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Summary

An animal’s self-motion generates optic flow across its retina, and it can use this visual signal to 

regulate its orientation and speed through the world. While orientation control has been studied 

extensively in Drosophila and other insects, much less is known about the visual cues and circuits 

that regulate translational speed. Here we show that flies regulate walking speed with an algorithm 

that is tuned to the speed of visual motion, causing them to slow when visual objects are nearby. 

This regulation does not depend strongly on the spatial structure or the direction of visual stimuli, 

making it algorithmically distinct from the classical computation that controls orientation. Despite 

the different algorithms, the visual circuits that regulate walking speed overlap with those that 

regulate orientation. Taken together, our findings suggest that walking speed is controlled by a 

hierarchical computation that combines multiple motion detectors with distinct tunings.

eTOC Blurb

During navigation, animals regulate both rotation and translation. Creamer et al. investigated how 

visual motion cues regulate walking speed in Drosophila. They found that orientation and walking 

speed are stabilized by algorithms with distinct tunings but employ overlapping circuitry.

Introduction

As animals navigate the world, they use visual information to regulate both their orientation 

and their speed (Etienne and Jeffery, 2004; Gibson, 1958; Srinivasan et al., 1999). When an 

animal rotates or moves, stationary objects in the world generate optical flow fields across 

*Correspondence: damon.clark@yale.edu.
Author contributions
MSC, OM, and DAC designed the experiments. MSC carried out the experiments. MSC and DAC analyzed the data and wrote the 
manuscript.

Declaration of interests
The authors declare no competing interests.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2019 December 19.

Published in final edited form as:
Neuron. 2018 December 19; 100(6): 1460–1473.e6. doi:10.1016/j.neuron.2018.10.028.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



its retina. These fields contain many motion cues that could guide navigational behaviors 

(Heeger and Jepson, 1992; Koenderink and van Doorn, 1987; Lappe et al., 1999). In many 

animals, including flies, the circuits and behaviors underlying orientation control have been 

the subject of extensive study (Oyster, 1968; Oyster et al., 1972; Portugues and Engert, 

2009; Silies et al., 2014; Waespe and Henn, 1987), but the circuits and behavioral algorithms 

underlying translational control have been far less studied. Here, we use the fruit fly as a 

model system to dissect the behavioral algorithms and visual circuits that regulate walking 

speed and to investigate how multiple motion-detecting circuits drive different navigational 

behaviors.

In visual circuits, motion-detecting cells are often categorized into two broad classes: those 

that are tuned to the temporal frequency (TF) of the stimulus and those that are tuned to its 

velocity. These classes are simplified descriptions of response properties, yet they serve as a 

useful abstraction for thinking about the properties and algorithms involved in direction-

selectivity. Cells can be categorized into these classes based on their responses to drifting 

sine wave gratings. Responses that are TF-tuned respond most strongly to a single TF (the 

ratio of the stimulus velocity to its wavelength). Thus, responses depend on both the 

stimulus velocity and its spatial structure, making them pattern-dependent (Srinivasan et al., 

1999). Such cells are found near the periphery of visual processing in mammalian retina 

(Grzywacz and Amthor, 2007; He and Levick, 2000), in mammalian V1 (Foster et al., 1985; 

Talebi and Baker, 2016; Tolhurst and Movshon, 1975), and in wide-field motion detectors in 

insects (Haag et al., 2004; Ibbotson, 1991; Schnell et al., 2010; Theobald et al., 2010). TF-

tuning can be obtained from models with only a single timescale and length scale (Egelhaaf 

et al., 1989; Reichardt and Varju, 1959), suggesting an elemental underlying computation. In 

insect behavior, flies turn in the direction of wide-field motion in a TF-tuned response that 

acts as a negative feedback control mechanism for course stabilization (Borst and Egelhaaf, 

1989; Fermi and Reichardt, 1963; Gotz, 1964; Kunze, 1961; McCann and MacGinitie, 1965; 

Reichardt and Poggio, 1976; Reichardt and Varju, 1959). This behavior is known as the 

optomotor rotational response and is well-described by the Hassenstein Reichardt correlator 

(HRC) model for motion detection (Egelhaaf et al., 1989; Hassenstein and Reichardt, 1956). 

Over the past 60 years, this behavior and the HRC model have been the subject of intensive 

research and have been foundational in understanding direction-selective algorithms and 

circuitry across many animals (Adelson and Bergen, 1985; Hassenstein and Reichardt, 1956; 

van Santen and Sperling, 1984), and especially in insects (Silies et al., 2014).

