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intRoDuction
MRI is a non-invasive medical imaging technique that 
provides both structural and functional data on human 
brain. In addition to being a non-invasive procedure, the 
degree of anatomical detail imaged with MRI makes this 
technique the modality of choice for the diagnosis, treat-
ment-planning, and follow-up in a number of neurological 
diseases.

Since the initial application of MRI in medical diagnostics 
in the mid-1980’s, considerable efforts have been made by 
the scientific community in order to develop MR scan-
ners with increasingly higher magnetic field strength (B0) 
leading to enhanced signal-to-noise ratio (SNR), contrast-
to-noise ratio (CNR), and exquisite spatial resolution. These 
advancements allowed the gradual transition from the first 
grainy images obtained with 0.3–0.6 T MR scanner to the 
current extensive use in clinical practice of conventional 
(1–1.5 T) and high-field (3 T) MRI, whose main benefits 
include not only improved imaging quality and diagnostic 
accuracy, but also faster acquisition.1

The first ultra-high field (UHF, or 7 T and greater) human 
MR image was acquired with the 8 T magnet at the Ohio 

State University in 1998.2 The outcomes were exceptional 
and promising, resulting in the installations of numerous 
UHF research MR scanners worldwide, and in more recent 
years, the approval of clinical 7 T MRI scanners by the 
U.S. Food and Drug Administration (FDA). To date more 
than 80 human UHF MRI systems are operative, most of 
them with a magnetic field strength of 7 T.3,4 Furthermore, 
after the FDA declared a non-significant risk for MRI up 
to 8 T in 2014,5 an important step forward for UHF MRI 
in October 2017 was the Magnetom Terra (Magnetom 
Siemens Healthineers, Erlangen, Germany) becoming the 
first 7 T MRI system to obtain FDA 510(k) clearance for 
clinical use in the United States, limited to the examination 
of the head, upper and lower extremities.6 This introduction 
will have remarkable repercussions in diagnostic radiology. 
In fact, the possibility to improve the spatial resolution 
reducing the size of the voxels thanks to the increased SNR 
of UHF, will enable clinicians to visualize smaller anatom-
ical structures and greater detail of normal and pathological 
findings.

However, despite advances in magnet, coil, hardware and 
software technology, there are still limitations and technical 
challenges which need to be overcome.
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ABstRAct

In recent years, ultra-high field MRI (7 T and above) has received more interest for clinical imaging. Indeed, a number 
of studies have shown the benefits from the application of this powerful tool not only for research purposes, but also 
in realms of improved diagnostics and patient management. The increased signal-to-noise ratio and higher spatial 
resolution compared with conventional and high-field clinical scanners allow imaging of small anatomical detail and 
subtle pathological findings. Furthermore, greater spectral resolution achieved at ultra-high field allows the resolution 
of metabolites for MR spectroscopic imaging. All these advantages have a significant impact on many neurological 
diseases, including multiple sclerosis, cerebrovascular disease, brain tumors, epilepsy and neurodegenerative diseases, 
in part because the pathology can be subtle and lesions small in these diseases, therefore having higher signal and 
resolution will help lesion detection. In this review, we discuss the main clinical neurological applications and some 
technical challenges which remain with ultra-high field MRI.
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In this article, we review the current literature and discuss 
the main clinical applications of UHF MRI in neuroimaging. 
Furthermore, we summarize the technical advantages and issues 
related with UHF MRI. A series of illustrative 7 T MRI examples 
is included.

References for this review were identified through searches 
of PubMed with the search terms “Utra-high field”, “7T MRI”, 
“7 Tesla MRI”, “diffusion MRI”, “Magnetic Resonance Spec-
troscopy”, “BOLD fMRI” cross-referenced with the terms 
“Multiple Sclerosis”, “cerebrovascular diseases”, “stroke”, “vessel 
imaging”, “brain tumor”, “epilepsy”, “neurodegenerative diseases”, 
“dementia”, “Alzheimer”, “Parkinson”. Only articles published 
in English were reviewed. Reference lists of identified articles, 
book chapters, and authors’ own references were also explored. 
Selection criteria were the novelty and importance in terms of 
potential clinical application of the reported results. Peer-re-
viewed articles published from 1967 until March 2018 have been 
included, in addition to two non-English historical references 
but with available translations dating back to the mid-1800s.

clinicAl ApplicAtions
There are a number of neurological diseases where UHF MRI 
has shown some benefit. These include multiple sclerosis (MS), 
cerebrovascular disease, neuro-oncology, epilepsy and neuro-
degenerative diseases. This may be because of the prevalence 
of these clinical entities, but also by the need to improve their 
diagnosis and clinical management through the identification 
and recognition of earlier disease and new imaging biomarkers. 
Furthermore, UHF MRI may play a role in helping neuroscien-
tists, neurologists, neurosurgeons and neuroradiologists further 
insights on the pathophysiological mechanisms behind these 
conditions.

