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Abstract

Background and aims Soil inoculation is a powerful
tool for the restoration of terrestrial ecosystems.
However, the origin of the donor material may differen-
tially influence early- and late-successional plant spe-
cies. Donor soil from late-succession stages may benefit
target plant species due to a higher abundance of soil-
borne mutualists. Arable soils, on the other hand, may
suppress ruderals as they support more root herbivores
that preferentially attack ruderal plant species, while
mid-succession soils may be intermediate in their effects
on ruderals and target species performance. We
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hypothesized that a mixture of arable and late-
succession inocula may outperform pure late-
successional inocula for restoration, by promoting late-
successional target plants, while simultaneously reduc-
ing ruderal species’ performance.

Methods We conducted a glasshouse experiment
and tested the growth of ruderal and target plant
species on pure and mixed inocula. The inocula
were derived from arable fields, mid-succession
grasslands and late-succession heathlands and we
created a replacement series testing different
pairwise mixitures for each of these inocula types (ra-
tios: 100:0, 75:25, 50:50, 25:75, 0:100 of inoculum A
and B respectively).

Results In general, we found that a higher proportion of
heathland material led to a higher aboveground biomass
of target plant species, while responses of ruderal
species were variable. We found synergistic effects
when specific inocula were mixed. In particular, a
50:50 mixture of heathland and arable soil in the
inoculum led to a significant reduction in ruderal
species biomass relative to the two respective pure in-
ocula. The overall response was driven by Myosotis
arvensis, since the other two ruderal species were not
significantly affected.

Conclusions Mixing inocula from different succession-
al stages can lead to synergistic effects on restoration,
but this highly depends on the specific combination of
inocula, the mixing ratio and plant species. This suggest
that specific inocula may need to be developed in order
to rapidly restore different plant communities.
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Introduction

Many natural ecosystems need to be restored in order to
reach international conservation targets (Vitousek et al.
1997; Hobbs and Harris 2001). Plant and soil commu-
nities tightly interact and plant-soil interactions are
thought to play a key role during ecological restoration
(Reynolds et al. 2003; Eviner and Hawkes 2008; Kardol
and Wardle 2010). Soil inoculation, where entire (late-
successional) soil communities are translocated to areas
to be restored can be a powerful tool to rapidly restore
terrestrial ecosystems (Harris 2009; Wubs et al. 2016).
Using a large-scale field experiment in an area intended
for nature restoration on former arable land, we recently
showed that application of whole soil inocula sourced
from a target grassland or heathland can steer the above-
and belowground community composition in the eco-
system under restoration in the direction of its respective
donor (Wubs et al. 2016). How the composition of soil
inocula can be optimized and whether combinations of
different inoculum sources can lead to synergistic effects
on the performance of ruderal and restoration target
species is unclear.

The net effect of the soil community on plants is
determined by the balance of the actions of plant antag-
onists, symbionts and decomposers (Van der Putten
et al. 2016). Antagonists include soil-borne pathogens
and root herbivores, while symbionts include mycorrhi-
zal fungi and plant-growth promoting rhizobacteria. The
composition, and abundance of the soil community
changes considerably during natural succession
(Kardol et al. 2005; Van der Wal et al. 2006; Bauer
et al. 2015; Castle et al. 2016; Frouz et al. 2016). For
example, the abundance of nematode and insect root
herbivores is initially high on arable fields and then
declines during secondary succession (Brown and
Gange 1992; Korthals et al. 2001; Verschoor et al.
2001; Kardol et al. 2005; Rasmann et al. 2011).
Tillage in arable cultivation reduces the abundance and
diversity of many soil taxa (Tsiafouli et al. 2015), in-
cluding mycorrhizal fungi (Helgason et al. 1998).
Subsequently, during secondary succession on former
arable land the abundance of mycorrhiza increases
(Janos 1980; Johnson et al. 1991; Barni and Siniscalco
2000) and their composition changes (Johnson et al.
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1991; Barni and Siniscalco 2000). These patterns in soil
community development during secondary succession
may be used to optimize soil inocula using the commu-
nity coalescent approach (sensu Rillig et al. 2016),
whereby soil communities from different origins are
brought into contact to generate novel soil communities.