Cells in the second classification are tuned to the speed of drifting sine wave grating 

stimulus, independent of its spatial structure (i.e., wavelength). These sorts of speed-tuned 

neurons are found in pigeons (Crowder et al., 2003), monkey cortical area MT (Perrone and 

Thiele, 2001a; Rodman and Albright, 1987), and insect descending command circuits 

(Ibbotson, 2001). The tuning to speed rather than TF suggests that the computations 

underlying these signals integrate multiple timescales and length scales (Hildreth and Koehl, 

1987; Simoncelli and Heeger, 1998; Srinivasan et al., 1999). In insect behavior, observations 

of flying honeybees and flies have shown that visual control of flight speed appears to be 

independent of the spatial structure of the stimulus (David, 1982; Fry et al., 2009; Srinivasan 

et al., 1996), suggesting that they employ speed-tuned algorithms to regulate flight speed. 
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However, the behavioral algorithms and visual circuits used to regulate translation remain 

largely unknown.

Little is known about how the fruit fly Drosophila regulates its walking speed. It is unknown 

whether it employs the same visual algorithms that regulate orientation and whether walking 

speed is governed by the same visual circuits that regulate optomotor turning responses. It 

has been shown that visual motion stimuli cause flies to slow (Götz and Wenking, 1973; 

Katsov and Clandinin, 2008) and that some early visual neurons contribute to both 

optomotor turning and walking speed (Silies et al., 2013). Here, we combine behavioral 

measurements, genetic silencing, imaging, and modeling to investigate how walking speed is 

regulated in Drosophila. We find that flies stabilize and modulate walking speed with a 

computation that is tuned to the speed of a visual stimulus, not to its temporal frequency, and 

thus cannot be represented by the classical HRC algorithm. The computation causes flies to 

slow as they pass nearby objects or surfaces. Interestingly, the visual stabilization of walking 

speed is implemented by circuits that overlap with those that control orientation, suggesting 

that these circuits play multiple roles in multiple classes of motion computation. These 

findings reveal the first instance of speed-tuning in a model organism that permits genetic 

circuit dissection.

Results

Flies turn and slow in response to visual motion

Walking Drosophila rotate (Buchner, 1976; Geiger, 1974; Götz and Wenking, 1973) and 

slow (Götz and Wenking, 1973; Katsov and Clandinin, 2008; Silies et al., 2013) in response 

to full-field visual stimuli. To measure these two optomotor responses, we tethered flies 

above an air-supported ball and presented panoramic visual stimuli (Fig. 1A) while 

monitoring ball rotations to infer a fly’s turning and walking speed (Clark et al., 2011; 

Salazar-Gatzimas et al., 2016). When presented with rotational sine wave gratings (Fig. 1B, 

Fig. S1A), flies turned in the direction of the motion (Fig. 1D, Fig. S1B, Supp. Movie M1). 

We refer to this response as the turning response. During the turning response, flies also 

slowed their walking speed in response to rotational stimuli (Fig. 1E). We term this behavior 

the slowing response. Because there is variability in the baseline walking speed among flies, 

we plotted walking speed as a fold change from baseline (Fig. S1C) (Götz and Wenking, 

1973; Silies et al., 2013). To simulate optic flow caused by a fly’s translation through the 

world, we created a translational stimulus consisting of mirror-symmetric sine wave gratings 

that moved either front-to-back (FtB) or back-to-front (BtF) on two halves of a virtual 

cylinder around the fly (Fig. 1C, Fig. S1A). This stimulus possesses qualities of a real 

translational flow field, such as symmetric flow on both eyes, and it has a well-defined 

spatial and temporal frequency. When presented with FtB and BtF motion, flies showed no 

net rotational responses (Fig. 1F). The absolute level of turning slightly increased during FtB 

presentations and decreased during BtF presentations (Fig. S1D), consistent with previous 

measurements (Reiser and Dickinson, 2010; Tang and Juusola, 2010). In response to 

translational stimuli, flies reduced their walking speed regardless of the direction of the 

presented stimulus motion (Fig. 1G, Fig. S1B), though BtF motion generated stronger 

slowing than FtB. While rotational stimuli of opposite directions generated turning in 
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opposite directions, translational stimuli generated the same sign of modulation, regardless 

of direction. Thus, the sign of the slowing response is insensitive to the stimulus direction, 

and qualitatively different from the rotational optomotor response.