Multiple sclerosis
MS is the most common immune-mediated inflammatory 
demyelinating disorder affecting the central nervous system 
(CNS) and the leading cause of non-traumatic neurological 
disability in young adults in Northern America and Europe.7 
The diagnosis of MS is primarily clinical, but sometimes it may 
be challenging and further examinations are required, including 
radiological and laboratory tests. MRI is a helpful tool to support 
the diagnostic process, revealing the radiological dissemination 
in space and time of MS lesions; moreover, it may provide infor-
mation relevant not only to clinical follow-up and monitoring of 
response to treatment, but also to a better understanding of MS 
pathophysiology.8

MS lesions or plaques typically appear as focal areas of hyper-
intensity on dual-echo (proton-density and T2 weighted) and 
fluid-attenuated inversion-recovery (FLAIR) imaging on MRI, 
while post-gadolinium T1 weighted images allow active lesions to 
be distinguished from inactive lesions, the first being enhanced 
on MRI unlike the latter. Even if 7 T MRI has not yet resulted in 
an earlier diagnosis, recent studies have demonstrated the main 
advantages of imaging at ultra-high field in MS. For instance, 
one of the first studies comparing 3 T and 7 T MRI in MS 
showed that on 7 T magnetization-prepared rapid acquisition 

gradient-echo (MPRAGE) a significantly higher number of focal 
MS lesions was detected in areas defined as “normal-appearing 
white matter” (NAWM) using standard clinical 3 T FLAIR: these 
abnormalities may contribute to the pathological changes that 
have been reported in NAWM.9 Currently, it seems that there is 
increased sensitivity in the detection of gray matter lesions with 
UHF MRI10,11 compared with 3 T MRI.

Another important benefit refers to cortical gray matter lesions’ 
detection. According to the 2017 revision of the McDonald 
criteria for the diagnosis of MS, cortical lesions can be used to 
fulfill MRI criteria for dissemination in space.12 Currently, this 
type of lesion is not easily identified with standard MRI proto-
cols, due to the smaller volume of gray matter and lower levels 
of inflammation, but in the past years UHF MRI has demon-
strated to provide an improved characterization of cortical 
lesions thanks to the increased spatial resolution and enhanced 
contrast.13–16 A recent post-mortem verification study showed 
that the use of a multicontrast protocol including T1 weighted, T2 
weighted, FLAIR, double-inversion recovery (DIR) and T2* at 7 
T provided a cortical lesions detection rate more than two times 
higher as compared with 3 T; however, a considerable part of 
pathologically proven cortical lesions still remained undetected 
at 7 T MRI.11

Furthermore, UHF MRI has been increasingly used to investi-
gate new possible hallmarks to accurately differentiate MS from 
its mimics. For example, various research groups have described 
central venules in MS lesions as a key element for the diagnosis 
of MS in challenging cases; this phenomenon, also named the 
“central vein sign” (CVS), was first reported by pathological 
studies in the 19th century,17,18 and eventually confirmed using 
UHF MRI.19,20 Even if the perivenular distribution of MS lesions 
is still detectable at T2* weighted imaging with conventional and 
high-field scanners and high detection rate can be gained with 
optimized T2* protocols,21 the enhanced susceptibility effects 
around blood vessels achievable with UHF MRI result in reduced 
echo times and high SNR, which in turn can be used to generate 
more detailed imaging of the relationship between veins and 
MS lesions.22 Indeed, Tallantyre et al demonstrated that the T2* 
weighted imaging at 7 T has the highest sensitivity for central 
vein detection compared with 3 T,22 and it can be helpful to 
distinguish between patients with demyelinating MS lesions and 
incidental asymptomatic white matter lesions in subjects without 
MS.23 Moreover, several 3 and 7 T MRI studies showed that 
the proportion of the CVS in patients with MS is significantly 
higher compared with white matter lesions in patients with other 
neurological diseases, including neuromyelitis optica spectrum 
disorder, systemic autoimmune diseases, cerebral small vessel 
disease, Susac syndrome, and migraine.24 These are typical 
differential diagnoses for MS and can sometimes be difficult to 
differentiate clinically and on MRI.

Another novel radiological MS feature is the peripheral para-
magnetic rim revealed by MR susceptibility imaging (T2* 
weighted magnitude and susceptibility-weighted phase images) 
in a subset of chronic lesions. Whether this finding is caused 
only by iron deposition or other MS pathological processes is 
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still debated, but in recent years relevant insights to its patho-
physiological significance have been provided with UHF 
MRI.20,25–27 Indeed, in addition to higher SNR and space reso-
lution, phase images at UHF deliver contrast specific to field 
perturbations and show excellent contrast of local iron in 
white matter plaques, as susceptibility effects scale with field 
strength25 (Figure 1).

Finally, a promising application of UHF MRI is MR Spectros-
copy Imaging (MRSI). Indeed, the increased SNR results not 
only in improved spatial resolution for 7 T MRSI and shorter 
scan times, but also in enhanced spectral resolution (or chem-
ical shift) compared with conventional and high-field 3 T clinical 
MRSI. The improved sensitivity and specificity of 7 T MRSI allow 
identification of metabolites with low concentration and offer 
improved discrimination of peaks of metabolites that otherwise 
overlap at lower field strength, such as glutathione (GSH), gluta-
mate (Glu), glutamine (Gln), and myo-inositol (mI)28 (Figure 2).

GSH is an indicator of oxidative status in the human brain and 
a spectral editing scheme called band selective inversion with 
gradient dephasing using proton MRSI has shown a significant 
reduction of GSH between the gray matter in MS patients and 
normal controls, indicating the potential of GSH as a marker for 
disease phenotype in MS.30

However, most of the results concerning these new potential 
MS hallmarks derive from small-cohort or single-centre studies; 
therefore large, prospective, multicenter trials are required to 
confirm their diagnostic role in MS.

