Skip to main content
. 2019 Mar 7;14(3):e0213257. doi: 10.1371/journal.pone.0213257

Table 7. Evaluation of the diagnostic accuracy of the machine learning algorithms using all FrOr parameters in detecting respiratory alterations in patients with sickle cell anemia and normal and abnormal spirometric exams.

SVML
[37, 38]
ADAB
[39]
1-NN
[37, 38, 40]
RF
[39, 40]
SVMR
[40]
PARZEN
[41]
Normal exam
AUC 0.92 0.82 0.96 0.95 0.92 0.90
Se (%) 95.2 85.7 95.2 95.2 95.2 81.0
Sp (%) 95.7 82.6 95.7 95.7 95.7 95.7
Abnormal exam
AUC 0.96 0.92 0.97 0.96 0.90 0.89
Se (%) 100.0 100.0 100.0 100.0 97.5 91.7
Sp (%) 95.7 82.6 95.7 95.7 91.3 95.7

SVML: Support Vector Machine with Linear Kernel

ADAB: Adaboost with decision tree classifiers

1-NN: K Nearest Neighbor (K = 1)

RF: Random Forests

SVMR: Support Vector Machine with Radial Basis Kernel

PARZEN: Parzen classifier