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Abstract

Objectives: The conceptual models underlying physical activity interventions have been based 

largely on differences between more and less active people. Yet physical activity is a dynamic 

behavior, and such models are not sensitive to factors that regulate behavior at a momentary level 

or how people respond to individual attempts at intervening. We demonstrate how a control 

systems engineering approach can be applied to develop personalized models of behavioral 

responses to an intensive text message-based intervention.

Design & Method: To establish proof-of-concept for this approach, 10 adults wore activity 

monitors for 16 weeks and received five text messages daily at random times. Message content 

was randomly selected from three types of messages designed to target (1) social-cognitive 

processes associated with increasing physical activity, (2) social-cognitive processes associated 

with reducing sedentary behavior, or (3) general facts unrelated to either physical activity or 
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sedentary behavior. A dynamical systems model was estimated for each participant to examine the 

magnitude and timing of responses to each type of text message.

Results: Models revealed heterogeneous responses to different message types that varied 

between people and between weekdays and weekends.

Conclusions: This proof-of-concept demonstration suggests that parameters from this model 

can be used to develop personalized algorithms for intervention delivery. More generally, these 

results demonstrate the potential utility of control systems engineering models for optimizing 

physical activity interventions.
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The widespread availability of mobile technology, such as smartphones with messaging 

capability, has created new possibilities for intervening on health behaviors in the natural 

context of individuals’ daily lives. This technology can expand the reach of physical activity 

interventions to address the widespread physical inactivity worldwide (Hallal et al., 2012). 

These tools have created, for the first time ever, the potential to adapt and personalize 

interventions to address the needs of individuals in the dynamic contexts of their daily lives 

(Heron & Smyth, 2010; Nahum-Shani, Hekler, & Spruijt-Metz, 2015). One of the major 

barriers to realizing the vision of personalized physical activity messaging interventions is 

that theories of physical activity determinants have been vague about the dynamics of those 

processes (Riley et al., 2011). In this paper, we shift the focus from physical activity 

determinants (e.g., goals, efficacy beliefs) to the idiosyncratic nature of treatment responses 

to a theoretically-guided text message intervention. This manuscript demonstrates an 

application of methods from the field of control systems engineering to identify these 

treatment responses as a step toward developing personalized physical activity messaging 

interventions. The focus is conceptual rather than technical in an attempt to bridge the 

concepts and tools from behavioral science and engineering.

Behavioral Intervention via Technology

Text messages (i.e., short message service [SMS]) and app-driven notifications have been 

used to deliver mobile physical activity interventions. These asynchronous message 

interventions have been widely implemented because this mode of communication is device 

agnostic, easy to use, inexpensive, and capable of reaching large segments of the population 

(Cole-Lewis & Kershaw, 2010). The most recent meta-analysis of text message intervention 

effects on preventive health behaviors concluded that “text message interventions are 

capable of producing positive change” (Armanasco, Miller, Fjeldsoe, & Marshall, 2017, p. 

391). Most of the available evidence in that review involved interventions for smoking 

cessation or physical activity promotion. The overall pooled effect size for text message 

interventions was small (d = 0.24) but trended slightly larger for physical activity 

interventions (d = 0.35) (Armanasco et al., 2017). This effect compared favorably with the 

average effect of in-person interventions on physical activity in healthy adults (d = 0.19; 

Conn, Hafdahl, & Mehr, 2011). But text message interventions have typically been 
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implemented as blunt instruments with theory guiding message content but lacking a strong 

empirical or theoretical basis for the selection or timing of messages.

Physical activity is a dynamic behavior. It varies throughout the day and from day to day 

(Martin et al., 2014). Over half of the variance in daily physical activity appears to lie within 

individuals from one day to the next (e.g., Conroy, Elavsky, Maher, & Doerksen, 2013). 

These momentary and daily behavioral fluctuations can inform our understanding of 

physical activity dynamics. Selecting and timing interventions to coincide with opportunities 

for physical activity should improve intervention outcomes by reducing attempts at 

intervention when participants are unable or unlikely to respond. Yet the physical activity 

motivation theories that frequently underlie messaging interventions rarely address time-

varying contexts or psychological processes to guide intervention selection or timing. 

Indeed, few health behavior theories used to guide mHealth intervention development have 

explicitly addressed the dynamics of either health behavior or its underlying motivation 

(Riley et al., 2011). This silence stands in contrast to the increasing availability of sensors to 

measure physical activity passively which have created new possibilities for just-in-time 

interventions (Riley, Martin, & Rivera, 2014).