In summary, the main advantages of UHF MRI for MS are the 
following: a better identification and morphological characteri-
zation of both white matter and gray matter lesions; the improved 
sensitivity to detection of new possible MS marker, including the 
CVS and the peripheral paramagnetic rim; the enhanced quan-
tification of metabolites on MRSI. Although the role of these 
findings in MS diagnosis and clinical management still needs to 
be established, and the high cost of UHF MRI scanners makes 
unlikely this imaging technique to be routinely and widely used 
in clinical practice in the near future, we expect a growing appli-
cation of UHF MRI in MS, not only for the validation and iden-
tification of new MS hallmarks in large clinical studies, but also 
to guide the development of novel diagnostic and therapeutic 
strategies at lower field.

Cerebrovascular disease
Worldwide, stroke is a leading cause of mortality and disability.31 
Both CT and MRI have a critical role in the diagnosis, treat-
ment-planning, and follow-up in stroke patients: although CT 
has wide availability and faster acquisition time, MRI is the best 
technique to accurately visualize and characterize acute stroke 
on diffusion as well as both large and small vessels in the brain.32 
3D time-of-flight (TOF)-MR angiography (MRA) is an estab-
lished technique for imaging intracranial arteries thanks to the 
high signal contrast between the moving vascular protons and 
stationary protons. The T1 relaxation times of tissues increase 
with field strength, so at UHF MRI, the longer T1 values for tissue 
augment suppression of static background signal in TOF MRA 
increasing SNR and CNR in vessels with a resolution between 0.2 
and 0.3 mm3.33 (Figure 3). This allows detection of intracranial 

Figure 1. Axial SWI minIP Images at 7 T (left) and 3 T (right) of a healthy volunteer. The depiction of vessels is noticeably supe-
rior at UHF. The higher susceptibility and spatial resolution at 7 T allows detection of smaller vessels and the deoxyhenoglobin 
in veins which may be important for the detection of the “CVS” in the differential diagnoses of multiple sclerosis compare to 
other diseases which can cause demyelination such as neuromyelitis optica spectrum disorder, systemic autoimmune diseases, 
cerebral small vessel disease, Susac syndrome, and migraine, which typically woud not have the CVS. Resolution 7 T: 0.2 x 0.2 x 
1.5 mm3, scanning time = 5 min. Resolution 3 T: 0.9 x 0.9 x 1.2 mm3, scanning time = 5 min. CVS, central vein sign; SWI, suscepti-
bility-weighted imaging.
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vessels with diameters less than 0.3 mm, including the small 
lenticulo-striate arteries, the pontine arteries, and the parame-
dian thalamic–subthalamic arteries, without ionizing radiation 
of invasive methods (digital subtraction angiography and CT 
angiography) or the intravenous administration of paramagnetic 
contrast agents such as gadolinium34 (Figure 3).

Recently, a novel high-resolution black blood MRI technique has 
emerged for intracranial vessel wall imaging at 3 and 7 T using 3D 
turbo spin-echo (TSE) sequences with variable flip angles.35–38 
This T1 weighted technique (also known as SPACE, Sampling 
Perfection with Application optimized Contrast using different 
angle Evolutions) offers an isotropic 0.5 mm spatial resolution, 

Figure 2. 7 T MR spectroscopy with metabolite peaks. The single voxel spectrum (2 cm isotropic) is located in the posterior cin-
gulate cortex. The green box on top demonstrates the residual of the LCmodel fit29 .Reliable concentrations have been demon-
strated, with a standard deviation (%SD) inferior to 20% for most metabolites (Table). The improved sensitivity and specificity of 7 
T MRS allow identification of metabolites with low concentration and discrimination of peaks of metabolites that overlap at lower 
field strength, such as glutamate (Glu), glutamine (Gln), and myo-inositol (mI). SD, standard deviation.

Figure 3. Axial TOF-MRA MIP images at 7 T (left) and 3 T (right) of a healthy volunteer. An increased number of vessels is visible 
at UHF. Please note the increase conspicuity of the lenticulostriate arteries (arrows) arising from the M1 segement of the MCAs 
and the higher contrast seen in the insular branches of the MCAs (arrowheads). Resolution 7 T: 0.3 × 0.3 × 0.3 mm3, 4 × 72 slices, 
scanning time = 4 × 2.23 min. MCAs, middle cerebral arteries; MRA, MR Angiography; MIP, maximum intensity projection; TOF,time 
of flight.
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adequate flow suppression due to the long echo train, and near 
whole-brain coverage in less than 10 min; moreover, the excel-
lent contrast between intracranial arterial wall and cerebrospinal 
fluid (CSF) allows better delineation of the vessel wall bound-
aries in vessels surrounded by CSF and to identify intracranial 
arterial disease.37,38 At 7 T the substantial increase in SNR has 
led to significantly better 3D T1 weighted SPACE image quality 
compared with 3 T, demonstrating an important potential for 
improved diagnostic performance35,38 (Figure 4).