For the successful restoration of species-rich late-
successional plant communities, early-successional ru-
deral species need to be suppressed and late-
successional target species promoted. Early-
successional plants tend to be sensitive to antagonists
(Kardol et al. 2006), while late-successional species,
typically the target species for conservation and restora-
tion, are more dependent on soil-borne symbionts
(Reynolds et al. 2003; Kardol et al. 2007, 2013;
Middleton and Bever 2012). For instance, root herbi-
vores are known to feed selectively on early-
successional ruderal plant species due to their higher
palatability and low investment in defense (Brown and
Gange 1992; Fraser and Grime 1999). Late-successional
plants respond most strongly to inoculation with mycor-
rhizal fungi (Middleton and Bever 2012), particularly
when locally sourced inoculum is used (Middleton et al.
2015). In addition, it has been shown, both in the glass-
house and in the field, that inoculation with a late-
successional soil community can differentially affect
the performance of ruderal and target species and that
late-successional soil inocula can promote restoration
success (De Deyn et al. 2003; Kardol et al. 2006;
Carbajo et al. 2011; Middleton and Bever 2012; Wubs
et al. 2016). However, even though the growth of late-
successional plants was improved, they did not gain
dominance over the early-successional plants in these
experiments. To maximize the effectiveness of soil in-
oculation, the inoculum should both suppress ruderals
and promote late-successional species. We hypothesize
this can be achieved by mixing inocula from both early-
and late-successional origin. To our knowledge this has
not been tested.

In this study, we tested how different mixtures of soil
inocula affect the performance of ruderal and target
plant species (Fig. 1). We tested mixtures of soils sam-
pled from arable fields, mid-succession grasslands and
late-succession heathlands, by creating a replacement
series among each pair of inoculum sources. The re-
placement series design was borrowed from plant com-
petition experiments (De Wit 1960; Weigelt and Jolliffe
2003), and are characterized by a constant total amount
of inoculum soil across treatments, but varying relative
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amounts of the two inoculum sources that are mixed
(here ratios: 100:0, 75:25, 50:50, 25:75, 0:100 of inoc-
ulum A and B respectively). We expected that inocula
with a high proportion of material from heathlands
would promote the performance of the target plant spe-
cies and that inocula with a high proportion of arable
field soil would suppress ruderals. Mid-succession
grassland soils were expected to have intermediate ef-
fects on target and ruderal species as they still contain
relatively high amounts of soil-borne antagonists, but
also mutualists. This could mean that 50:50 mixtures of
arable field and heathland soil lead to the same effects as
mid-succession grassland soil. However, positive and
negative plant-soil feedback effects accrue and dissipate
in complex ways over time as different plant re-
condition the soil (Wubs and Bezemer 2018). Since
the arable and heathland soil were more strongly condi-
tioned by ruderals and late-succession target species
respectively in previous years, we expect the effects of
early-late inoculum mixtures to be more pronounced
than the mid-succession grassland inoculum. Thus, we
expected that a mixture of arable and heathland inocu-
lum would lead to the best and worst performance of
target and ruderal species respectively, because both
their specific plant symbionts and antagonists would
be present in the mixed inoculum. We explicitly tested
for synergy among inoculum sources by comparing
plant performance on mixed inocula to the expected

Arable

75:25 75:25

100:0

100:0
Grassland Heathland

*r—0—o—o—9
100:0 75:25 50:50  25:75 0:100

Fig. 1 Experimental design. Inocula of arable fields, mid-succes-
sion grasslands, and dry heathlands were mixed in replacement
series. The photos show one field of each type at the time of
sampling. This design was replicated over three sets of fields (field
triplets; Table S1), and four replicates per field triplet (i.e. per
treatment n=3 X4 =12)

performance based on the performance on pure inocula.
A positive synergistic effect for the target plants, suggest
that the mixed inoculum leads to higher biomass than
might be expected based on the pure inocula it was
derived from.