Since the slowing response is relatively direction insensitive, we asked whether flies were 

responding to the motion or simply to the spatiotemporal flicker of the stimulus. To test this, 

we presented flies with a counterphase grating, which was equal to the sum of a leftward- 

and rightward-moving sine wave grating (Fig. S1A, see STAR Methods). This stimulus 

contains no net motion, but has the same spatial and temporal frequencies as the sine wave 

gratings. Flies did not turn in response to this stimulus, and they slowed relatively little in 

response to it (Fig. 1D-G purple curves), indicating that walking speed depends on visual 

motion, not merely on flicker. It is noteworthy that flies slowed in response to both FtB and 

BtF motion, less strongly and more transiently to the sum of the stimuli. This result implies 

that the signals from the two opposite motion directions cancel each other out, rather than 

add to each other, a feature associated with motion opponency (Heeger et al., 1999; 

Levinson and Sekuler, 1975). Thus, the slowing response is an opponent, approximately 

non-direction-selective (non-DS) behavior. To measure mean responses to stimuli with 

different TFs, we integrated behavioral responses over time for each stimulus (Fig. 1H-K, 

Fig. S1EF). We found that the turning and slowing responses each depended strongly on the 

TF of the stimulus (Fig. 1H-K). However, the counterphase grating elicited only moderate 

slowing over a range of TFs (Fig. 1K, Fig. S1F).

Slowing to visual motion stabilizes walking speed

To investigate how flies use visual information to regulate walking speed, we created a 

closed-loop virtual environment, in which the walking speed of the fly controlled the 

velocity of a translational sine wave grating (Fig. 2A top). In this setup, as the fly walked 

forward, the sine wave grating moved FtB. As the fly walked faster, the grating moved 

faster, with a proportionality determined by the gain, reflecting how much the visual 

stimulus moves when the fly moves. For walking speed, the gain is inversely proportional to 

the distance to a virtual object, with close objects showing higher gains. We set the gain to a 

value that generated walking speeds in the middle of the fly’s dynamic range, and termed 

that a gain of 1 (see STAR Methods). When we increased the gain between fly behavior and 

stimulus velocity, the fly slowed down and when the gain was decreased, the fly sped up 

(Fig. 2A bottom). Thus, the fly uses visual stimuli to regulate and stabilize its walking 

speed. We also presented the fly with negative gain stimuli, in which the stimulus moved 

BtF when the fly walked forward. Interestingly, when presented with negative gain stimuli, 

the fly’s response was similar to the positive gain stimuli (Fig. 2A dotted lines) and this held 

true for a wide variety of gain changes (Fig. S2A). The similarity between positive and 

negative gain responses is consistent with the open-loop experiments, which showed that the 

slowing response is relatively insensitive to the stimulus direction (Fig. 1GK).

We wished to investigate how this stabilization of walking speed under different gain 

conditions related to real visual cues a fly might encounter. When an observer moves, nearby 

objects pass across the visual field more quickly than distant objects, which is equivalent to 

the different gains present in the stabilization experiments (Fig. 2A). Since flies slow more 
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to faster stimuli (Fig. 1K) and walk slower with higher gain stimuli (Fig. 2A), we 

hypothesized that they should slow when passing nearby objects. To test this possibility, we 

designed a narrowed virtual hallway with an hourglass shape through which the flies walked 

on a one-dimensional track (Fig. 2B top, Supp. Movie M2). When flies moved along this 

virtual hallway, they reduced their speed as they approached the neck of the hourglass and 

sped up again after passing it (Fig. 2B bottom). This behavior closely resembles distance-

dependent regulation of flight speed in honeybees (Srinivasan et al., 1996) and birds 

(Schiffner and Srinivasan, 2016), and represents the use of motion parallax to reduce speed 

near objects to avoid collisions (Sobel, 1990; Srinivasan et al., 1996).

A simple model relates closed-loop data to open-loop data

We wished to relate the open-loop slowing behavior we observed (Fig. 1K) to the closed 

loop behaviors in which flies regulated their walking speed (Fig. 2AB). To develop a simple 

dynamical model to describe walking speed stabilization, following classic work on 

orientation regulation in flies (Reichardt and Poggio, 1976). In that model, the fly’s behavior 

is solely a function of its visual input, while the fly’s behavior feeds back onto its visual 

input through the environment (Fig. 2C, Fig. S2B). We developed a simple model to show 

how walking speed could be stabilized using visual input (Fig. 2D, see STAR Methods). In 

this model, for every visual velocity, the fly has an internal target walking speed. This target 

was measured explicitly by our open-loop behavioral experiments (Fig. 1K), so we used that 

experimental data directly in the model (Fig. 2D, green and brown dashed lines). Crucially, 

the visual flow that the fly sees depends on its behavior as it navigates an environment. If the 

fly walks faster, then the stimulus moves at a higher velocity, as determined by the 

environmental gain. As a result, fly walking speed and stimulus velocity exist along a line 

with slope equal to the inverse gain (Fig. 2D lines through the origin).