MRA and T1-SPACE at UHF may provide novel clinically rele-
vant non-invasive approaches to improve assessment of cerebro-
vascular diseases, including intracranial aneurysms,39–41 vessel 
stenosis,42,43 and microvascular pathological changes as well.44

Cerebral small vessel disease (SVD), a heterogeneous group of 
diseases affecting the perforating arterioles and capillaries in the 
brain, is the principal contributor to stroke and vascular cognitive 
impairment and dementia.45,46 Features of SVD on MRI include 
brain atrophy, lacunes, enlarged perivascular space (PVS), white 
matter hyperintensities (WMH) and cerebral microbleeds. UHF 
has demonstrated potential clinical utility in better depicting 
these parenchymal lesions. T1 weighted MPRAGE at 7 T offered 
superior visualization of the internal structure of stroke lesions 
and allowed improved detection of PVS compared with 3 T.47 
Also T2 weighted TSE sequence at 7 T showed the same bene-
fits, even though the authors observed more motion artifacts.47 
Comparable results in the identification of WMH were achieved 
with 3 and 7 T, yet better contrast between WMH and healthy 
tissue was observed at UHF.47 Furthermore, a significantly higher 
number of cerebral microbleeds was identified at 7 T compared 
with both 3 and 1.5 T MRI.48–50 Finally, the detection of cortical 
microinfarcts, another common SVD lesion not reliably visible 
on clinical MRI, was demonstrated to be feasible with 7 T scan-
ners, providing new opportunities to investigate their role in 
cognitive function of SVD patients.51 While it’s more evident 
the relevance of these preliminary findings in research, further 
investigations are required to understand their real implications 
for routine clinical practice, as previous studies included a small 
number of patients.

Blood oxygenation level dependent functional MRI (BOLD 
fMRI) is another imaging technique showing significant advan-
tages at UHF, derived from the increased SNR and susceptibility 
effects as well. The two main applications of BOLD fMRI at 7 T 
included the discrimination of the functional response between 
different cortical layers and mapping patterns of neuronal popu-
lation activity for the first time even to submillimiter isotropic 
resolution.52–55 Currently, the use of BOLD fMRI at UHF in clin-
ical practice is still limited, but in the future it might be possible 
to use this tecnhique clinically, as for tracking cortical reorgani-
zation during rehabilitation in stroke patients.

In addition to the advances in UHF MRI systems, new image 
analysis and post-processing techniques have been established 
for segmentation and quantification of microvessels, allowing 
characterization of their morphologic details such as vessel 
length, tortuosity, caliber, and ultimately leading to identification 
of diseased microvessels.56

Neuro-oncology
Neuro-oncology is another important field where UHF MRI has 
shown encouraging promise for improving the diagnosis, treat-
ment, and follow-up of brain tumors. For instance, increased 
spatial resolution may help in the detection of microvasculature 
in angiogenesis as well as small parenchymal and leptomeningeal 
metastases.

Moreover, the identification of metabolites with low concentra-
tion in 7 T MRSI is of remarkable interest for evaluating patients 
with glioma, the most common primary malignant brain tumor 
in adults.57

Ex vivo studies have demonstrated that mIn/total Choline (tCho) 
could be used to differentiate active tumor growth from prolif-
eration of reactive astrocytes in response to treatment such as 
surgery or radiotherapy, and that mIn/tCho is able to distinguish 
the low grade gliomas upgraded to grade III from the recurrent 
grade IV lesions.58,59 More recently, an in vivo study has verified 
differences in metabolite levels for regions of tumor vs normal 
brain, as well as between lesions.60 Furthermore, Verma et al 
demonstrated the ability of two dimensional localized correlated 
MR spectroscopy at 7 T to detect 2-hydroxyglutarate as a 
biomarker for the in vivo determination of IDH mutation status 
in gliomas.61 Based on these encouraging results, MRSI at UHF 
may represent a valuable non-invasive tool to accurately assess 
tumor classification and burden definition, leading to improve-
ments in treatment planning and ultimately in patient prognosis 
and quality of life. The 2016 WHO classification of brain tumors 
made the identificaton of IDH mutation vs wildtype critically 
important for the subtyping of glioblastoma multiforme and the 
outcome.

Susceptibility-weighted imaging (SWI) and T2* at 7 T have been 
investigated to study the intratumoral microvascular structure 
in gliomas. Susceptibility contrast of para-magnetic substances, 
such as deoxyhemoglobin, is magnified at UHF and allows a 
superior depiction of veins and microhemorrhages.62,63 This is 
particularly useful in brain tumors, where increased metabolism 