To illustrate, social-cognitive theory has arguably been one of the most influential theories of 

physical activity motivation and has provided the conceptual roots for many interventions 

with a variety of populations (McAuley & Blissmer, 2000; Rhodes & Nigg, 2011; Young, 

Plotnikoff, Collins, Callister, & Morgan, 2014). It is the most frequently cited theory in 

content creation for text message interventions for physical activity (Armanasco et al., 

2017). Briefly, this theory proposes that physical activity is directly influenced by self-

efficacy beliefs and goals, and that each of those constructs have their own determinants 

(Bandura, 1997, 2004). Scores of cross-sectional and prospective studies have provided 

evidence in support of these propositions (Young et al., 2014). The theory also proposes 

strategies that can be used to modify these cognitions. Yet the theory does not clearly specify 

when these cognitions should be changed or how much they should be changed to regulate 

ongoing behavior. Consequently, interventions developed based on social-cognitive theory 

have relied on a black box model that requires assumptions about the timing and magnitude 

of the processes outlined in the conceptual model.

Computational models based on social-cognitive theory have been proposed to formalize 

some of these dynamic processes (Hekler, Michie, et al., 2016; Martín et al., 2014; Pirolli, 

2016; Riley et al., 2016, 2014; Spruijt-Metz et al., 2015; Timms, Martin, Rivera, Hekler, & 

Riley, 2014). These models often use a fluid analogy to describe the ebb and flow of 

motivation across systems of inputs and outputs. Modeling and simulation work illustrates 

the value of these models but they have yet to realize their intended impact on intervention 

development and public health. This computational approach holds tremendous promise for 

elaborating and refining theory. Computational approaches can also be applied differently to 

model dynamic behavioral responses to periodic interventions, such as individual text 

messages (Ashour et al., 2016). Although this black-box approach would not allow us to 

understand the psychological dynamics related to an intervention, it would provide a 

mathematical foundation for optimizing interventions by adapting the selection and timing 

of messages to produce desired effects on behavior.
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One Size May Not Fit All

Three widely-used strategies to adapt (i.e., customize) interventions for groups or 

individuals involve targeting, tailoring, and personalizing (Armanasco et al., 2017; Fjeldsoe, 

Marshall, & Miller, 2009; Kreuter & Skinner, 2000; Napolitano & Marcus, 2002; Schmid, 

Rivers, Latimer, & Salovey, 2008). Targeting involves creating specific message content to 

be used by specific groups (e.g., obese adults, breast cancer survivors). Tailoring involves 

creating specific message content based on user data (e.g., feedback on goal accomplishment 

from step counts). Personalizing involves adding static, user-specific information ‒ such as 

someone’s name ‒ to a message. This strategy has a history in health messaging 

interventions that is distinct from the emergent area of personalized medicine. Critically, 

none of these strategies consistently increases text message intervention effect sizes on 

physical activity (Armanasco et al., 2017). One reason these strategies have not had their 

intended impact may be that they all assume that treatment responses are relatively uniform 

across participants regardless of what specific intervention content was delivered or how it 

was timed. In many cases, treatment responses vary between people, across different days, 

and as a function of message content or timing. This heterogeneity is likely when theories 

emphasize between-person differences and are often silent or vague about temporal 

processes or within-person change (Borsboom, Mellenbergh, & van Heerden, 2003; Dunton 

& Atienza, 2009; Riley et al., 2011). Heterogeneous response patterns may be unavoidable 

when intervening on outcomes such as health behaviors which have multiple, interacting 

determinants across multiple levels and time scales (Sallis, Owen, & Fisher, 2008).

Behavioral intervention approaches have become more sophisticated in recent years 

(Goldstein et al., 2017; Kumar et al., 2013; Nahum-Shani et al., 2016, 2015; Nilsen et al., 

2012; Riley et al., 2011; Spruijt-Metz et al., 2015; Thomas & Bond, 2015). Examples 

include stepped care and just-in-time adaptive interventions (JITAIs). Stepped care increases 

the intensity/cost of treatment when patients’ exhibit sub-optimal responses to treatment 

after a prescribed interval. For example, Jakicic et al. (2012) delivered a stepped care weight 

loss intervention based on increasing physical activity and reducing caloric intake. 

Participants initially received a monthly group counseling session with a behavioral lesson 

delivered via mail. Every three months, participants who failed to meet planned weight loss 

goals received an intensified (i.e., stepped up) counseling frequency, mode, or strategies. 

These steps involved progressively adding telephone counseling sessions, individual 

sessions, and meal replacements in a standardized sequence. Stepped care approaches for 

weight loss have proven to be more cost effective than standard behavioral interventions 

(Brownell, 1986; Jakicic et al., 2012). New research designs, such as the sequential multiple 

assignment randomized trial (SMART) design, provide a tool for optimizing stepped care 

algorithms (Lei, Nahum-Shani, Lynch, Oslin,& Murphy, 2012; Sherwood et al., 2016).

JITAIs, on the other hand, involve context-sensitive decision rules for triggering 

interventions at moments of vulnerability/opportunity (Nahum-Shani et al., 2016, 2015). 