To understand what walking speed this model predicts, one must examine the coupling 

between the target walking speeds and the environmental gain (Fig. 2D). In the model, 

changes in the fly’s walking speed (black arrows) are proportional to the difference between 

the target walking speed (determined by the current stimulus velocity) and the current 

walking speed. Black circles indicate where the environmental gain lines intersect with the 

target walking speed (dashed green and brown lines). At these points there is no difference 

between the actual walking speed and the target walking speed for that visual velocity. Thus, 

an intersection represents a fixed point of the system for a given gain. Furthermore, at that 

fixed point, small deviations away from the point are pushed back towards it, so it is stable 

and fly walking speed will approach that point (see STAR Methods). When objects are 

nearer (yellow line), this model predicts fixed points at slower walking speeds, and when 

objects are more distant it predicts faster walking speeds (pink line).

We first used this model to simulate closed-loop responses to the gain change experiments 

(Fig. 2A). These simulations recapitulated the closed-loop walking speed results, predicting 

the speed-up and slow-down of the flies, as well as the largely similar responses even under 

gain inversion, when the world moves BtF as the fly walks forward (Fig. 2E). This 

agreement is noteworthy because the only free parameter in the model was the timescale at 

which the fly could modulate its behavior. While our open-loop experiments showed only 
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slowing, the closed-loop gain change experiment and model each showed that flies sped up 

when the gain was reduced (Fig. 2A). The model demonstrates that this is occurs because 

the flies are not walking at their maximum speed during the pre-stimulus interval, since they 

have been slowed by the translational visual flow induced by their own walking. When this 

translational visual flow is reduced by reducing the gain, the flies speed up. Moreover, open-

loop experiments in which there is FtB visual flow during the interstimulus interval period 

show the same phenomenon (Fig. S2D).

This model also recapitulated the slowing observed in the narrowed virtual hallway (Fig. 

2F), in which the faster visual flow at the narrowing causes the fly to slow. This slowing 

occurs because the gain becomes larger during the narrow portion of hallway, moving the 

fixed point to a lower walking speed.

Interestingly, because this model treats the fly’s behavior as function only of the visual 

stimulus, it predicts that flies that experience the identical visual inputs should respond 

identically, whether they are in closed-loop or open-loop conditions. To test this, we 

measured the walking speed of flies that were presented (under open-loop conditions) the 

stimulus generated by a different fly under closed-loop conditions. These flies in this replay 

condition behaved similarly to the flies with closed-loop control of the visual stimulus (Fig. 

S2EF), in agreement with our model. Overall, this model shows that a simple model can 

qualitatively explain the observed closed-loop slowing behaviors using open-loop data, even 

though navigational behaviors are known to feed back onto the responses of visual neurons 

(Chiappe et al., 2010; Fujiwara et al., 2016; Kim et al., 2015).

The slowing response is speed-tuned while the turning response is temporal-frequency-
tuned

Since walking speed control is sensitive to object depth (Fig. 2B) and the velocity of objects 

across the retina can be used to infer depth (Sobel, 1990), we hypothesized that the 

algorithm regulating walking speed might be tuned to the velocity of the stimulus. In insects, 

the turning response is tuned to the TF of the stimulus, not to its velocity (Borst and 

Egelhaaf, 1989; Fermi and Reichardt, 1963; Gotz, 1964; Kunze, 1961; McCann and 

MacGinitie, 1965) and this TF-tuning is consistent with predictions of the HRC model 

(Borst and Egelhaaf, 1989; Fermi and Reichardt, 1963; Reichardt and Varju, 1959). The 

tuning of a motion detection circuit can be determined by the responses to sine wave 

gratings of different temporal and spatial frequencies. TF-tuning is usually defined as a 

response whose peak occurs at a single TF, independent of spatial wavelength. Analogously, 

velocity-tuning is defined as a response whose peak occurs at a single velocity, independent 

of spatial wavelength. On a log-log axis, TF and spatial frequency pairs with equal velocity 

exist along lines with a slope of 1 (Fig. 3A) (Priebe et al., 2006). A TF-tuned response in 

spatiotemporal frequency space will have maxima that occur at a single TF (Fig. 3B). A 

velocity-tuned response in spatiotemporal frequency space will be oriented such that 

maxima occur along a line with slope 1, corresponding to a single velocity (Fig. 3C).

