4.3%) 
were assigned a PI-RADSv2 score of 3 with concordant PET and 
sextant histopathology. There were 17/63 lesions (27%) that were 
deemed indeterminate, of which nine were identified on PET 
[with equivocal ((n = 5) or negative (n = 4) biopsy); four on MR 
(with equivocal (n = 2) or negative (n = 2) biopsy)]; and four 
additional lesions on MR with PI-RADS v2 score of 3 (n = 2) or 4 
(n = 2) with no PET correlate and no definitive tumor on biopsy. 
Indeterminate lesions were not included in the current analysis.

Analysis of dPET and DCE MR parameters for 
normal prostate and confirmed tumors
For all other patients, dPET (Table  1) and DCE MR (Table  2) 
parameters for normal prostate and tumors are displayed. Using 
the prescribed test, differences between the various parameters in 
normal prostate and tumors were calculated. These were possible 
only in those patients in which both normal and tumor values 
could be obtained. In dPET, only K1 in PZ tumors was signifi-
cantly higher than normal prostate (Table 3 and Figure 3). For 
DCE MR, significant differences between PCa and normal tissue 
were seen in several parameters. In the semi-quantitative anal-
ysis, in and iAUC and in the quantitative analysis, Ktrans and kep 
were significantly elevated for both PZ and in non-PZ tumors, 
and pei was significant for PZ tumors, compared to normal tissue 
(Table  3). Exploratory analysis of correlation between primary 
and total GS and DCE and dPET parameters shown to be signif-
icant revealed considerable overlap between the quantitative 
parameters and pathologic grade (Figure 4).

Spearman's rank correlation coefficients (ρ) between dPET and 
DCE MR parameters for tumors was calculated, and is displayed 
inFigure  5. Moderate correlation (0.40 > ρ > 0.59) was found 
between K1 and both Ktrans and pei. Strong correlation (ρ > 0.60) 
could not be found between dPET and DCE MR parameters.

Tumor to normal ratios (T/N) for dPET and DCE MR were 
calculated for PZ tumors (Table 4). Given the small number of 
non-PZ tumors in our cohort, alongside lack of normal non-PZ 
in half of these patients, T/N ratios were not calculated for 
non-PZ tumors. Using the two-sided one sample signed test, a Ta
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T/N ratio ≥2 for K1 on dPET was significant (p < 0.001). Of the 
DCE MR parameters, a T/N ≥ 1.5 for Ktrans and pei was found 
to be significant (p = 0.0019 and p = 0.0026, respectively) and for 
the semi-quantitative parameter in (wash in), a T/N ≥ 2 showed 
borderline significance (p = 0.049).

Discussion
In patients with PCa, MRI is the imaging modality of choice 
for local tumor detection and assessment. PI-RADS v2 has 
reasonable performance in detecting clinically significant PCa. 
For PI-RADS v2 score ≥4 lesions, the sensitivity and speci-
ficity of mpMR for detecting GS ≥7 tumor is 78.9–87.8% and 
75.5–79.1%, respectively.28 Additional parameters, including 
functional imaging may potentially improve the performance of 
mpMR. For example, although DCE MR is only a complemen-
tary sequence in PI-RADS v2, a recent study has suggested that a 

modified binary DCE MR score (positive vs negative) improves 
the performance of PI-RADS v2 for detection of transitional 
zone tumors and the authors suggested using this parameter as 
an amendment to the PI-RADS two scoring system.28 In recent 
years, with the advent of PET/MR, there has been an increased 
interest in data obtained from both PET and MR to characterize 
and stage patients with PCa.29 Data on the clinical utility of quan-
titative dynamic PET and DCE MR parameters in the detection 
and characterization of PCa are still limited.

The main goal of the current study was to describe the dPET 
and DCE MR parameters in hrPCa and to determine whether 
these parameters differ in malignant tumors compared to 
normal tissue. On dPET, there was significantly higher K1, esti-
mating tissue perfusion and choline transport, for PZ tumors as 
compared to normal gland. On DCE MR, the semi-quantitative 
parameter in, representing contrast washin rate, was significantly 
different for both PZ and non-PZ tumors; and pei, a semi-quan-
titative parameter which represents the summation of the total 
signal above baseline, a tissue perfusion parameter30 was signifi-
cantly different for PZ tumors. On quantitative DCE MR, Ktrans 
(diffusion of contrast to the extracellular space) and Kep (reverse 
reflux rate constant), were significant for PZ and non-PZ tumors. 
Ktrans may correlate with vascular permeability when blood 
flow is high compared to permeability or it may correlate with 
blood flow when permeability is high relative to flow.31 No strong 
correlation was found between dPET and DCE MR parameters; 
therefore, these are not interchangeable nor surrogate of each 
other. The moderate correlation between K1 (dPET) and Ktrans 
and pei (DCE MR) may be explained by their common depen-
dence on perfusion.

Correction due to metabolite and plasma partitions was not 
applied to the arterial input in dPET. Prior investigators proposed 
a correction method by scaling the arterial input by a factor of 
1.3 to 1.1 linearly over 0 to 60 min.32 Although our scan dura-
tion was relatively short (up to 20 min), the shape of corrected 
arterial input curve was found to be almost identical to that of 
the original curve (not shown here). Therefore, if the correction 
factor was used, the correct arterial input for this study would 
have been 1.3 times greater in magnitude. Hence, K1 values in 
our study are overestimated by up to the same factor (1.3) across 
the entire cohort as a result of not applying the correction. Such 
“overestimation” does not affect the correlative and relative 
comparisons in the cohort. Using the two-tissue compartment 
model on FCH dPET data of relatively short duration has limita-
tions as discussed in Schaefferkoetter et al.32 According to their 
investigation, our K1 values would have a relatively small bias of 
8 to 12% due to short duration (up to 11 to 20 min). Therefore, 
we believe our K1 values are expected to be reasonably accurate 
within the intrinsic variability of compartmental rate parameter 
estimates.