Figure 4. Thin minimum intensity projection across 10 mm 
slices from a 22-years-old healthy female subject at 3 and 7 
T. Improved delineation of LSAs (white arrows) and reduced 
blurring, especially in the more distal vessels (arrowheads), 
can be appreciated at 7 T compared to 3 T. The visualization 
of these LSAs allows for visualization of normal vessels as 
well as the detection of possible pathologies such as arte-
rial dissection and small LSA aneurysms (so called Charcot 
Bouchard microaneurysms). LSA, Lenticulostriate artery.
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leads to high deoxyhemoglobin levels and a better visualization 
of microvasculature on SWI. The analysis of tumor neovascu-
larization is helpful to describe the grade of brain tumors and 
offers information on patient prognosis as well.64,65 One study, 
e.g. suggested that the fractal dimension of intratumoral SWI 
pattern at 7 T MRI (indicative of microangioarchitecture and 
microbleedings) may effectively differentiate histopathological 
glial brain tumor grades.66 Grabner et al explored the applica-
tion of 7 T SWI to analyze changes in gliomas vascularization 
under antiangiogenic therapy, and they found that this task is 
especially appropriate for UHF MRI.67 Another research group 
provided evidence for an improved depiction of tumor micro-
vascularity at 7 T compared with 1.5 T, and showed increased 
vascularization from low- to high-grade gliomas.68 Furthermore, 
the authors reported that the ring-shaped enhancement after 
contrast administration in a high-grade glioma is comparable 
at 1.5 and 7 T, but the central necrosis is emphasised at 7 T,68 
and this detailed characterization may be helpful to differen-
tiate it from other similar radiological findings, such as necrotic 
metastases and cerebral abscesses. These studies demonstrate 
UHF MRI capabilities to provide useful information for grading 
gliomas and for monitoring tumor therapies.

Promising results of 7 T MRI for pituitary gland imaging have 
been achieved as well. Cushing’s disease is the most common 
cause of adrenocorticotrophic hormone (ACTH)-dependent 
Cushing’s syndrome, and is characterized by ACTH-producing 
adenoma located in the pituitary gland.69 MRI is the preferred 
imaging technique to study pituitary gland in Cushing’s Disease, 
but the majority of pituitary adenomas are microadenomas, 
and they result undetected in 36–63% of patients scanned with 
conventional clinical machines.70,71 Therefore, further examina-
tions, including invasive procedures such as inferior petrosal 
sinus sampling (IPSS), are often required to obtain a final diag-
nosis.72 De Rotte et al demonstrated that more lesions were 
detected at 7 T MRI than 1.5 T, and the characterization of the 
lesions was more accurate at 7 T as well.73 However, the authors 
reported the magnetic susceptibility effect related to the presence 
of air in the sphenoid sinus as a potential disturbing artifact for 
pituitary gland imaging.73 Recently, Law et al reported a case of 
pituitary microadenoma that was visible at 7 T, but not easily 

seen on standard 1.5 T and even 3 T imaging studies74 ; more-
over, the 7 T MRI findings correlated with the results of IPSS74 
(Figure 5 ).

In the future, 7 T MRI may become a routine valuable diagnostic 
technique in patients with MRI negative Cushing’s disease, 
possibly preventing the need of IPSS and improving the surgical 
planning and outcomes as well.

For brain metastases, the most common malignancy affecting 
the brain,57 a study published in 2010 showed that the detection 
rate of cerebral metastases of bronchial carcinoma was almost 
equivalent on 1.5 and 7 T, but 20% more intralesional microhe-
morrhages were identified on SWI at 7 T.75

Finally, a recent study reported that in two patients with orbital 
choroidal melanoma uncertainty of optic nerve involvement at 3 
T which was superiorly depicted at 7 T. This had relevant conse-
quences for clinical management.76

Epilepsy
Epilepsy affects approximately 50 million people worldwide, and 
up to 30% of patients have disabling seizures that are refractory to 
antiepileptic drugs.77 Focal cortical dysplasias (FCD) and mesial 
temporal sclerosis (MTS) are the two most common causes of 
drug-resistant focal epilepsy syndromes, and in these cases resec-
tive surgery is the most effective treatment for patients to become 
seizure-free, improving their quality of life.78 The success rate of 
epilepsy surgery is critically related to the ability to identify a struc-
tural lesion on MRI; indeed, in patients with an MRI-detectable 
lesion, seizure freedom after surgery is achieved in around 70% 
of cases, compared with 40% when MRI is negative.79 Currently, a 
significant proportion (almost 25%) of surgical candidates demon-
strates no relevant structural MRI abnormalities with conven-
tional scanners, so the introduction of more higher resolution 
imaging techniques and diagnostic tools is needed, not only for 
a better surgical outcome, but also for facilitating the pre-surgical 
planning without invasive procedures, such as intracerebral elec-
trode implantation.80 De Ciantis et al reported structural abnor-
malities detected at 7 T MRI and not previously identified with 1.5 
and/or 3 T MRI in 6 out of 21 patients (29%) with focal epilepsy.81 

Figure 5. Postcontrast T1-weighted MR images at 7 T (left), 3 T (middle), and 1.5 T (right). 7 T imaging demonstrates what appears 
to be an 8-mm right-sided hypoenhancing pituitary microadenoma (white arrow), not visible at 3 and 1.5 T. From Law et al., JNS 
201874 (https://doi.org/10.3171/2017.9.JNS171969), permission from Elsevier.
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Specifically, two sequences showed the advantage of 7 T: (1) the 
2D T2* weighted dual-echo gradient-recalled echo (GRE) targeted 
for localization of the seizure onset zone, improving the evaluation 
of the different components and even layers within the cortex, and 
(2) the 3D magnetization-prepared (MP)-FLAIR sequence.81 In a 
previous study by the same group, 7 T MRI was found to reveal 
more anatomic detail compared with 3 T in a group of 10 patients 
with polymicrogiria, a malformation of the cerebral cortex charac-
terized by an excessive number of abnormally small gyri resulting 
in a large spectrum of possible symptoms, including refractive 
epilepsy.82,83 Thanks to higher resolution 7 T MRI, the detection 
of bilateral involvement was demonstrated in four patients who 
had been classified as having only unilateral polymicrogyria at 3 
T82 ; moreover, 3D susceptibility-weighted angiography (SWAN) 
at 7 T revealed numerous dilated cortical veins not visible at 3 T, 
suggesting a role for vascular dysgenesis in the pathogenesis of 
polymicrogyria.82