We measured the tuning of both the turning and slowing responses to both rotational and 

translational stimuli with many spatial and temporal frequencies (Fig. 3D). Since these are 

laborious measurements, we developed a rig that allowed us to measure individual 
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psychophysical curves in 10 flies simultaneously (see STAR Methods). We found that the 

rotational TF that elicited the maximal turning response did not strongly depend on spatial 

wavelength (Fig. 3E i), in agreement with many previous measurements (Borst and 

Egelhaaf, 1989; Fermi and Reichardt, 1963; Gotz, 1964; Kunze, 1961; McCann and 

MacGinitie, 1965). In contrast, the stimulus TFs that elicited the maximal slowing response 

depended strongly on spatial wavelength (Fig. 3E ii, iii). At low spatial frequencies, the 

dependence looked very much like velocity-tuning. Since this response is not direction-

selective, we concluded the slowing response is speed-tuned. These tunings remained when 

turning responses were quantified using a different rotation metric and integration window 

(Fig. S3ABC i) or if walking speed was not normalized (Fig. S3ABC ii). Interestingly, the 

slowing response was speed-tuned when the fly was presented with either rotational (Fig. 3E 

ii) or translational (Fig. 3E iii) stimuli. Thus, the speed-tuning is a property of the behavior, 

independent of the stimulus. When presented with rotational stimuli, the fly simultaneously 
engaged in TF-tuned turning and speed-tuned slowing (Fig. 3E i, ii).

Examining the maximal responses at each wavelength is informative, but it does not make 

full use of the rich dataset we obtained over many wavelengths and temporal frequencies. To 

take advantage of this data, we developed two models to characterize the entire set of 

spatiotemporal responses as either TF-tuned or velocity tuned. This characterization was 

based on the mathematical concept of separability, asking whether the responses could be 

characterized by single functions of either stimulus TF or velocity (Fig. S4ABC, see STAR 

Methods). This method does not make strong assumptions about the shape of the 

spatiotemporal responses. We then asked which of the two models was most likely to 

underlie the measured data. We found that the turning response was significantly better 

explained as TF-tuned (Fig. 3F i) and the slowing response was significantly better 

explained as speed-tuned (Fig. 3F ii, iii). However, the true tuning could be somewhere in 

between pure speed-tuned and pure TF-tuned. To examine this possibility, we created a third 

model, which, like the first two, also incorporates data from all spatial and temporal 

frequencies. In the third model, a parameter could be varied continuously between TF-tuning 

and speed-tuning. We call the best fit of this parameter the spatiotemporal slope (STS). It 

corresponds to the slope along which the data is best aligned (Fig. S4D, see STAR 

Methods). We found that the turning response was best fit by a nearly perfectly TF-tuned 

model, in which the STS equals zero (Fig. 3G i). The slowing response was more speed-

tuned than TF-tuned (Fig. 3F ii, iii), although it did not achieve perfect speed-tuning because 

the STS was less than 1. These measurements indicate that the TF-tuned HRC, which has 

classically been used to describe fly motion detection, cannot explain walking speed 

regulation.

Visual control of slowing and turning requires overlapping circuits

Our results show that the turning response and the slowing response are controlled by 

distinct algorithms. Are they implemented by distinct or by overlapping neural circuitry? We 

expressed the protein shibirets (Kitamoto, 2001) to silence specific cell types within the fly 

optic lobes (Fig 4A) using the GAL4/UAS system (Brand and Perrimon, 1993). The neurons 

L1, L2, and L3 receive direct inputs from photoreceptors and project to the medulla, where 

they feed into ON and OFF motion pathways (Clark et al., 2011; Joesch et al., 2010; Maisak 
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et al., 2013; Takemura et al., 2013), visual pathways that influence walking speed (Silies et 

al., 2013), object detection (Bahl et al., 2013), and flicker responses (Bahl et al., 2015). 

When either L1 or L3 was silenced, the slowing response to FtB motion was significantly 

diminished relative to control genotypes (Fig. 4BCD i, ii). Interestingly, in both cases, the 

behavior also lost its characteristic speed-tuning to BtF motion and became more TF-tuned 

(Fig. 4E i, ii). When L2 was silenced, responses to BtF sine wave gratings were reduced 

(Fig. 4BCD iii), while the speed-tuning of the behavior was unaffected (Fig. 4E iii). These 

results suggest that different subcircuits are responsible for FtB and BtF slowing, and that 

silencing subcircuits can revert speed-tuning to TF-tuning.

