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Abstract

We present a new method to robustly discriminate clustered from random distributions of 

molecules detected with single molecule localization microscopy-based techniques like PALM and 

STORM. The approach is based on the deliberate variation of the labeling density, e.g. by titration 

of fluorescent antibody, combined with quantitative cluster analysis. It thereby circumvents the 

problem of cluster artifacts generated by overcounting of blinking fluorophores.

In recent years, several strategies have been developed to achieve nanoscopic resolution in 

light microscopy. Among them, single molecule localization-based methods including 

photo-activated localization microscopy (PALM) and (direct) stochastic reconstruction 

microscopy ((d)STORM) have become increasingly popular1. The techniques rely on 

fluorophores that can be stochastically switched between a dark off- and a fluorescent on-

state under conditions where only a marginal number of fluorophores is in the on-state at 

any given time. Typically, stacks of thousands of images are recorded from a sample that is 

chemically fixed to prevent motion of the fluorophores during data acquisition. Finally, 

single molecule positions are determined2 and localization maps of the sampled molecules 

are reconstructed. Currently, a number of image processing algorithms are available to 

identify and characterize clusters of single molecule localizations3–7.
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In the field of membrane biology, PALM and (d)STORM have been widely used, providing 

maps of plasma membrane constituents or associated proteins in unprecedented detail1, 5, 

8–12. One remarkable finding has been the observation of nanoscale clustering of virtually 

any membrane protein8. Recently, however, notes of caution were raised that multiple 

observations of single fluorophores also lead to clustered localizations and may closely 

resemble clustered molecules3, 13–17, thereby impairing direct conclusions from the 

observed localization clusters on the presence of protein clusters. The main problem arises 

from the stochastic blinking behavior of organic fluorophores as well as fluorescent proteins.

Several researchers have approached this problem by a posteriori methods. Annibale et al 

proposed to combine events that are assumed to be caused by multiple observations of the 

same fluorophore3, 14. This approach, however, is hampered by the difficulty to 

discriminate overcounting of the same dye molecule from observations of different 

colocalized dye molecules, especially when long-lived dark states of fluorophores are 

present3. Another method applies pair (auto-) correlation analysis (PCA) to address the 

problem of overcounting5. A PCA curve ideally consists of two more or less well separated 

components: a short decay corresponding to multiple observations of the same dye 

molecules within the localization precision, and a long decay reporting the size of true 

protein clusters. Provided that all molecules are immobilized, PCA is robust against 

heterogeneities in the dye blinking statistics. Chemical fixation protocols, however, are often 

insufficient to completely immobilize the molecular components of cellular samples18, 

particularly in view of the long recording times of tens of minutes required for obtaining 

superresolution images. In addition, the method reaches its limits when protein clusters are 

not significantly larger than the spread of localizations obtained from a single blinking 

fluorophore.

In contrast to previous approaches based on post-processing, we tried to find experimental 

criteria to distinguish random from clustered distributions of molecules, which are 

insensitive to the blinking statistics of the used fluorophores and their residual mobility. We 

reasoned that varying the labeling density would lead to characteristic changes in the 

obtained localization maps. For homogeneous protein distributions the relative area covered 

by apparent clusters resulting from fluorophore blinking will increase steadily with 

increasing degree of labeling. Concurrently, the density of localizations per cluster will 

remain constant. Conversely, if molecules are clustered the relative area will saturate, and 

the density of localizations per cluster will be proportional to the degree of labeling.