JITAIs are newer and have attracted great attention in the context of preventing lapses in 

behavior change once vulnerability is detected (e.g., during smoking cessation or weight loss 

attempts) (Goldstein et al., 2017; Kumar et al., 2015). JITAIs have also been developed to 

reduce sedentary behavior in obese adults and information workers (Luo et al., 2018; 

Conroy et al. Page 4

Psychol Sport Exerc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thomas & Bond, 2015). JITAIs specify decision points, tailoring variables, decision rules, 

and intervention options to deliver treatment at specific times that coincide with 

vulnerability or opportunity (NahumShani et al., 2016, 2015). For example, the HeartSteps 

intervention for physical activity promotion delivers up to five daily contextually-relevant 

suggestions (intervention options: take a walk vs take a break from sitting) tailored to the 

user’s context (i.e., time of day, location, day of week) (Klasnja et al., 2015). The 

microrandomized trial has emerged as a new research design for optimizing decision rules 

and timing intervention delivery based on the user’s context (Klasnja et al., 2015).

Stepped care and JITAIs are sophisticated intervention approaches that can tailor 

interventions based on treatment response or contextual factors. Both can adapt the selection 

and timing of treatments (albeit at different timescales), and both rely on fixed, pre-specified 

tailoring variables and decision rules. Decision rules are typically informed by clinical 

experience, literature reviews, behavioral theory or empirical tests (e.g., using SMART or 

microrandomized trial designs) but, critically, these rules are developed for the typical 

participant (Lagoa, Bekiroglu, Lanza, & Murphy, 2014; Riley et al., 2011). That is, the same 

decision rule is applied for all patients.

With the availability of intensive longitudinal data on behavior, it may be possible to develop 

computational models that enable personalized selection and timing of treatments for 

maximum effect and minimal burden and fatigue. This approach may increase the likelihood 

of delivering interventions when individuals can respond as desired. Another advantage of 

personalizing decision rules based on a computational model is that, by modeling the 

persistence of treatment responses, new treatments can be withheld until a prior treatment 

response has likely run its complete course. This computational approach for personalizing 

adaptive interventions could reduce user burden and treatment fatigue, thereby supporting 

the level of extended participant engagement needed to improve distal health outcomes 

(Heckman, Mathew, & Carpenter, 2015).

Control Systems Engineering Tools

Control systems engineering tools provide a systematic approach for designing personalized 

adaptive interventions using intensive longitudinal data. Control systems engineering 

capitalizes on feedback to adapt responses dynamically in the service of achieving a goal. 

Control systems are common in everyday life. For example, thermostats in homes and cruise 

control in automobiles both involve setting a goal (i.e., set point for temperature or speed) 

and intervening as needed to minimize discrepancies between periodic real-time assessments 

and the goal. Control systems are also used to regulate complex, dynamic systems such as 

aircraft navigation. Flight, like human behavior, is complex and multiply determined. More 

precisely, what works to control flight/action under one set of conditions may not work 

similarly under other conditions and control systems are designed to take into account both 

present and past states to determine the “right action” to achieve the desired objectives. This 

paper extends that approach to develop personalized adaptive interventions for health 

behavior change.
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Control systems engineering tools are already being applied to problems such as smoking 

cessation and managing gestational weight gain (Dong, Deshpande, Rivera, Downs, & 

Savage, 2014; Guo, Rivera, Downs, & Savage, 2016; Savage, Downs, Dong, & Rivera, 

2014; Timms, Rivera, Collins, & Piper, 2013, 2014; Timms, Rivera, Piper, & Collins, 2014). 

For example, system identification and model predictive control were applied in a proof-of-

concept study for designing a personalized adaptive smoking cessation intervention (Lagoa 

et al., 2014). An intensive longitudinal dataset was simulated to resemble published smoking 

cessation studies (Shiffman et al., 2000; Shiffman, Hickcox, et al., 1996; Shiffman, Paty, 

Gnys, Kassel, & Hickcox, 1996). The simulated data involved 150 participants who 

completed 3 measures/day for 50 days with interventions delivered on half of those 

occasions. Models were fit for each variable in this dynamic system. Urge was modeled as a 

function of urge at the last two measurement occasions, negative affect at the last two 

measurement occasions, self-efficacy at the last two measurement occasions, and a residual 

variance term. Similar models were estimated for negative affect (using prior data on 

negative affect, urge and self-efficacy) and self-efficacy (using data on prior self-efficacy, 

urge, and negative affect). In other words, a multidimensional model was obtained that 

described the dynamic interactions among the measured variables. Contemporary methods 

of model predictive control were applied to the system identified based on the simulated data 

on subjective urges to smoke, negative affect, and self-efficacy (Wang & Rivera, 2008; 

Wang, Rivera, & Kempf, 2007). The resulting controller adapted to the state of the 

participant, providing treatment only when it was predicted to be effective. That is, the 

model led to personalized decision rules for optimized treatment allocation that were more 

efficient because they limited treatment to moments when participants were expected to 

respond based on their historical individual patterns of responses. The controller-based 

treatment was shown to be more effective and less burdensome than conventional static 

treatments.