The neurons T4 and T5 are the earliest known direction-selective neurons in the fly; they are 

required for the turning response and the responses of wide-field direction-selective neurons 

(Maisak et al., 2013; Schnell et al., 2012). When T4 and T5 were silenced, translational 

motion stimuli no longer elicited robust slowing (Fig. 4BCD iv). Intriguingly, there 

remained some residual responses at high spatiotemporal frequencies, hinting that parallel, 

unsilenced pathways might contribute to the slowing response.

Elementary motion detectors T4 and T5 are temporal-frequency-tuned

We asked whether the speed-tuning of the slowing response could be inherited from T4 and 

T5 themselves. T4 and T5 cells with opposite selectivity are subtracted from each other in 

downstream neurons (Mauss et al., 2015), and models based on the HRC have obtained 

velocity-tuned responses from the individual HRC multiplier arms before subtraction 

(Srinivasan et al., 1999; Zanker et al., 1999). We imaged the calcium responses of T4 and T5 

axon terminals in the lobula plate (Fig. 5AB) (Salazar-Gatzimas et al., 2016). Consistent 

with previous findings (Maisak et al., 2013), we found that the axon terminals responded to 

moving gratings (Fig. 5CD, Fig. S5). We then measured the calcium signals in response to a 

suite of different spatiotemporal frequencies (Fig. 5EF i). Both T4 and T5 neurons were 

strongly direction-selective across all spatiotemporal frequencies measured, apparent in the 

differential responses to positive and negative spatial frequencies, which correspond to 

preferred and null direction motion. Counter to predictions for single multiplier motion 

detectors (Zanker et al., 1999), both neuron types showed responses that were TF-tuned 

(Fig. 5GH i). Thus, taken together with our silencing results, we find that the non-DS, speed-

tuned slowing response requires direction-selective, TF-tuned cells. Studies in neurons 

downstream of T4 and T5 have found differences between T4’s and T5’s responses to fast 

moving edges (Leonhardt et al., 2016), but we found that T4 and T5 showed similar tuning 

to sine wave gratings over many spatial and temporal frequencies. We found a response peak 

at TFs of ~2-3 Hz and spatial wavelength of ~30°, both of which are different from the 

maximal responses observed in behavior. These differences in tuning have been previously 

observed in the tuning of T4 and T5 (Maisak et al., 2013; Salazar-Gatzimas et al., 2016; 

Schnell et al., 2010) compared to behavior (Clark et al., 2011; Fry et al., 2009; Tuthill et al., 

2013).

In flies, motor activity can change the tuning of direction-selective neurons in the visual 

system (Chiappe et al., 2010), an effect mediated by octopamine released during motor 

activity (Strother et al., 2018; Suver et al., 2012). To see whether octopaminergic activation 
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of the visual system could convert the spatiotemporal tuning of T4 and T5 from TF-tuned to 

velocity-tuned, we added chlordimeform hydrochloride (CDM) to the perfusion solution 

during imaging (Arenz et al., 2017). We found that both T4 and T5 responses shifted to 

higher temporal frequencies (peak ~6-7 Hz), in agreement with previous studies (Fig. 5EF 

ii) (Arenz et al., 2017; Strother et al., 2018). However, the spatiotemporal tuning under these 

conditions was still strongly tuned to the stimulus TF, not to its velocity (Fig. 5GH ii). Thus, 

T4 and T5 activity may account for the TF-tuned turning response, but the velocity-tuning of 

slowing cannot be explained by the mean responses of the neurons T4 and T5.

A model with multiple detectors is sufficient to explain the slowing response

We propose a simple mathematical model to explain the spatiotemporal tuning we observed 

in walking speed regulation. The slowing response is non-DS, opponent, and speed-tuned, 

all while relying on TF-tuned direction-selective subunits that we observed (Figs. 1, 3-5). To 

account for our mean behavioral data (Fig. 6ABC), we constructed a model consisting of the 

sum of two TF-tuned, opponent HRCs with different spatial and temporal scales (Fig. 6D). 

To model the imbalance between FtB and BtF responses, we permitted the HRCs also to 

have an imbalance in weighting when subtracting the two directions. We fit the spatial and 

temporal scales of this model to match our measured behavioral responses to FtB motion 

(Fig. 3D iii, Fig. 6B). The spatiotemporal frequency responses of the model successfully 

reproduce the non-DS speed tuning of the original behavior, including the slight FtB/BtF 

imbalance (Fig. 6E). Moreover, like the data, the model responds strongly to FtB and BtF 

sine wave gratings, but responds minimally to counterphase gratings, as a result of the 

imbalance in the two HRCs (Fig. 6F). The spatiotemporal frequency response of the model 

is velocity-tuned because the two correlators in the model are offset from one another in 

spatiotemporal frequency space (Fig. 6G). Thus, our behavioral measurements, silencing 

data, and calcium imaging data is consistent with a hierarchical model in which at least two 

TF-tuned circuits with different tuning are combined to generate the speed-tuning observed 

in the fly’s slowing to visual motion.