In order to test our predictions, we simulated localization maps for randomly distributed 

(Fig. 1a) and clustered (Fig. 1b) molecules at varying density. Each molecule was allowed to 

blink stochastically, yielding an average of seven observations per molecule that were 

distributed around each molecular position with a localization error of 40 nm. Clusters were 

simulated by randomly distributing varying numbers of molecules within circles with a 

radius of 50 nm, which corresponds to the size of published nanoclusters10. Notably, 

irrespective whether randomly distributed or clustered molecules were simulated, all images 

display heterogeneities in the localization density, which is also reflected by characteristic 

peaks in Ripley’s K function (Supplementary Fig. 1). Our method is based on the 

quantitative characterization of these apparent clusters at different labeling densities. Binary 
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cluster masks were established from thresholded localization density maps based on the 

recorded or simulated single molecule positions and the known localization errors (Fig. 1a 

and b; see also Methods and Supplementary Fig. 2). For each image, we counted the number 

of total localizations per μm2 (locs/μm2), the relative area coverage by the cluster masks (η), 

and the average density of localizations within the apparent clusters (ρ). Both η and ρ 
showed a characteristic difference in their dependence on locs/μm2 for randomly distributed 

versus truly clustered molecules (Fig. 1c). We defined the intersection of the density curves 

with the y-axis as ρ0; hence, ρ0·σ2π gives an estimate of the number of counted localizations 

per molecule, with σ denoting the localization precision. The difference between clustered 

and random distributions becomes even more pronounced when plotting the normalized 

density ρ/ρ0 against η: for randomly distributed molecules a rather horizontal line can be 

observed, whereas true clustering yields a strong increase in ρ/ρ0.

In order to validate the robustness of our approach, we varied several parameters in our 

simulations. First, we ensured that the selected threshold for the mask algorithm and the 

degree of overcounting had no effect on the results of the analysis; the latter accounts for 

multiple reappearances of single dye molecules and for the presence of multiple 

chromophores per labeling antibody. Both for randomly distributed and for clustered data we 

obtained robust curves after normalization (Supplementary Fig. 3a and b; see Supplementary 

Fig. 3c-f for not-normalized curves). Also residual mobility of the randomly distributed 

proteins had no effect on the shape of the obtained curves (Supplementary Fig. 4a and b). As 

discussed above, repeated photoactivation cycles of the same molecule generate pseudo-

clusters in superresolution images which are difficult to discriminate from true clusters. We 

thus simulated the worst case scenario, in which a small proportion of randomly distributed 

molecules is virtually not photobleachable and thus generates substantially more 

localizations per molecule than the average (Supplementary Fig. 4c and d). Also under these 

circumstances, the overall shape of the curve remained unchanged. The additional spread in 

the ρ/ρ0 ratios for small values of η can be ascribed to fluctuations in the total number of 

non-bleachable molecules per localization map. Taken together, we could use the obtained 

η-dependence of ρ/ρ0 for randomly distributed localizations as a reference curve for 

subsequent plots (red line plotted in Fig. 1c).

We next evaluated the effect of different numbers of true clusters per image (Supplementary 

Fig. 4e) and of different cluster sizes (Supplementary Fig. 4f). From this it becomes evident 

that our approach robustly detects a broad range of cluster scenarios; only high numbers and 

large sizes of clusters are difficult to identify, as the images converge to a homogeneous 

distribution of localizations. Next, we emulated the effect of the presence of non-clustered 

molecules or of unspecifically bound label by adding randomly distributed blinking 

molecules to our clustered localization maps. The presence of large numbers of background 

signals shifted the obtained curves towards the reference for randomly distributed molecules 

(Supplementary Fig. 4g). In summary, our method yields clear differences between random 

and clustered distributions of molecules over a broad range of cluster parameters.

We further assessed the sensitivity of our method to detect small oligomers. To this end, we 

simulated pentamers at a density of 50 molecules per μm2 (i.e. 10 pentamers per μm2). We 

further included free monomers at varying concentrations up to equal densities as 
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background. To mimic the label titration experiment, we calculated images with increasing 

numbers of dye molecules assigned to each oligomer. As expected, increasing background 

levels of unclustered molecules reduced the sensitivity (Supplementary Fig. 4h). Still, our 

simulation shows that pentamers can be readily detected at all simulated background levels.