Physical activity is another excellent use case for applying computational modeling 

approaches from control systems engineering because it is possible to passively collect 

intensive longitudinal data about physical activity over extended periods of time (Riley et al., 

2014). As noted above, others have proposed dynamical expressions of social-cognitive 

theory as computational models of physical activity (Hekler, Klasnja, et al., 2016; Martín et 

al., 2014; Riley et al., 2016, 2014; Spruijt-Metz et al., 2015; Timms, Martin, et al., 2014). 

The socialcognitive variables used as inputs in those models are generally assessed using 

self-reports which can be burdensome for users. This may limit their use to slower 

timescales of change (e.g., daily or weekly). These approaches have also been applied to 

adapt the level of daily step goals and incentives for achieving those goals (Korinek et al., 

2017). Instead of using socialcognitive variables as inputs and outputs, we propose that text 

message treatment delivery can be used as an input to predict dynamic behavioral responses 

to treatments based on historical responses to different types of treatments and recent 

behavior (Ashour et al., 2016). These inputs provide a foundation for developing a 

computational model of physical activity at a faster timescale ‒ minutes or hours ‒ than 

has been done previously.

System identification uses data on historical responses to treatment (and other inputs) to 

develop a dynamic model of participant response to treatment. This process involves 
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identifying both the number of sub-models needed, and their parameters based on noisy, 

potentially fragmented input data provided by heterogeneous inputs, such as message 

delivery logs and activity monitors. This step of system identification also provides 

characterizations of probability distributions on the identification error that can be used in a 

subsequent control synthesis stage when personalized decision rules are formalized in 

algorithms. System identification provides the mathematical foundation for applying 

probabilistic robust control synthesis to develop “controllers” that can optimize treatment 

delivery. Following, we present an illustration of system identification methods applied to 

model text message (input) effects on changes in physical activity (output). For this 

illustration, we use real data from a small study designed to establish proof-of-concept for 

applying this method to modeling how physical activity responds to a text message 

intervention grounded in social-cognitive theory.

Methods

Participants and Procedures

Adults (n=10) who did not meet federally recommended levels of aerobic physical activity 

but had no contraindications to physical activity were recruited via advertisements posted in 

the community to participate in a 16-week text message intervention study. Interested 

participants completed a telephone screening and eligible participants were scheduled for a 

lab visit. Participants had a mean age of 34.4 years (SD = 9.0, range = 22–47). Most were 

female (90%), employed full-time (80%), and parents (60%). Many were single (50%) but 

some were married (40%) or divorced (10%). Educational attainments varied from a high 

school diploma to a doctoral degree, and most had at least a bachelor’s degree (60%). Most 

were White (90%; 10% Asian American) and none were Hispanic or Latino.

During an initial lab visit for onboarding, a research assistant taught participants how to 

wear the activPAL3 activity monitor. These monitors were waterproofed in a nitrile sleeve 

and attached to the thigh with Hypafix tape. Participants were instructed to wear the monitor 

continuously and to remove it only when the device would be submerged in water (e.g., 

while bathing/swimming). Participants were given a paper log to document wake/sleep times 

each day and any non-wear time. Participants provided their mobile phone number for 

message delivery (intervention) over the next 16 weeks. For the 16 week intervention period, 

participants visited the lab at the end of each week to exchange their activity monitors and 

paper logs for charged monitors with full storage capacity and new paper logs.

Intervention

Over the next 16 weeks, participants received five text messages daily between 8:00am and 

8:00pm (total of 5598 messages delivered). Messages were distributed on a random schedule 

within equal-sized segments of the day using SurveySignal (www.SurveySignal.com). A 

minimum inter-message interval of 1 hr was specified to limit pileup and distribute messages 

across the day. Messages were drawn randomly from content pools defined by one of three 

themes: “move more” (101 messages), “sit less” (101 messages), and general facts/trivia 

unrelated to either physical activity or sedentary behavior (254 messages). Message content 

for the physical activity and sedentary behavior pools was written based on social-cognitive 
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theory to be consistent with prior text message interventions and our team’s prior research 

(Armanasco et al., 2017; Conroy, Elavsky, et al., 2013; Conroy, Maher, Elavsky, Hyde, & 

Doerksen, 2013). These messages involved (a) raising risk awareness and prompting 

planning (e.g., “Take it easy on your heart. By being inactive you are more likely to suffer 

from high blood pressure. Plan out your activity for today”), (b) enhancing outcome 

expectancies and prompting planning (e.g., “Don’t let extra pounds pack on! Regular 

physical activity can keep you lean. Take a moment to plan out how you will be active 

today”), (c) efficacy-building affirmations (e.g., “There are many people just like you that 

make the choice to be active every day”), (d) highlighting social support (e.g., “The people 

that care about you want you to engage in regular physical activity”), and (e) evoking 

anticipated reward/regret (e.g., “You don’t want to be a couch potato. Imagine how lazy you 

will feel if you do not participate in 30 minutes of physical activity today”).