Although the model above is sufficient to explain our data, we wished to investigate whether 

other models proposed in the literature could explain our observations. We found that the 

properties of the slowing response and its visual circuitry rule out a variety of models that 

have been proposed to explain speed or velocity-tuning (Fig. S6). Since most of these 

models generate direction-selective responses, we rectified each model’s output before 

averaging, so that only the response amplitude mattered and not its sign (see STAR 

Methods). Using this procedure, the standard HRC model cannot explain this behavior 

because it exhibits TF-tuning (Borst and Egelhaaf, 1989) (Fig. S6ABC i). Models based on 

the sum, rather than the difference, of two HRC subunits (Dyhr and Higgins, 2010a; 

Higgins, 2004) also do not fit our data, since they are not opponent and respond strongly to 

counterphase gratings (Fig. S6 ii). Models based on the predicted velocity-tuning of a single, 

multiplicative HRC subunit (Zanker et al., 1999) can be excluded because our data shows 

that the earliest direction-selective cells involved in the slowing response are TF-tuned, not 

velocity-tuned (Fig. 5 i, Fig. S6 iii). Since these published models could not account for our 

behavioral results, we asked whether it was possible for any model with only one direction-

selective, opponent signal to explain our data. We therefore constructed a model that 
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combined a single TF-tuned direction-selective signal with a non-DS signal. With the right 

tuning, such a model could account for our observations (Fig. S6ABC iv, see STAR 

Methods). This emphasizes that the model using two correlators with different tuning is 

sufficient, but a second correlator with different tuning is not required to explain the 

behavioral results presented here.

Discussion

Our results demonstrate that walking speed is regulated by an algorithm that is non-

direction-selective, opponent, and speed-tuned (Figs. 1 and 3). The algorithm produces a 

stabilizing effect on walking speed, and causes the fly to slow when objects are nearby (Fig. 

2). The HRC model, which predicts the TF-tuning of the turning response, has long been 

central to the study of motion detection in insects (Hassenstein and Reichardt, 1956; Silies et 

al., 2014). The characterization of walking behavior in this study demonstrates that a second 

motion-detection algorithm — distinct from a single HRC — exists in flies. However, our 

dissection of the circuitry underlying this behavior shows that the slowing response and the 

classical turning response employ overlapping neural circuitry (Fig. 4) and that the slowing 

response relies on TF-tuned, direction-selective cells (Fig. 5). Several classical models 

thought to explain speed-tuned responses cannot explain our observations (Fig. S6), but our 

results are consistent with a hierarchical model for speed-tuning that combines multiple 

motion detectors (Fig. 6).

Advantages of speed-tuning and temporal-frequency-tuning

Our results show that different motion cues guide distinct navigational behaviors. Why is 

walking speed regulation speed-tuned while orientation regulation is TF-tuned (Fig. 3)? As 

an observer translates through the world, objects move across the retina with a speed that is 

inversely proportional to their distance from the observer. As a result, an observer can use 

retinal speed to estimate object depth using motion parallax (Sobel, 1990). Importantly, TF 

is less informative about depth. As a simple example, when an observer moves parallel to a 

wall with a sine wave pattern, the pattern’s wavelength and velocity on the retina both vary 

inversely with the distance from the wall, keeping TF constant with depth. The speed-tuning 

of the slowing response could therefore be critical to the distance-dependent walking speed 

regulation that we observed in closed-loop experiments (Fig. 2). Interestingly, Drosophila 
also use visual cues to measure distance when crossing narrow gaps (Pick and Strauss, 

2005), a behavior that could employ a motion detection algorithm similar to the one 

described here.

It is less clear what advantage TF-tuning confers on the turning response, since pattern 

dependent responses appear at first glance disadvantageous for estimating real world motion. 

However, with the regularity of spatial frequencies in naturalistic inputs, TF-tuning can be 

equivalent to velocity-tuning (Dror et al., 2001). If natural optomotor turning behaviors were 

primarily guided by the direction of motion, rather than the speed, then the pattern-

dependence of the tuning would also be less important (Srinivasan et al., 1999). 

Interestingly, psychophysical experiments in humans indicate that the perception of speed 

can depend on both stimulus velocity and wavelength, and that perception may be speed-
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tuned in some regimes and TF-tuned in others (Shen et al., 2005; Smith and Edgar, 1990). 