Another recent paper investigated the role of PVS in the brain 
as a new potential biomarker for the altered macrophage activity 
associated with seizure onset at 7 T MRI.84 The authors used 
axial T2 weighted TSE sequences to analyze and quantify PVS 
in 21 subjects with focal epilepsy and 17 healthy volunteers: PVS 
distribution was found to be significantly more asymmetric in 
epilepsy patients, and the region of maximum asymmetry was 
within the suspected seizure onset zone in 72% of cases.84 Thanks 
to improved contrast and resolution, the depiction of PVS, also 
known as Virchow-Robin spaces, is significantly improved at 
UHF and greater details can be visualized compared with 3 T 
MRI.47

Springer et al demonstrated a higher diagnostic confidence for 
MTS at 7 T compared with 3 T, primarily due to the higher 
spatial resolution in the coronal T2 TSE sequence, even if 
the difference did not reach statistical significance.85 In their 
work, they were able to identify which hippocampal subfields 
were affected, toward assignment of the histologic subtype 
according to the ILAE consensus classification of hippocampal 
sclerosis.86 The 7 T coronal TSE sequence demonstrated the 
best conspicuity for the depiction of hippocampal area, as the 
susceptibility artifacts commonly seen in the skull base region 
did not significantly affect the imaging of hippocampus.85 
However, the coil-related signal decrease in the posterior fossa 
as well as the higher B1 inhomogeneity affecting imaging at 
UHF are still a problem.85

Finally, UHF MRI may potentially provide further insights into 
the study of patients with cryptogenic seizures, that traditionally 
represent around 30% of all epilepsies.87 For instance, previous 
studies have shown that SWI and T2*-weighted GRE sequences 
at 7 T were able to identify more cerebral cavernous malforma-
tions and possibly associated developmental venous anomalies 
compared with 3 and 1.5 T clinical scanners, respectively, and 
these findings may have important implications for diagnostic 
and therapeutic purposes as well.88,89

Neurodegenerative diseases
Alzheimer’s Disease (AD) is the most common cause of cognitive 
decline in the elderly.90 A dramatic rapid increase in population 

numbers of older people worldwide is expected in the next 
decades thanks to the progress made in medicine and social 
conditions.91 Consequently, the incidence and prevalence of AD 
and other dementias will increase, with huge costs to society and 
healthcare systems.91 Despite the efforts made by the scientific 
community to better understand the neuropathology in AD, the 
pathophysiological mechanisms of this devastating disorder are 
still not well-known and therapies that effectively reverse or slow 
AD progression are desperately needed.92

Neuroimaging approaches with UHF MRI may offer novel 
means to investigate AD. For example, previous studies showed 
that the sensitivity of 7 T MRI in detecting changes in the hippo-
campal strata is superior at 7 T compared with 1.5 and 3 T.93,94 
The stratum radiatum and lacunosum-moleculare of the Cornu 
Ammonis’ field 1 (CA1) have been shown to be thinner in 
mild AD patients than in controls, without any changes in the 
stratum pyramidale of CA1(93). Furthermore, the use of new 
segmentation techniques at 7 T allows superior quantitation of 
hippocampal subfields volumes because of the increase CNR, 
SNR, and spatial resolution. Investigators have demonstrated 
a decrease in the volume of all subfields (except CA2) and the 
enthorinal cortex in AD patients.95,96 More recently, Sepehrband 
et al were able to image the hippocampal subregions, including 
the stratum pyramidal of rostral CA3, the alveus, and even the 
endfolial pathway97 (Figure 6).

The investigation of T2* hypointensities has taken advantage 
of UHF MRI as well. Van Rooden et al reported that 3D T2* 
sequences at 7 T demonstrated abnormalities in human brain 
specimens with AD and cerebral amyloid angiopathy (CAA), 
including hypointense foci and/or diffuse grainy inhomogeni-
ties of the cortex99 ; furthermore, iron deposits were co-located 
with amyloid deposits on histology.99 According to the authors, 
these foci may represent a neuroimaging biomarker for in vivo 
detection of amyloid-β plaques, facilitating the diagnosis of 
AD and CAA.99 However, another ex vivo study using 7 T MRI 

Figure 6. Hippocampal subfield imaging with high resolution 
coronal T2 weighted contrast at 3 and 7 T. 3 T image: in-plane 
resolution: 400 μm, slice thickness: 2 mm, sequence: BLADE98 
, no repetition, total acquisition time: 10 mins. 7 T image: 
in-plane resolution: 300 μm, slice thickness: 2 mm, sequence: 
TSE, 4 averages and 2 concatenations, total acquisition time: 
11 mins. Note that Fimbria (white arrow), Alveus (arrowhead), 
and Stratum layers were resolved at 7 T. SE, turbo spin echo.
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showed that the hypointense foci were primarily located within 
the subiculum of AD specimens, suggesting that they may be 
more related to activated iron-containing microglia rather than 
amyloid deposits.100