Methods

We conducted a glasshouse experiment where a com-
mon background soil was inoculated with different soil
inocula (9:1 w:w). Both the inocula and the background
soil were collected in January 2015 on sandy or sandy
loam glacial deposits in the central part of the
Netherlands (Table S1). The background soil was col-
lected from the Reijerscamp, an ex-arable field of 160 ha
that has been undergoing restoration since 2006. We
used the relatively nutrient rich organic top-soil
(Table S1) of this site to 1) fit with eutrophic starting
conditions in restoration projects in northwestern
Europe and 2) even out differences in nutrient levels
among the inocula by the ample nutrient availability in
the background soil. The field has been in intensive
agricultural use at least since World War 2 until 2004.
Then, it was used for extensive wheat cultivation for two
years prior to the implementation of large-scale restora-
tion measures (Wubs et al. 2016). The soil was collected
from the central part of the field, where the only man-
agement consisted of cattle grazing (25-30 cows
throughout the year, roaming freely in the entire
160 ha field) and removal of tree seedlings (particularly
Betula spp. and Prunus serotina). We collected soil from
the organic layer within 10-50 cm depth (approximately
1300 kg), which was subsequently sieved over a 1 cm
mesh to remove major roots and stones and homoge-
nized. The common background soil was sterilized
(>25KGray gamma radiation, Isotron, Ede, the
Netherlands) to eliminate the resident soil community.
Three types of inocula were selected and sampled
from three fields each within the study region
(Table S1), that differ in soil community composition
(Kardol et al. 2005; Van der Wal et al. 2006; Wubs et al.
2016; Morrién et al. 2017; Hannula et al. 2017). The
types were: 1) arable fields (wheat or rye in recent years)
in extensive organic cultivation with annual tillage (ar-
able, A), 2) ex-arable grasslands that had undergone 27—
33 yrs. of secondary succession (grassland, G), and 3)
dry heathlands that have been in existence at least since
the thirteenth century (heathland, H). We divided the
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nine fields into three groups of three (field triplet), each
group containing one field of each type, based on geo-
graphic proximity. The distance between any pair of
fields used for mixing inocula was between 0.7 and
5.7 km. Within each field an area of 5x5 m was
selected at least 20 m from the edge of the field. At each
corner of the selected area 5 kg of soil was collected
from the upper 1015 cm. The soil was sieved over a
1 cm mesh to remove stones and large roots. Upon
return to the lab the four samples per field were pooled
based on equal amounts of dry weight resulting in
homogenized inoculum material of 20 kg per field.
Three subsamples were taken per pooled inoculum and
analyzed for chemical composition. The subsamples
were oven-dried for five days at 40 °C and analyzed
for soil organic matter content (24 h, 430 °C, loss on
ignition), soil acidity (pH in 1:2.5 so0il:H,0), and N
(KCl-extraction) and P (Olsen’s extraction) content
(Table S1). The ammonium, nitrate (both A =520) and
phosphate (A =880 nm) concentration was measured
colorimetrically using a QuAAtro Segmented Flow
Analysis system (SEAL Analytical Netherlands, Rijen,
The Netherlands).

Within each field triplet, inocula of each of the three
types (arable, grassland and heathland) were mixed in a
replacement series (Fig. 1). Mixtures were made for each
pair of fields within a field triplet based on dry weight in
five ratios: 100:0, 75:25, 50:50, 25:75, 0:100. For each
replacement series, two separate sets of pure (i.e. 100%
of one inoculum source) inocula replicates were includ-
ed. Each treatment was replicated four times (3 triplets x
3 replacement series per triplet x 5 inocula mixing levels
per series x 4 replicates = 180 experimental units).