Having tested our method on simulated data, we further evaluated our approach in a 

synthetic experimental setting. We used microcontact printing to produce circular clusters of 

IgG arranged in periodic patterns on glass surfaces (˜200 nm diameter, ˜6 clusters per μm2); 

interspaces were passivated by BSA. To mimic random protein distributions, we 

immobilized the biotinylated primary IgG via streptavidin randomly on the glass surface. In 

both cases, an AF647-conjugated secondary antibody was titrated to probe for clustering. 

Imaging conditions, particularly laser settings, were kept constant for recording the titration 

series. The ρ/ρ0 versus η plot shows clear differences between the clustered scenario and the 

random distribution (Fig. 2).

Finally, we applied our method in cell biological settings. Clathrin-coated pits (CCPs) 

represent a well-established example for protein clusters in the plasma membrane19. We 

stained CCPs in fixed Jurkat cells with different concentrations of an AF647-labeled 

clathrin-heavy chain- (HC-) specific antibody (Supplementary Fig. 5a), thereby varying the 

degree of clathrin labeling between ˜5% and ˜85% (Supplementary Fig. 6a). Indeed, results 

were characteristic for clustered molecules (Fig. 3a).

To test our method on membrane protein nanodomains, we analyzed the clustering of 

LFA-1, an integrin specific to immune cells, which was reported to cluster upon 

activation20. Also in this case, we found pronounced deviation from a random distribution 

(Fig. 3b and Supplementary Fig. 6b). As negative control, we confirmed previous PALM 

data5 that glycosylphosphatidylinositol- (GPI-) anchored mGFP does not form substantial 

clusters in the plasma membrane (Fig. 3c and Supplementary Fig. 6c). In this case, we 

titrated AF647-labeled GFP-Trap to detect the mGFP-GPI.

The major asset of our method, however, is its robustness against the erroneous detection of 

nanoclusters due to overcounting. Specifically, several reports have proposed the existence 

of nanoscopic clusters of signaling components in T cells4, 9, 10. One example relates to 

Lck, the key kinase responsible for early T cell signaling, which was found to be clustered in 

domains of 100 nm diameter10. We hence used our method to revisit Lck nanoclustering on 

the T cell plasma membrane. At first inspection, dSTORM data of endogenous Lck labeled 

with an AF647-conjugated antibody might seem indicative of a non-random protein 

distribution (Supplementary Fig. 5b). Label titration analysis, however, yielded results 

consistent with a homogeneous protein distribution, and hence did not support the presence 

of Lck nanoclusters (Fig. 3d and Supplementary Fig. 6d).

If nanocluster formation does not directly depend on the protein of interest, our method is 

also compatible with PALM by using natural variations in the expression levels between 

individual cells. For this, we analyzed the clustering behavior of ectopically overexpressed 

GPI-anchored mEOS3.2, and an mEOS3.2-chimera of Lck. Consistent with the dSTORM 

experiments, we found considerable heterogeneity in the single molecule localizations 
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(Supplementary Fig. 7), but no clustering of the two constructs (Fig. 3e and f). In the case of 

Lck, also T cell activation via antibody-coated surfaces did not affect the random 

distribution (Supplementary Fig. 8). Finally, we reconstructed the putative diffraction-

limited image from an Lck-mEOS3.2 superresolution image and compared it with the 

according diffraction-limited protein distribution obtained by direct antibody labeling of 

Lck-mEOS3.2 on the very same cell; strikingly, there was no similarity between the two 

images (Supplementary Fig. 7), thereby demonstrating the extent of the problem.

In summary, our method complements current experimental strategies to characterize protein 

organization at the nano-scale. It can detect nanoclustering over a broad range of parameters 

found in cells. Importantly, the approach is insensitive to common imaging artifacts inherent 

to single molecule localization-based superresolution techniques.