Recently, the role played by PVS as a clearance system of cere-
bral metabolic products and its implication for neurodegener-
ation have been investigated. The UHF MRI enabled to study 
these structures with a quantitative approach and explore 
their possible influence in dementia. One post-mortem study 
showed a clear positive association between dilation of juxta-
cortical PVS in a given region revealed on 7 T MRI and higher 
amyloid-β deposition in the same area of five cerebral AD spec-
imens.101 Furthermore, Cai et al used the T2-SPACE sequence 
at 7 T to compute the total PVS volume in five AD patients 
compared with three healthy controls, and they reported that 
PVS density in centrum semiovale was significantly higher in 
AD patients.102

Finally, new evidence suggests that subtle white matter changes 
begin in preclinical AD and can be measured by diffusion 
tensor imaging (DTI), an advanced diffusion-weighted MRI 
(DWI) modeling technique for assessing the microstructure of 
the brain.103 Compared to 3 T, the higher spatial resolution and 
reduction of partial volume effects at 7 T enables better sepa-
ration of fiber bundles in white matter and cortical regions as 
well104,105 (Figures  7 and 8). A multipurpose multishell DWI 
sequence was reported to fit a clinically acceptable acquisition 
time frame of ~10 min.109

Parkinson’s Disease (PD) is the second most common neurode-
generative disorder after AD,110 and it is clinically characterized 
by motor symptoms, such as resting tremors and rigidity,111 and 
pathologically by α-synuclein intracellular inclusions, resulting 
in Lewy bodies formation and loss of neurons in substantia 
nigra (SN) and elsewhere.112 Several 7 T studies of PD have 
demonstrated the advantages of UHF MRI in comparison 
with conventional scanners imaging, reporting improvements 
in diagnostic accuracy and treatment planning. For instance, 
Cosottini et al showed that 3D multiecho SWI sequence at 7 T 
was able to precisely characterize the SN and its internal orga-
nization, leading to near-perfect discrimination of PD patients 
from age-matched healthy subjects.113 Deep brain stimulation 
(DBS) of the subthalamic nucleus (STN) is an effective surgical 
therapy for patients with advanced PD,114 however in some cases 
this treatment is not able to provide relief of parkinsonian symp-
toms, and possible side effects may occur as well.115 One of the 
most important factors for a successful outcome is the accuracy 
of targeting: the electrode should be placed preferentially in the 
motor region of the STN in order to exclude or minimize the 
stimulation of the non-motor zone.115 Plantinga et al demon-
strated that tractography-based technique at UHF MRI may facil-
itate the identification of the motor zone of the STN in individual 
patients, allowing for more optimized patient-specific surgical 
planning.116,117 Although 7 T MRI can provide significantly 
improved visualization of STN, geometric distortion (or pixel 
shifts) is more pronounced with increasing field strength, repre-
senting a critical challenge for DBS.118 Nonetheless, different 

approaches, including distortion correction and image recon-
struction techniques such as QSM, have recently shown encour-
aging results and might be useful to address this issue.119,120

cuRRent chAllenGes
Current major challenges in UHF MRI include inhomogeneity 
in the main magnetic field (B0) and the applied radiofrequency 
(RF) field (B1), increased specific absorption rate (SAR), and the 
increased sensitivity to motion artifacts.

B0 inhomogeneities are related to the magnetic susceptibility 
difference between air cavities in the human skull and brain 
tissue. This effect scales linearly with the magnetic field strength, 
leading to significant distortion and non-uniformity of signal 
intensity in images obtained at UHF, especially when very fast 
image acquisition techniques, such as echo planar imaging 
(EPI), are applied. Moreover, the metabolite peaks in MRSI may 
be affected by spectral shifts and intravoxel broadening with 
potential peaks overlapping; also, the suppression of water and 
fat is more challenging due to widening of the water and fat spec-
tral peaks. The implementation of higher order shimming has 
shown to significantly reduce the B0 inhomogeneities, but unfor-
tunately most human 7 T MR scanners are equipped with only 
second degree shims.121 Moreover, parallel imaging technique, 
such as generalized auto-calibrating partially parallel acquisi-
tions (GRAPPA), in combination with readout-segmented EPI is 
able to reduce susceptibility-related distortions and improve the 
image quality thanks to the decrease of the acquired k-space data 
and a restricted field of view (FOV).122

As the magnetic field strength increases, the Larmor wavelength 
for protons in the human head decreases and the RF wavelength 
in tissues becomes smaller than anatomical structures. The 
non-uniformity of B1 derives from the interaction between the 
asymmetric and inhomogeneous human head, the RF coil, and the 
excitation sources.123 This effect leads to changes in CNR and flip 
angles across the FOV, and a reduction of SNR from the center of 
the brain to the periphery and in the head-foot direction as well. 
Solutions to deal with B1 inhomogeneities have been proposed. 
For instance, adiabatic RF pulses, modulating frequency and 
amplitude of the applied RF field above the adiabatic threshold, 
are relatively insensitive to B1 inhomogeneities, allowing to 
uniformly rotate the net magnetization with a constant flip angle, 
and improving the outer-volume suppression.124 Another solu-
tion is the employment of parallel excitation arrays with multiple 
independent transmit coils, in order to create a more uniform B1 
field by modelling the RF waveform and the RF pulse sequences 
on each specific channel.125 B1 non-uniformities represents a 
significant challenge not only for UHF imaging of the brain, but 
especially for spinal cord imaging, as the presence of vertebral 
bodies further exacerbates B1 inhomogeneites. Despite many 
different solutions have been proposed, the optimal coil config-
uration for 7 T spinal cord imaging is not yet known and more 
efforts are needed to address this technical challenge.126