The experiment was conducted in pots (17x17x17 cm)
which were filled with soil containing 3.6 kg of sterilized
background soil and 400 g inoculum (9:1 w:w dw) which
was thoroughly mixed throughout the pot. We used six
plant species as a test community, all of which are native
to the study area. The species were selected based on their
occurrence during secondary succession on sandy soils in
the Netherlands (Schaminée et al. 1996, 1998) and seed
availability at commercial growers. Three species were
early-successional ruderals: Crepis capillaris (L.) Wallr.
(Asteraceae), Lolium perenne L. (Poaceae) and Myosotis
arvensis (L.) Hill (Boraginaceae), and three were late-
successional, conservation target species: Arnica montana
L. (Asteraceae), Festuca filiformis Pourr. (Poaceae) and
Campanula rotundifolia L. (Campanulaceae), with one
grass and two forbs in each group. Seeds were obtained
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from commercial suppliers of wild plant seeds
(Cruydthoeck, Assen, the Netherlands and B&T World
Seeds, Paguignan, France) and germinated (sterilized
1 min. in 5% NaClO solution) on moistened glass beads
in a climate chamber (12 h light/dark cycle, 20 °C by day
and 15 °C at night). Two individuals of each species were
planted in a random position in a circle in the soil of each
pot, so that all pots were planted with all six species. Any
seedlings that died during the first two weeks were re-
placed. The pots were placed in the glasshouse in a
randomized block design where the blocks corresponded
to the field triplets (i.e. three blocks). The plants were
allowed to grow in the glasshouse (16:8 h day: night,
natural light supplemented with 600 W metal-halide
lamps, 1 per 4 m 2, approx. 225 pmol light quanta
m s ' at plant level, 21:16 °C day: night, 50-70%
relative humidity) for 7 weeks and watered three times
per week. Subsequently the shoots of each species were
clipped at the soil surface, oven-dried for two days at
75 °C and weighed. Plant mortality was low during the
experiment (1.3%).

Data analysis

We analyzed univariate response data using linear
mixed models (LMMs), with separate models for total
biomass, ruderal biomass and target biomass and a
separate model for each of the six plant species. We
included a random effect for block in the analysis and a
fixed effect for inoculum treatment. In addition, we
tested how the plant species responded to each kind of
inoculum material. To do so we conducted separate
regression analyses, with the same random effects struc-
ture as above, for each replacement series (i.e. arable-
grassland, arable-heathland, and grassland-heathland).
Here the proportion of one of the two inoculum sources
in the mixture was used as a continuous predictor (e.g.
proportion arable, i.e. 0, 25, 50, 75 and 100, for arable-
grassland mixture). We used a multiple response permu-
tation procedure (MRPP) to test for overall differences
in plant community composition, based on shoot bio-
mass of each species in a pot. The pots were permuted
within blocks only, to account for effects due to the
sampling scheme (field triplets) and spatial positioning
effects in the glasshouse (blocks).

We tested for synergy in the mixed inocula by calcu-
lating the expected performance of the ruderal and target
plant species groups based on the pure inocula and the
ratios in which their material was mixed. We then
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subtracted the expected performance from the actual
observed performance in the pots with mixed inocula.
The expected performance was calculated separately for
each pair of fields. Differences between observed and
expected performance were analyzed in LMMs with a
random effect for blocks and mixed inoculum treatment
(nine levels) as a fixed effect. Within these models
significant deviations from zero (i.e. no synergistic ef-
fect) were tested as planned contrasts (Adbi and
Williams 2010).

All analyses were conducted in R 3.3.1 (R Core
Team 2017), LMMs were modelled using nlme 3.1—
128 (Pinheiro et al. 2017), MRPP using vegan 2.4-1
(Oksanen et al. 2018). Model assumptions were checked
graphically and heteroscedasticity was modelled using
generalized least squares (Pinheiro and Bates 2000;
Zuur et al. 2009). Post-hoc test were performed using
the Ismeans 2.23-5 package (Lenth 2015) using the
false discovery rate to correct for multiple comparisons
(Benjamini and Hochberg 1995).

Results

In general, the composition of the soil inoculum influ-
enced the plant community composition (Fig. 2; MRPP
Pseudo-F =4.07, p=0.001). The biomass of the target
species increased by 33% with an increasing fraction of
heathland material in the inoculum (Fig. 2a; Table 1).
Biomass of the ruderal species was lower in the A50-
H50, G100 (A-G series) and H100 (G-H series) inocu-
lum treatments compared to the other treatments (Fig.
2¢; Table 1). The same pattern was found for total plant
biomass (Fig. S1; Table 1). Surprisingly, the ruderal
biomass in the two G100 treatments was significantly
different among the two replacement series (A-G vs. G-
H) in which they occurred (Fig. 2¢).