Online Methods

Cell culture, DNA constructs, antibodies and reagents

Jurkat E6-1 T cells and Chinese Hamster Ovary (CHO) cells were from the American Type 

Culture Collection. Lck-deficient JCaM1.6 T cells were from the European Collection of 

Authenticated Cell Cultures. All cell lines were regularly tested to exclude Mycoplasma 
contamination. Jurkat cell lines were cultured in RPMI 1640 medium (Sigma-Aldrich), CHO 

cells in DMEM/HAM’s F-12 medium (Lonza); media were supplemented with 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, 1,000 U ml-1 penicillin/streptomycin (all from 

Sigma-Aldrich) and cells were grown in a humidified atmosphere at 37 °C and 5% CO2. For 

microscopy, we used an imaging buffer consisting of HBSS (Lonza) supplemented with 2% 

FBS. Fluorescent proteins (mEOS3.2, mGFP) were fused to the C-terminus of Lck21 or to 

the N-terminus of the GPI-anchor signal of the human folate receptor22. Fusion proteins 

were obtained by site-specifically inserting the PCR amplified sequence of the respective 

fluorescent protein into the retroviral expression vector construct pBMN-Z-Lck. Stable cell 

lines were generated by retroviral infections based on protocols from G. Nolan (Stanford 

University). Positive cells were enriched via a fluorescence assisted cell sorter (FACSAria; 

BD Biosciences). Fura-2-AM was from Molecular Probes. Cholesterol-PEG-KK114 was 

provided by A. Honigmann (Max Planck Institute of Molecular Cell Biology and Genetics, 

Dresden). Lck-specific antibody (BioLegend; clone Lck-01; catalog number 628301), LFA-1 

(CD11)-specific antibody (BioLegend; clone TS2/4; catalog number 350602) and GFP-Trap 

(ChromoTek) were labeled with Alexa Fluor (AF) 647-NHS (Molecular Probes) following 

the supplier’s instructions and purified with Zeba desalting columns (Thermo Fisher 

Scientific). AF647-labeled antibody (clone X22) against clathrin heavy chain (anti-clathrin-

HC-AF647) was purchased from Novus Biologicals (catalog number NB300-613AF647). 

CD3ε-specific antibody (clone OKT3; catalog number SAB4700041), fibronectin for 

surface coating and all other chemicals were obtained from Sigma-Aldrich if not noted 

otherwise. The biotinylated murine GFP-antibody (clone 9F9.F9; catalog number 

NB110-40670) was purchased from Novus Biologicals, AF647-conjugated goat anti-mouse 

secondary antibody was from Thermo Fisher Scientific (catalog number A-21235).

Baumgart et al. Page 5

Nat Methods. Author manuscript; available in PMC 2019 March 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Sample preparation

For imaging, cells were seeded on surface-coated LabTek chamber slides in imaging buffer 

at 37 °C for 5-10 min. Surfaces were prepared by incubating slides with 50 μg ml-1 

fibronectin for 30 min at RT. To activate Jurkat cells, slides were coated with 10 μg ml-1 

anti-CD3ε for 2 hrs at 37 °C. For experiments under activating conditions, cells were 

incubated on anti-CD3ε-coated glass slides for 10 min at 37 °C. Cells were fixed with 4% 

paraformaldehyde (PFA) for 10 min at RT. For antibody staining, cells were permeabilized 

with 0.1% (wt/vol) Triton X-100 for 10 min at RT and unspecific binding sites were blocked 

by incubation with blocking buffer consisting of HBSS containing 5% BSA (wt/vol) for 30 

min at RT. Samples were incubated with antibodies diluted in blocking buffer at varying 

concentrations for 2 hrs at RT. Finally, cells were washed with HBSS and fixed again with 

4% PFA for 10 min at RT to avoid unbinding of antibodies during dSTORM 

measurements23.