SAR represents the measurement in watts per kilograms of RF 
power delivered during the scan to human tissues, with their 
subsequent heating. SAR increases roughly quadratically with 

http://birpublications.org/bjr


9 of 15 birpublications.org/bjr Br J Radiol;91:20180492

BJRReview article: A review about MRI at ultra-high field.

the B0, and other influencing factors include the total amount 
and frequency of RF pulses: sequences using large and very rapid 
RF pulses, such as spin-echo and TSE, lead to higher SAR, while 
GRE sequences (except TOF) typically result in lower SAR. FDA 
sets regulatory limits for RF safety and all MRI scanners are able 
to compute an estimate of the SAR before each acquisition in 
order to guarantee all subjects are safe during the scan. Methods 
to lower SAR include the use of parallel imaging techniques, 
the reduction of flip angles and number of echoes in multiecho 

acquisition, and the lengthening of TR. Longer TRs naturally 
result in longer acquisition times. This is still sometimes a chal-
lenge at 7 T.

Image artifacts such as ringing, ghosting, and blurring caused 
by motion of the subject during the MRI exam constitute a 
significant problem both for clinical 1.5 and 3 T MRI, and for 
7 T MRI as well. Although imaging at UHF resulted in faster 
acquisition, the higher resolution derived from improved SNR 

Figure 7. Color fractional anisotropy (A, B, D, E) and DTI principal direction of diffusion (C, F) maps from the Human Connectome 
Project. 7 T (A, B, and C, 1.05 mm3 isotropic resolution) and 3 T (D, E, and F, 1.25 mm3 isotropic resolution) from the same subject. 
Red, green and blue indicate regions with diffusivities oriented primarily laterolateral, ventrodorsal, and rostrocaudal, respectively. 
Improved resolution allows identification of fiber tracks (red arrows and yellow arrows in B) which are faintly visible at 3 T. Note 
increased B1 + inhomogeneity resulting in signal loss in temporal lobe regions at 7 T (white arrows in A).
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lead to increased sensitivity to motion.127 Even with co-operative 
subjects, the presence of physiological spontaneous movements, 
including breathing, heartbeating, and muscle relaxation, may 
cause motion artifacts.128 Different motion correction proce-
dures exist, including post-processing retrospective techniques 
and real-time prospective methods: the first is applied after the 
data have been acquired, while the latter approach detects the 
subject motion during the scan and dynamically adjusts the 
imaging protocol tracking the motion to reduce the artifacts. For 
instance, prospective motion correction system (Kineticor, HI), 
using an optical tracking system composed by a single camera 
and a moiré phase tracking marker to obtain head motion 
information in real time, has recently shown to be feasible and 

effective in reducing the artifacts caused by physiological move-
ments at 7 T MRI.129

Another limiting factor that impacts both research and clin-
ical utilization of 7 T MRI is related to biomedical implants. 
Currently, relatively few implants have undergone proper testing 
at 7 T MR scanner, precluding a significant portion of subjects 
and patients from taking advantage of UHF MRI.130–132

Moreover, although many 7 T protocols have demonstrated 
to provide images with a significantly higher level of details 
compared with 3 T MRI, increased resolution is often concomi-
tant with increased image-encoding burden that can cause long 

Figure 8. Fiber orientation glyphs (A, B) and tractography reconstructions (C, D) from the Human Connectome Project. 7 T (A, 
C: 1.05 mm3 isotropic resolution) and 3 T (B, D: 1.25 mm3 isotropic resolution) from the same subject. Fiber orientations were 
estimated using FSL BEDPOSTX106 and visualized using the Quantitative Imaging Toolkit (QIT);107 the 7 T data shows improved 
modeling of cortical fiber orientations (blue arrow). Tractography models of the superior longitudinal fasciculus I were created 
using deterministic streamline tractography in QIT107,108; the 7 T data shows improved reconstruction of orbitofrontal connections 
of the pathway in both hemispheres (white arrow).
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scan times, a condition not always acceptable in clinical setting. 
For this reason, new acquisition methods, including RF pulse 
design schemes and parallel imaging approaches such as simul-
taneous multislice and volumetric 3D imaging, have been devel-
oped in order to obtain high-quality images over the entire brain 
within a relatively short time-frame.133

conclusion
7 T MRI is set to become a clinical tool in addition to numerous 
research applications. Several studies have demonstrated that the 
increased spatial resolution and SNR may have significant clin-
ical implications for the diagnosis, treatment, and follow-up of 
patients in a number of neurological diseases. However, further 

studies comparing conventional, high-field, and UHF MRI are 
needed in order to verify on a larger scale the diagnostic and 
therapeutic advantages reported in previous studies discussed in 
this paper. Moreover, the development of new imaging, post-pro-
cessing, and analyses techniques is desirable not only to over-
come the technical challenges, but also to maximize the image 
quality attainable at UHF MRI so as to demonstrate current and 
discover future clinical applications.
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