The quantitative DCE MR parameters in our cohort differ from 
prior publications.32–35 For example, Ktrans values in our study 
were lower than previously reported. Nonetheless, despite the 
variability in absolute values, the DCE MR parameters iden-
tified in the current study as most reliably differentiating PCa 

Figure 3. Spearman’s rank correlation heat map between 
dPET and DCE MR parameters in tumors. DCE, dynamic con-
trast enhancement; dPET, dynamic positron emission tomog-
raphy; SUVmax,maximum standardized uptake value.

Figure 4. Color-coded kep parameter map superimposed on 
an axial T2 weighted image of the prostate (Tissue 4D software, 
Siemens Healthcare). VOI3 is a volume-of-interest drawn on 
a biopsy proven left peripheral zone GS 9(4+5) tumor. VOI4 
was drawn on the contralateral normal right peripheral zone. 
(B) Quantitative concentration curve and values for the cor-
responding VOIs. Note that ktrans,Kep and iAUC are higher in 
VOI3 (tumor) compared to VOI4 (normal tissue). GS, Gleason 
score; VOI, volume of interest.
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from normal tissue (in, Ktrans, Kep) were in line with previous 
published studies, including a recent meta-analysis encom-
passing 484 patients across 14 studies.7,36 The differences in the 
absolute values obtained in different studies may be related to 
a few factors, including differences in software used to analyze 
DCE MR, choice of AIF and perhaps differences in study popu-
lation, which in the current study included only patients with 
hrPCa.37 From a practical clinical perspective, FCH-dPET can 
be obtained in the first 10 min after injection (“uptake time”) 

prior to a static whole-body PET. When using integrated PET/
MR, the dPET data can be obtained simultaneously with pros-
tate mpMR, without impact on overall scan time. Nonetheless, 
the results from the current study, including the significance of 
T/N thresholds obtained for the various parameters need to be 
validated in independent data sets. Furthermore, it remains to 
be determined whether incorporating any or all of these quanti-
tative dPET/DCE MR parameters into the diagnostic algorithm 
of prostate mpMR would improve overall diagnostic accuracy 
or disease characterization, especially for PI-RADS v2 score 3 
and 4 lesions. Moreover, the described quantitative approaches 
may have further value in the context of increasingly used novel 
PCa-specific tracers.

Our study has a few limitations. First, the study population included 
patients with hrPCa and the quantitative results may only be appli-
cable to this cohort. Second, we did not have targeted lesion biop-
sies or whole mount pathology for many of the presumed tumors. 
However, we have used the previously described method of 
sextant confirmation (“Rosenkrantz method”) for PI-RADS four 
or five lesions.21 Third, we defined lesions with PI-RADS score of 
4 as indeterminate unless pathologically confirmed, as defined by 
the standard of reference. Although this may have resulted in the 
exclusion of some tumors, we believe this is justifiable given the 
limited positive-predictive value of PI-RADS four lesions, noted 
to be up to 64%.21,38 Fourth, we did not evaluate benign prostate 
lesions, such a focal prostatitis, to determine whether any of the 
significant quantitative parameters identified would contribute 
to the specificity of FCH PET/MR. This would need to be evalu-
ated in future studies. Finally, our method of analysis of dPET and 
DCE MR may have varied from other researchers and this may 
have resulted in different absolute values for some of the described 
parameters. We attempted to broaden the applicability of our 
method by evaluating T/N ratios with significant cutoffs found for 
K1 on dPET and Ktrans and pei on DCE MR.

Figure 5. Box-and-whisker plot comparing primary and total GS with the most significant parameters. (a) Correlates GS with K1 
on dPET; (b) compares GS with ktrans on DCE MR.Note the significant overlap between all plots. DCE, dynamic contrast enhance-
ment; dPET, dynamic positron emission tomography; GS, Gleasonscore.

Table 4. Distribution of T/N ratios of dPET and DCE parame-
ters for PZ tumor

Parameter N Mean ratio 
(SD)

95% Confidence 
interval

dPET

K1 35 2.421 (0.869) 2.123–2.72

DCE: Quantitative

ktrans 35 3.65 (4.784) 2.007–5.294

kep 35 2.231 (2.003) 1.543–2.919

ve 37 1.44 (0.916) 1.134–1.745

iAUC 37 3.355 (3.742) 2.107–4.603

DCE: Semi-quantitative

in 37 4.194 (4.265) 2.772–5.616

out 35 1.061 (5.905) −0.967–3.09

ttp 37 0.837 (0.4) 0.704–0.97

at 36 1.012 (0.084) 0.984–1.041

pei 37 2.418 (1.575) 1.893–2.943

iAUC 37 3.674 (2.929) 2.697–4.651

DCE, dynamic contrast enhancement; SD, standard deviation; dPET, 
dynamic positron emission tomography.
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Conclusion
In conclusion, in patients with hrPCa, unique quantitative and 
semi-quantitative FCH PET/MR parameters in primary tumors 
differ from those obtained in normal tissue. Only a moderate 
correlation exists between K1 on dPET and Ktrans on DCE MR 
The incremental value of any or all of these parameters in the 
detection of clinically significant PCa to the existing PI-RADS v2 
interpretation criteria warrants further investigation.
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