Soft Lithography

Microstructured surfaces were made following a protocol adapted from Schwarzenbacher et 

al.24. Polydimethylsiloxan- (PDMS-) based polymers with 200 nm pillars (EV Group) were 

incubated with 50 μg ml-1 streptavidin in PBS for 15 min and dried with N2. Immediately 

after drying, the stamp was placed onto a plasma-cleaned glass coverslip (Menzel Gläser, 

Cover Slips #1) and incubated for 60 min. After removal of the stamp, the coverslip was 

incubated with biotinylated mouse IgG for 15 min at a concentration of 10 μg ml-1 in PBS 

with 1% BSA (wt/vol) and washed extensively with PBS. Finally, AF647-conjugated goat 

anti-mouse antibody was titrated at different concentrations, incubated for 15 min and 

washed with PBS. All steps were performed at RT.

Microscopy setup

All experiments were performed on a modified Zeiss Axiovert 200 inverted microscope 

equipped with a 100 × oil-immersion objective (Zeiss Apochromat NA1.46). The setup was 

equipped with a 640 nm diode laser (Toptica iBeam smart 200 mW), a 532 nm diode-

pumped solid state (DPSS) laser (Spectra physics Millennia 6s) and a near UV light 405 nm 

ion laser (Coherent Innova 90C). Intensity modulation and timings were controlled either 

directly or with an acousto-optic modulator (AOM) using custom-written Labview software. 

Laser lines were overlaid with an OBIS Galaxy beam combiner (Coherent). Emission light 

was filtered using appropriate filter sets (Chroma) and recorded on an IXON DU 897-DV 

EM-CCD camera (Andor). Multi-color imaging was performed using an emission light 

splitter (Optosplit; Cairn Research) adapted to the spectral characteristics of the used 

fluorophores. Total internal reflection fluorescence (TIRF) illumination was achieved by 

shifting the excitation beam in parallel to the optical axis with a mirror mounted on a 

motorized movable table. For ratiometric Fura-2 imaging, we used a polychromatic Xenon 

light source combined with a monochromator (polychrome V; TILL photonics) that 

provided light at 340 nm and 380 nm.
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Ratiometric Ca2+ measurements

T cell activation was quantified with Fura-2-AM. Cells were incubated with 5 μg ml-1 

Fura-2-AM in supplemented RPMI medium for 15 min at RT, washed twice in imaging 

buffer and kept on ice until imaging. For each experiment, cells were resuspended in 

imaging buffer at 5×107 cells/ml and 5 μl were deposited close to the surface of an imaging 

chamber, which was mounted on the microscope at RT. Image acquisition began 

immediately, recording 1,000 frames at 1 Hz. Image stacks were processed and analyzed 

using ImageJ.

Quantitative antibody binding assay

In order to quantify the degree of antibody binding, we labeled fixed and permeabilized cells 

labeled with different concentrations of AF647-conjugated antibodies. Antibody binding 

was measured as mean fluorescence per pixel under TIRF illumination using the 640 nm 

laser line. For each dilution step 15-20 cells were imaged. Average background-corrected 

fluorescence values were fitted to the equation [AB] = [B] · [Amax] / (Kd + [B]) assuming 

first order binding, where [AB] denotes the surface density of bound antibody, [B] is the 

antibody concentration in solution, [Amax] stands for the fitted total surface density of 

antibody binding sites and Kd is the dissociation constant.

Superresolution microscopy and image reconstruction

PALM experiments were carried out in imaging buffer. For excitation of mEOS3.2 we used 

the 532 nm laser line. The 405 nm laser constantly illuminated the sample in order to 

continuously switch new molecules. For dSTORM measurements, we used previously 

published switching buffer conditions optimized for AF64723: PBS (pH 7.4) was 

supplemented with 10% glucose, 0.5 mg ml-1 glucose oxidase, 40 μg ml-1 catalase and 50 

mM cysteamine. In dSTORM experiments with AF647, the majority of fluorophores was 

first transferred into a non-fluorescent dark state using high power 640 nm laser 

illumination. Then, single molecules were imaged at 640 nm excitation at lower power, 

keeping the 405 nm laser continuously on in order to switch molecules back to a fluorescent 

state. Both PALM and dSTORM images were recorded as stacks of 10,000 frames at 100 

Hz. Stroboscopic illumination protocols were applied with 3 ms illumination time and 7 ms 

delay between consecutive images. Single molecule signal localization and image 

reconstruction was carried out with the open-source ImageJ plugin ThunderSTORM25. 