Participants were asked to confirm message receipt with a reply message (even a single 

character sufficed for confirmation). Treatment fidelity was incentivized by $15 weekly 

payments for responding to 75% of delivered messages. Additionally, participants who 

responded to at least 75% of messages within two minutes were entered into a monthly 

drawing for a $100 bonus. Overall, 98.3% of messages were confirmed, and 67% were 

confirmed within two minutes (Conroy, Yang, Smyth, Lanza, & Lagoa, 2018). The time of 

both message delivery and receipt confirmation were recorded. The former was used as a 

model input because it can be manipulated by an intervention controller; any variability in 

message receipt delays contributes to the estimate of model uncertainty.

Data Processing and Analysis

Data processing and analysis took place in four stages. First, in the data processing stage, the 

time spent stepping in each 15-sec epoch output from the activPAL monitors was aggregated 

into 15-min epochs across the 24-hr day to create a discrete outcome in a computationally-

efficient model. Sleep time activity data were excluded based on participants’ logs. Variables 

also were created to represent the type of message (“move more,” “sit less,” or general facts/

trivia). Next, in the mathematical modeling stage, a personalized mathematical model of 

stepping time (output) was created for each participant using the three types of messages and 

prior behavior as inputs and stepping time as the output. This model is described in the 

Appendix. Briefly, each model was specified as a 5th order dynamical affine model, meaning 

that each input variable was entered for the last five 15-min epochs. Models also included a 

sparse perturbation (error or unexplained variance) term for each participant, and an 

uncertainty (noise) term for the general model.

In the third stage, system identification, separate models were optimized for weekday and 

weekend treatment responses because physical activity differs significantly across these two 

periods (Martin et al., 2014). This model is called a switch model. The parameters of the 

models were identified using a least absolute shrinkage and selection operator (LASSO) 

approach where the objective is to simultaneously minimize the error between observed 

stepping time and predicted stepping and, at the same time, minimize the number of time 

instants where the sparse perturbation is not zero (Kukreja, Löfberg, & Brenner, 2006). In 

mathematical terms, as in traditional LASSO approaches, the model minimized an objective 
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function containing the sum of squares of the errors at the measured time instants and the 

sum of the magnitudes of the perturbations. In the final stage, simulation, treatment 

responses for each participant were estimated using the system identified in step 3. The 

effects of “move more” and “sit less” messages were interpreted relative to the effects of 

general facts/trivia messages.

Results

A control system for physical activity was identified using a piecewise 5th order dynamical 

affine model. This model was selected because it offered the best compromise between 

accuracy (size of the error) and complexity; higher-order models improved accuracy but 

increased the risk of overfitting the data. The models revealed heterogeneous responses to 

different message types that varied between people and between weekdays and weekends. 

Responses to text messages were estimated using the identified models and plotted for two 

cases to illustrate the diversity of treatment responses across time and message content. 

Figure 1 presents simulated impulse response curves. These curves depict the expected 

timing of peak responses to different types of messages on weekends (left panel) and 

weekdays (right panel). In these curves, the x-axis represents time since message delivery, 

and the y-axis represents predicted unit impulse changes in movement time during each 15-

min epoch (i.e., the predicted person-specific change in the percentage of movement time 

during each 15-min epoch compared to the estimated movement time had the intervention 

not been delivered). For the participant represented in the top panel, peak responses occurred 

around 45–75 min after “move more” message delivery on weekends and there was not a 

distinct behavioral response to messages on weekdays. For the participant represented in the 

bottom panel, peak responses occurred around 75–90 min after “sit less” message delivery 

on weekends and there was not a distinct behavioral response to messages on weekdays. 

These peak responses for individual messages are informative but can be misleading because 

they do not represent the cumulative response to each message. That information is needed 

to understand the overall magnitude of responses.

Figures 2 and 3 depict cumulative response curves following a single message (if multiple 

messages are received, their effects would accumulate). These curves represent the predicted 

cumulative behavior change (y-axis) as a function of the time following message delivery (x-

axis) and the type of message (line) on weekends (left panel) and weekdays (right panel). 

Figure 2 shows that, for one participant, weekend stepping time (left panel) increased 

following “move more” messages, but not in response to messages focused on “sit less” or 

general facts/trivia. Weekday responses (right panel) to all three message types were 

negligible. For this participant, four weekend messages to “move more” should lead to a 40-

min increase in stepping time each week. Figure 3 shows that, for another participant, 

weekend movement time (left panel) increased following “sit less” messages but not in 

response to messages focused on “move more” or general facts/trivia. Weekday responses 

(right panel) to all three message types were negligible. For this participant, five weekend 

messages to “sit less” should lead to a 40-min increase in stepping time each week. Thus, 

these two participants increased their physical activity in response to different message 

content (i.e., “move more” vs “sit less”), demonstrating the potential value of personalized 

message selection algorithms.