Mixing of inocula from different field types led to
synergistic effects on the performance of plant groups
(Fig. 3; Table S2). However, only the performance of
ruderal species in the A50-H50 treatment was signifi-
cantly lower than expected based on the pure inocula
(Fig. 3). This response was driven by M. arvensis, while
the other two ruderal species were not significantly
affected (Fig. 2d). Due to the multiple testing correction
this difference appears not significant in Fig. 2.
However, when no such correction is applied, as is
appropriate for planned contrasts in Fig. 3, ruderal bio-
mass in A50-H50 is significantly lower than in all the

other treatments in the replacement series. In addition,
there was a trend (p <0.1; Table S2) that G25-H75 and
A75-H25 led to respectively higher and lower target
species biomass than expected based on the pure inoc-
ula. There was no relationship between the synergistic
effects of inocula on the ruderal and target species
groups (Spearman’s rho =0.078, p = 0.42).

Reponses to changes in inoculum composition were
species specific (Fig. 2b, d; Table 1). The biomass of
M. arvensis increased with higher amounts of arable soil
and decreased with more heathland soil in the inoculum
relative to grassland material (Table 1; Fig. 2d). Each of
the three target species responded positively to a higher
proportion of heathland material in the inoculum, but the
highest biomass of C. rotundifolia was found in the A25-
H75 treatment (Fig. 2b). More heathland material in the
inoculum also led to higher C. capillaris biomass (Fig. 1d;
Table 1). Only L. perenne was not significantly affected
by changes in inoculum composition (Fig. 1d; Table 1).

Discussion

We found that the composition of the soil inoculum
affects the performance of both ruderal and late-
successional target plant species. It is known that inoc-
ulation with late-successional soil enhances the perfor-
mance of target plant species (De Deyn et al. 2003;
Kardol et al. 2006; Carbajo et al. 2011; Middleton and
Bever 2012). We now show that potential synergies
among soil inocula exist when material from different
successional stages is mixed. In particular, a 50:50 mix-
ture of arable and heathland soil inoculum led to a lower
performance of ruderal plant species than expected,
which was driven by M. arvensis while the other two
ruderal species did not respond significantly. In addi-
tion, two trends were observed: a 25:75 grassland-
heathland mixture promoted target species biomass,
while a 75:25 arable-heathland mixture repressed target
species biomass relative to the performance expected
based on the pure inocula. This shows that synergistic
interactions among soil organisms upon inoculum
source mixing can benefit restoration.

Importantly, there was no correlation between the
synergistic effects of inoculum mixing on ruderal and
target plants, neither positive nor negative. This suggests
that synergistic effects depend on the soil inoculum
source material and mixing ratio used. We found that
the mixture of late-successional soil with arable soil
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most strongly repressed ruderal species growth. This
was in line with our hypothesis that arable soil harbors
high amounts of soil-borne enemies (Korthals et al.
2001; Verschoor et al. 2001; Holtkamp et al. 2008) to
which early-successional plants are susceptible (Brown
and Gange 1992; Fraser and Grime 1999). However,
contrary to our hypothesis this mixture did not signifi-
cantly improve the growth of target plants. The fact that
synergistic effects were only detected in particular com-
binations of soils, as well as responding plant species,
suggests that general rules based on successional chang-
es may be insufficiently precise for broad application
and that synergistic mixtures of inocula may need to be
designed specifically for the area under restoration
(Eviner and Hawkes 2008). Soils are inhabited by di-
verse assemblages of microbial and mesofaunal taxa
(Bardgett and Van der Putten 2014), but they are also
governed by strong competitive and trophic interactions
(De Ruiter et al. 1995; Raaijmakers and Mazzola 2016)
and soil communities are taxonomically highly distinct
across ecosystems (Ettema and Wardle 2002; Bardgett
and Van der Putten 2014). It is therefore likely that when
these assemblages are suddenly brought into contact
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through mixing of inocula that new communities arise
that are not simply the weighted sum of the communities
in the original inocula (Rillig et al. 2016). Indeed, plant-
soil community interactions have been reported to be
non-additive when different soils are mixed (Hendriks
et al. 2013; Wubs and Bezemer 2016; Ma et al. 2018).