Stringent post-processing parameters were chosen to discard signals with low localization 

precision. On average, we obtained localization errors of σ = 20 nm for AF647 and σ = 30 

nm for mEOS3.2. Merging of localizations was performed with a grouping radius adjusted 

to the average localization precision of the respective fluorophores. If not specified 

otherwise, we used 50 frames off-time. No drift correction was applied. Ripley’s K 

analysis26 was carried out using custom-written Matlab code.

Quantitative cluster analysis

Clusters were identified using custom-written Matlab code (Supplementary Software). Each 

localization within a region of interest was represented by a 2D Gaussian function with fixed 

σ = 35 nm, centered at the recorded position. By summing up the Gaussian peaks, 
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localizations in close proximity to each other resulted in higher peaks than well separated 

localizations (Supplementary Fig. 2a). Binary cluster masks were obtained by applying a 

threshold (thr = 2.5) that was chosen after visual inspection of cluster masks at different 

thresholds (Supplementary Fig. 2c). The cluster masks were then used to classify 

localizations as clustered or not-clustered. To reduce the overestimation of cluster sizes, 2D 

Gaussians were set to zero beyond a radius of 2σ (Supplementary Fig. 2b). Finally, the total 

cluster area (Ain) within the region of interest (A), as well as the number of localizations 

inside (#in) and outside of clusters (#out) was determined. This allowed us to calculate the 

density of localizations per cluster area (ρ = #in/Ain) and the relative clustered area per 

image (η = Ain/A).

Simulation of randomly distributed molecules

Molecules were distributed randomly as xy coordinates on a 12,800 × 12,800 nm sized 

image. Each molecule was assumed to yield multiple localizations due to blinking with an 

average of seven observations per molecule drawn from an exponential distribution. 

Localizations were scattered around the xy position of each molecule, following a 2D 

Gaussian probability distribution defined by σ = 40 nm. To account for variations in the 

labeling density, we simulated different numbers of molecules over a broad range, keeping 

all other parameters constant. Random noise consisting of 300 randomly distributed single 

localizations was also included in each image. In Supplementary Figure 3, we varied the 

blinking statistics and the analysis threshold. In Supplementary Figure 4a and b, we tested 

the effect of residual diffusion of molecules during image acquisition. To simulate single 

molecule trajectories, we assumed a diffusion coefficient D = 1.1 × 10-5 μm² s-1 (determined 

experimentally for Lck-mEOS3.2 in fixed JCaM1.6 cells, not shown) as well as a specified 

image acquisition rate and total number of recorded frames. Localizations were then 

randomly distributed along each trajectory, using the blinking statistics and the localization 

errors as above. Finally, in Supplementary Figure 4c and d we included the indicated small 

fractions of molecules with different blinking statistics of 100 localizations per molecule on 

average (exponentially distributed).

Determination of the standard curve for randomly distributed localizations and ρ0

We simulated data for randomly distributed molecules under different conditions (variations 

in blinking statistics and thresholds, see Supplementary Figure 3). Each data set could be 

fitted well with a polynomial of the form ρ = ρ0(1 + α · ηb) with constant α = 1.4 and b = 4; 

ρ0 turned out to depend on various imaging and analysis parameters. We normalized the data 

sets with respect to ρ0, yielding the average reference curve for randomly distributed 

localizations ρ/ρ0 = 1 + 1.4 · η4. Clustered distributions could also be fitted well with this 

polynomial, albeit with different values for α and b. We hence used such fits for determining 

ρ0 in all simulations and experiments, which ultimately allowed for plotting ρ/ρ0 versus η.