Conroy et al. Page 9

Psychol Sport Exerc. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patterns that emerge across personalized models may also inform understanding of more 

generalized behavioral responses to intervention. In this study, inspection of the individual 

impulse and cumulative response curves for the 10 participants in this study led to three 

general observations. First, half of the sample had more pronounced behavioral responses to 

text messages on weekends than weekdays. The other half of the sample had similar 

behavioral responses to text messages on weekends and weekdays. Second, 4 out of 10 

participants showed clear signs of behavior change following a text message; the remaining 

six participants had limited responses. Finally, among the responders, half increased their 

stepping time in response to “move more” messages, and half increased their stepping time 

in response to “sit less” messages.

Discussion

This study demonstrated the feasibility of applying control systems engineering tools to 

develop personalized models of behavioral responses to text message interventions. The 

systems identified provide a basis for developing controllers that can adapt text message 

delivery based on time-varying inputs (in this case, recent behavior and historical responses 

to messages) to generate desired outputs (in this case, changes in physical activity).

This application of system identification extends prior efforts to develop a computational 

formulation of the social-cognitive processes that motivate physical activity (Korinek et al., 

2017; Martín et al., 2014; Riley et al., 2016; Spruijt-Metz et al., 2015; Timms, Martin, et al., 

2014). Those models have frequently used a fluid analogy model to depict how changes in 

each construct are associated with changes in motivational - and ultimately behavioral - 

sequelae. In contrast, the present approach did not attempt to model psychological 

mechanisms of change as inputs so the dynamics of those psychological processes 

effectively remain inside a black box. Instead, the present approach modeled behavior 

change as a function of inputs that included recent physical activity and text message 

delivery. This model is likely simplistic for a complex behavior such as physical activity. It 

could be enriched - and model uncertainty reduced - by including momentary information 

such as location (e.g., work, home), time of day, weather, built environment features or other 

easily-classified determinants (Owen et al., 2011; Seefeldt, Malina, & Clark, 2002). 

Message features could also be coded and modeled on a more granular level based on their 

content, valence and temporal framing (e.g., motivational vs volitional, approach vs 

avoidance, immediate vs delayed behavioral initiation). It may even be possible to include 

subjective states (e.g., stress) as perturbations; however, that will be easier if those states can 

be detected using personal sensing to avoid burdening users. Collectively, these efforts could 

help move the field from relatively static theories of physical activity to more dynamic 

explanations of the contexts, interventions, and psychological processes that promote (or 

inhibit) physical activity.

The control systems engineering approach complements and extends existing approaches - 

particularly tailoring and just-in-time interventions - used to make text message intervention 

less generic and more effective. Similar to tailoring, it uses participant data to inform 

messaging (Kreuter & Skinner, 2000; Schmid et al., 2008); however, it enriches existing 

tailoring approaches by developing individual mathematical models of behavior and 
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treatment responses to guide message selection and timing. In that way, it is similar to 

applications of system identification to adapt daily step goals and incentives (Korinek et al., 

2017). By personalizing and periodically updating individual treatment algorithms, instead 

of simply message content, it is possible to reduce the threat of treatment fatigue by 

selecting and timing messages so participants only receive the minimal dose needed to 

achieve desired behavior change. For example, the participant whose data are presented in 

Figure 2 received 35 messages/week but only needed four “move more” messages at least 

five hours apart on weekends to achieve a 40 minutes/week increase in physical activity. 

Treatment fatigue is an important consideration for these models because fatigue can blunt 

intervention effects on behavior and health outcomes over time (Bekiroglu, Lagoa, Murphy, 

& Lanza, 2017; Heckman et al., 2015).

Similar to just-in-time interventions, this approach can contextualize intervention delivery 

once a model is trained. The model identified in this paper revealed different response 

patterns on weekends versus weekdays. Whereas just-in-time adaptive interventions specify 

a fixed decision rule for using participant data to guide treatment delivery (Nahum-Shani et 

al., 2016), the piecewise affine model reported here included sub-models for these different 

contexts to provide the basis for personalized, context-specific decision rules. Different sub-

models could be estimated if other information was included. For example, physical activity 

varies as a function of precipitation so one might envision the possibility of different sub-

models for rainy versus dry days (Chan & Ryan, 2009).

Any number of possible sub-models could be generated using existing data streams on 

smartphones, including self-reports (although self-report data increases user burden and 

therefore may not be possible to collect as intensively as sensor-based data). Hybrid 

interventions may be possible by combining established approaches to tailoring messages 

using a generalized decision rule and a computational approach based on a personalized 

mathematical model (and decision rule). For example, user’s reports about their motivation 

or affective experience on a given day could be used to determine relevant sub-models for 

controlling intervention delivery.

Text message intervention responses were quite idiosyncratic. Some people increased their 

movement time in response to messages to “move more;” others increased their movement 

time in response to messages to “sit less.” Some individuals responded quickly; others 

responded slowly or not at all. The size and duration of responses also varied. To the best of 

our knowledge, these idiosyncratic response patterns have been treated as error variance in 

prior models of text message interventions. System identification provides a new method for 

revealing individual response patterns. This information can be used to guide the selection 

and timing of interventions.