Mid-succession grassland soil did not lead to inter-
mediate performance of ruderal and target species, as
their performance was mostly similar to that on full
arable soil. Surprising is the observation that two inde-
pendent implementations of the same treatment (G100),
yielded differences in ruderal biomass. This suggests
that samples taken from the same fields and thoroughly
mixed may yield different soil communities when sub-
sequently propagated in different experimental units,
although this needs to be confirmed using molecular
community analyses. Alternatively, intra-specific differ-
ence among plant individuals may have caused the
difference in the two treatments, but we consider this
to be unlikely given that individuals were randomly
assigned to pots and treatments.

In our experiment plant species showed species-
specific responses to the soil inocula. This was
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A | g © v © v O O 2008; Van der Putten et al. 2016). For instance, soil
< T [9) i “ Yn N GG NN NN .
2 ob < e biota tend to have smaller effects on plant performance
i Z " in more fertile soils (De Deyn et al. 2004; Carbajo et al.
— N [0} - -
8<% 218832 8-~ 2011; Wubs et al. 2016; Wubs and Bezemer 2018).
=88 sl1g2g882xrz2 : . e
8E 5 |2 SSSTsTSE Under high nutrient conditions plants may be less
£ E depended on for instance mycorrhizae and better able
25 = P y
»E 2 — 0 203 o~ ®x to defend against antagonists (De Deyn et al. 2004; Van
2% < N = 5 g 8 = .. . . .
2c g Bl = ol =S & der Bij et al. 2016), suggesting that inoculation effects
=23 .. . .
5 ° may be more pronounced in infertile soils. In general,
= 2 S . . .
859 § . there is a need to screen for the effectiveness of soil
28 2| 2 = Mm@ @mm;meamnn inoculations across environmental gradients to evaluate
0| & £ geecgcesees . . .
zm § E Elg|sssssssss their potent.lzq (Evme.r and Hawkes 2908). .
=D E Plant-soil interactions can be mediated by both abi-
58 E - y
2 <\D/ 2P . " ;‘%’ otic and biotic factors (Ehrenfeld et al. 2005). We think
= n B . N o e ..
88 & 2 " 2 &9 |8 that the effect of differences in abiotic conditions among
X = = @sS\.:A':‘-:ANE.eg 2 . . . .
~ 8 B 2| STSSss522:2 |8 the pots treated with the different inocula was of negli-
2 é 2| % é S g 2;: 552 |2 gible importance for two reasons. First, due to the dilu-
S5 fl<owusSgEge R tion of the inocula in the common, relatively fertile,
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Fig. 3 Synergetic effects of mixing inocula. Synergy is defined as
the difference in (a) target or (b) ruderal biomass (g/pot; mean =+ SE)
observed in mixed inocula from that expected based on the pure
inocula (i.e. dark bars in Fig. 2a, c). Asterisk indicates significant
difference from zero at p <0.05, I same except p <0.1

background soil there was limited scope for nutrient
limitation. Secondly, the proportion of heathland mate-
rial in the mixture contributed most to target species
plant performance. However, the heathlands had the
lowest concentration of nutrients and the lowest acidity
among the sampled inocula. Therefore, if abiotic differ-
ences were the sole driving factor we would have ex-
pected plant performance to be lowest on 100% heath-
land inoculum, which was not observed. In a compara-
ble inoculation study from the same study region both
soil abiotic and biotic variables were measured and they
showed that plant responses correlated most strongly
with biotic drivers, mainly fungal and bacterivorous

@ Springer

nematode abundance (Carbajo et al. 2011). Therefore,
we propose that the observed differences in plant per-
formance were mainly due to the inoculated soil com-
munities, although we cannot rule out abiotic effects.

We conclude that soil inocula differentially affect the
performance of ruderal and late-successional target plant
species, also under high soil fertility. Target plant spe-
cies benefited from inoculation with heathland material,
while responses of ruderal species were variable.
Mixing inocula from different ecosystems led to syner-
gistic effects for restoration, but this was highly
depended on the particular combination of inocula ap-
plied. As a next step, a broad screen of mixed and
unmixed soil inocula needs to be tested across environ-
mental gradients to generally assess the effectiveness of
soil inoculation for nature restoration.
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