Simulation of clustered molecules

To simulate clusters, molecules were placed randomly according to a uniform distribution 

within circles around cluster centers, which themselves were distributed uniformly within 

the field of view. The number of molecules per cluster was varied following a normal 

distribution with a standard deviation of 33% of the mean number of molecules per cluster. 
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Additionally, we added molecules that were uniformly distributed over the whole field of 

view (25% of the total number of clustered molecules), in order to account for unspecific 

binders or monomeric blinking molecules. All simulated molecules followed the same 

blinking statistics (average of seven localizations per molecule). Random noise consisting of 

300 uniformly distributed single localizations was further included in each image. In order to 

account for variations in the labeling density, we simulated different numbers of molecules 

per cluster over a broad range, keeping all other parameters constant.

Simulation of pentamers

Pentamers were simulated as randomly distributed 5-mer centers. Each pentamer center was 

filled with n molecules following a binomial distribution with the probability p. Hence, p 

corresponds to the labeling efficiency in a titration experiment. As in the other simulations, 

each molecule was assumed to yield multiple localizations due to blinking with an average 

of seven observations per molecule drawn from an exponential distribution. Random noise 

consisting of 300 randomly distributed single localizations was also included in each image. 

Additionally, we added different amounts of molecules that were uniformly distributed over 

the whole field of view, in order to account for unspecific binders or monomeric blinking 

molecules. For all simulations of small oligomers, the total number of molecules was kept 

constant (50 μm-2), only p was varied.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of label density variation on randomly distributed versus clustered molecules.
(a, b) Simulations of increasing numbers of randomly distributed (a) and clustered 

molecules (b), each yielding an average of seven localizations per molecule (red); the 

calculated cluster masks are shown in white. For clustered distributions we assumed cluster 

radii of 50 nm and 3 clusters/μm2. We simulated localization densities of ˜50 locs/μm² (left), 

˜500 locs/μm² (center) and ˜1,000 locs/μm² (right). Scale bars correspond to 1 μm. (c) 

Quantification of the relative clustered area per image (η) and the density of localizations 

per clustered area (ρ); the plots show characteristic changes of η and ρ with increasing 
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numbers of localizations (left and center), as well as a characteristic η-dependence of ρ/ρ0 

(right). ρ0, which is used for normalization of ρ/η plots, is highlighted by a red circle 

(center). The red line indicates the reference curve for a random distribution.
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Figure 2. Label density variation of randomly distributed and clustered proteins on synthetic 
surfaces.
Streptavidin was adsorbed to glass surfaces either randomly (a) or as 200 nm-sized clusters 

via microcontact printing (b), and incubated with biotinylated murine IgG. The images show 

a titration series where the biotinylated IgG was detected via an AF647-conjugated IgG-

specific antibody at the indicated concentrations. From reconstructed dSTORM localization 

maps ρ and η values were calculated for each image to generate normalized ρ/η plot (a, b 
bottom right, respectively). >10 images were recorded per titration step; each data point 
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represents a single image. The red lines indicate the reference curve for a random 

distribution. Scale bars correspond to 1 μm.
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Figure 3. Cluster analysis of different proteins in the cellular plasma membrane.
Label density variation for different membrane proteins yielded characteristic normalized ρ/

η curves for each protein. (a-d) Cells were stained at different label concentrations and 

imaged via dSTORM: Jurkat T cells were labeled with anti-clathrin-HC-AF647 (a) or anti-

LFA-1-AF647 (b). CHO cells expressing GPI-mGFP were labeled with GFP-Trap-AF647 

(c). Jurkat T cells were labeled with anti-Lck-AF647 (d). (e, f) PALM was carried out at 

different expression levels of GPI-mEOS3.2 in CHO cells (e) or Lck-mEOS3.2 in JCaM1.6 
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T cells (f). Each data point represents a single cell; up to 5 independent experiments were 

pooled for each graph. The red lines indicate the reference curve for a random distribution.
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