Future work should extend this system identification work by applying robust control tools 

for effective control design in the presence of uncertainty. The models identified in the first 

stage (system identification) along with the uncertainty descriptions can used to design 

controllers that maximize the probability of achieving a desired goal while avoiding unsafe 

or ineffective operating regions. Given that the model obtained is piecewise linear, these 

controllers will be piecewise linear or non-linear (i.e., separate sub-models of control for 
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weekend and weekday physical activity). For a physical activity controller, the unsafe/

ineffective operating regions would be defined as states where exercise might be unsafe or 

where one is very far from the objectives and at the same time treatment is ineffective (e.g., 

times when goal discrepancies are large and necessary intervention burden would be 

excessive, or when participants are simply unlikely to respond to intervention, such as 

during work hours). Tradeoffs between performance and computational complexity of the 

resulting controller should be studied in order to develop a controller that is effective and can 

be deployed without unduly impacting user experience. For example, elaborate controllers 

could detract from user experience by consuming excessive memory on mobile devices, 

slowing their processors and draining batteries rapidly (Kim, Agrawal, & Ungureanu, 2012). 

Users could also be unsettled by overly personalized messages that are construed as privacy 

violations (John, Kim, & Barasz, 2018). Future work will need to investigate the optimal 

model complexity for reducing uncertainty in the model while maintaining an acceptable 

user experience.

If a generic system identification model is used to develop a controller for intervention 

delivery, the controller could be refined as participants’ responses are observed. This process 

of adaptation involves using newly-collected data to update the models and the 

corresponding controller. The initial controller deployed provides a “warm start” for 

intervention based on the model identified from data based on a similar population-based 

sample in the previous stages. Being a population-based model, it will fit the behavior of 

some participants better than others. The purpose of adaptation is to progressively refine the 

intervention (i.e., controller) as the system learns participant responses to treatment and 

adapts to changes in behavior (including changes due to participants habituating to certain 

messages or become fatigued with messaging in general). Thus, periodic (e.g., monthly) 

updates to the controller could reflect the refined and increasingly personalized models over 

time. Throughout this process, it is imperative to evaluate acceptability and feasibility of 

more and less aggressive adaptation strategies by comparing their impact on user experience.

The ethical implications of using rich, potentially identifiable information to develop 

personalized models of physical activity warrants careful consideration. The model in this 

paper was relatively simple but future applications may draw on a person’s location, audio 

samples, communication logs, social media traces or other identifiable information. Digital 

tools for health and wellness promotion have a poor record of protecting user privacy with 

even simple steps such as data encryption (Huckvale, Prieto, Tilney, Benghozi, & Car, 

2015). Without careful handling, this information may have unintended consequences for 

participants or members of their social networks. The policies of many institutional review 

boards have not kept pace with the emerging applications of mobile technologies for health 

behavior interventions; thus, researchers bear a special responsibility for considering the 

ethical dimension of mobile health interventions. Fortunately, resources are emerging (such 

as the Connected and Open Research Ethics initiative) to assist researchers and 

administrators navigate the emerging ethical and regulatory challenges in this work (Torous 

& Nebeker, 2017).

Control systems engineering is a relatively new influence on behavioral intervention design. 

These tools may help to realize the vision of precision medicine for lifestyle behavior 
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change. Yet this approach is still very much in a proof-of-concept phase. Feasibility of the 

approach needs to be evaluated with larger and more diverse samples. Efficacy needs to be 

evaluated against appropriate control groups (e.g., interventions for unrelated behaviors, 

generic physical activity messaging interventions on a fixed- or random-schedule). If results 

are promising, the computational approach will need to be compared with other adaptive 

intervention approaches (e.g., tailored messages based on user-reported preferences for 

message content or timing; see Smyth & Heron, 2016). Model complexity will be an 

important consideration in this work. It will be important to identify the necessary and 

sufficient set of information for developing personalized interventions that outperform less 

sophisticated tailoring approaches. Some people may respond to a generic or established 

tailoring approach as well as or better than they do to a sophisticated, computationally-

intensive tailoring approach. For such people, it would be quite appropriate to use 

approaches that do not require learning or adaptation to achieve peak effects. If participant 

characteristics that predict which tailoring approach will be most effective can be identified, 

then those characteristics could be used to recommend optimal intervention approaches. 

Benefit-cost analyses will also be an important part of these evaluations. Finally, it is 

possible that personalized interventions should be implemented differently in worksite 

health programs compared to direct-to-consumer wearable devices. Factors that influence 

effective dissemination and implementation of interventions developed using this approach 

will need to be identified.

The approach demonstrated in this paper provides a new tool with unique potential for 

improving mobile physical activity interventions. It also has important limitations. First, the 

study demonstrated proof-of-concept only. It did not evaluate the efficacy of the 

intervention, and it is not clear that this approach is more efficacious that simpler approaches 

with ad hoc decision rules. Second, the sample that provided study data was small and not 

representative of the broader population. It is not clear that treatment responses will be as 

heterogeneous in specific populations (e.g., patients with chronic disease) or for users in 

different social ecologies. Third, the model was relatively simple and characterized by high 

levels of uncertainty. Future work should expand the range of inputs (factors that can be 

manipulated, e.g., message delivery) and include better assessments of perturbations (factors 

that cannot be manipulated, e.g., weather) to reduce uncertainty. Fourth, messages were 

delivered at an unusually high frequency in this study; message pile-up was not factored into 

the system identification model so estimates of cumulative responses may be inflated. 

Finally, the focus here was on movement time and different models should be considered for 

other measures, such as step counts or intensityspecific duration (e.g., moderate-to-vigorous 

physical activity) and other behaviors (e.g., diet, smoking).

In summary, this paper provided proof-of-concept for the application of control systems 

engineering methods – specifically system identification – to develop personalized models 

of behavioral responses to text messages. This model included a limited number of inputs so 

model uncertainty is larger than desired. Future work should enrich this model by 

incorporating additional inputs to reduce uncertainty while using new methods (e.g., using 

the concept of sparsity to determine low complexity models that describe behavior) to 

safeguard against overfitting. These models provide a foundation for developing controllers 
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that can select and time messages to achieve behavior change goals more efficiently. These 

controllers can also be adapted over time to create personalized treatment policies.
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Appendix: Dynamic Modelling of Stepping Time as a Function of 

Messaging

In this paper, we have argued that stepping time behavior is dynamic. To model such a type 

of behavior we used affine time difference equations. These equations provide a 

mathematical model for the fact that stepping behavior is not “instantaneous” and that 

interventions can have a delayed onset, a prolonged effect, or both.

In this appendix, a mathematical description of this model is provided. All modeling was 

performed using MATLAB (MathWorks®, Natick, MA). The models used are individual 

models so we concentrate on how to determine a model for a specific participant. Moreover, 

for simplicity, we only show how to determine the model for weekdays’ stepping behavior. 

Computing the model for weekend behavior can be done in a similar way. The weekend and 

weekday models can then be combined to describe the participant’s behavioral patterns 

across the week. The following notation is used throughout this appendix

T Time interval size equal to 15 minutes

S(t) Percentage of time spent stepping by the participant in the time interval between t and t + T, where this 
time interval is assumed to be in a weekday

TxtMM(t) Equal to one if move more text message is received by the participant in the time interval between t and t + 
T. Zero otherwise

TxtSL(t) Equal to one if sit less text message is received by the participant in the time interval between t and t + T. 
Zero otherwise

TxtGEN(t) Equal to one if general facts text message is received by the participant in the time interval between t and t 
+ T. Zero otherwise

The time-difference model used in this paper is of the form

S(t) = a0 + ∑
i = 1

5

aiS(t − iT) + ∑
i = 0

5

biTxtMM(t − iT) + ∑
i = 0

5

CiTxtSL(t − iT) + ∑
i = 0

5

diTxtGEN(t − iT) +

∈ (t)

where ϵ(t) is the error in the model assumed to be zero mean Gaussian with unknown 

variance and a0,…, a5, b0,…, b5, c0l…, c5l d0,…, d5 are coefficients to be determined from 
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the data collected. Note that the model above is of order 5. The choice of the model order 

was done by performing a careful trade-off between model complexity and size of the model 

error.

determine the coefficients of the model, we started by defining error function Err(a0,…, a5, 

b0, …, b5, c0, …, c5, d0, …, d5)

= ∑
t

S(t) − a0 − ∑
i = 1

5

aiS(t − iT) − ∑
i = 0

5

biTxtMM(t − iT) − ∑
i = 0

5

ciTxtSL(t − iT) − ∑
i = 0

5

di(TxtGEN(t − iT)

2

where the sum above is taken over values of t for which there are five consecutive measures 

of stepping time available. Then, the coefficients a0,…, a5, b0,…, b5, c0,…, c5, d0,…, d5 

were found

by minimizing the above Err function.
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Highlights

• Customizing messaging interventions has not increased effects on physical 

activity.

• Tools from control systems engineering can be applied to model behavior 

change.

• Behavioral responses to physical activity messages are largely idiosyncratic.

• Different decision rules can trigger different interventions for different people.
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Figure 1. 
Simulated impulse response curves for participants #607 (top panel) and #610 (bottom 

panel) on weekends (left panel) and weekdays (right panel).
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Figure 2. 
Simulated treatment responses for participant #607 on weekends (left panel) and weekdays 

(right panel). These curves depict the predicted cumulative change in stepping time 

following receipt of different types of text message.
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Figure 3. 
Simulated treatment responses for participant #610 on weekends (left panel) and weekdays 

(right panel). These curves depict the predicted cumulative change in stepping time 

following receipt of different types of text message.
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