These two regimes suggest there may be flexibility in the algorithm used to guide a 

behavior.

Modeling speed-tuned motion detection circuits in the fly

We have proposed that the speed-tuning of walking speed regulation could originate as the 

sum of differently tuned, opponent HRC motion detectors. While we represent this as a sum 

of multiple correlators with different tunings, the underlying structure need not be an HRC; 

any mechanism that has a compact TF-tuned spatiotemporal response would be sufficient. In 

primate visual cortex, cells in V1 show TF-tuning while those in MT show speed-tuning 

(Perrone and Thiele, 2001a; Priebe et al., 2006; Rodman and Albright, 1987). Previous 

theoretical work has proposed that the approximate speed-tuning observed in MT could be 

generated by summing V1 cells with different spatiotemporal frequency tunings (Simoncelli 

and Heeger, 1998). The model presented here is analogous to that V1-MT transformation. 

An alternative model for speed-tuning has been proposed in honeybees; it combines multiple 

TF-tuned cells in a different way but could also explain our data (Srinivasan et al., 1999). 

Fundamentally, these models each approximate speed- or velocity-tuning by combining 

responses at two or more spatiotemporal scales.

In Drosophila, we suggest that speed tuning could arise from combining the TF-tuned output 

from T4 and T5 neurons with separate neural signals that possess a different spatiotemporal 

tuning. According to this suggestion, one might expect to find direction-selective fly neurons 

with different TF tuning than T4 and T5. Consistent with this, measurements in the fly 

Calliphora found direction-selective cells with tuning similar to T4 and T5, but also cells 

with peak responses at 15-20 Hz (Horridge and Marcelja, 1992). Intriguingly, when T4 and 

T5 were silenced in our experiments we observed residual slowing at high spatial and 

temporal frequencies, which could originate in such pathways (Fig. 4C iv). Moreover, 

silencing visual subcircuits can revert the slowing response to TF-tuning (Fig. 4CE i,ii), 

consistent with models that generate speed-tuned responses by combining responses from 

multiple TF-tuned direction-selective cells. A model that adds two differently-tuned DS cells 

is plausible, simply because it only requires the fly to do again what it has already done: 

create a TF-tuned direction-selective cell, this time with a distinct tuning.

Non-DS regulation of walking speed

Perhaps surprisingly, the algorithm that regulates walking speed is not strongly direction-

selective, since flies slow to both FtB and BtF visual flows (Fig. 1 and 3). When different 

neuronal subcircuits were silenced, it selectively suppressed responses to either FtB or BtF 

motion (Fig. 4). This implies that non-direction-selectivity is a deliberate function of the 

circuit, with different directions explicitly computed by different subcircuits. Why might 

direction-insensitivity be a feature of the circuit? If the fly were using motion parallax to 

compute distance, then the depth of an object may be computed from only the magnitude of 

the motion, independent of its direction (Sobel, 1990). Such motion parallax signals could 

be used to avoid collisions by slowing when objects are near (Fig. 2B), a behavior that is 

also observed in other insects (Srinivasan et al., 1996) and birds (Schiffner and Srinivasan, 

2016). Interestingly, BtF optic flow has been predicted to be useful in collision avoidance 
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(Chalupka et al., 2016). An alternative explanation for direction-insensitivity is that if an 

observer rotates and translates at the same time, self-motion can induce simultaneous FtB 

and BtF motion across the retina (Fig. S6D). Non-direction-selectivity might allow the fly’s 

walking speed regulation to remain sensitive to such conflicting optic flow.

Direction insensitive, speed-tuned circuits and behaviors exist in other animals. Locusts use 

motion parallax to estimate distance when jumping to visual targets, and this computation is 

independent of the direction of the motion (Sobel, 1990). Likewise, honeybees regulate 

flight speed using algorithms that are insensitive to the direction of visual motion 

(Srinivasan et al., 1996). In primates, direction insensitive speed-tuned cells have been 

reported in cortical region MT (Rodman and Albright, 1987). It would be interesting to 

investigate whether there exist speed-tuned, non-DS behaviors in mammals, as has been 

shown in Drosophila and other insects.

Implications for mechanisms of motion detection

Although the HRC serves as an excellent model for some insect direction-selective neurons 

and for optomotor turning behaviors, many recent results have shown that the cellular 

mechanisms implementing motion detection are not consistent with simple multiplication 

(Behnia et al., 2014; Clark et al., 2011, 2014; Fitzgerald and Clark, 2015; Gruntman et al., 

2018; Haag et al., 2016; Joesch et al., 2010; Leong et al., 2016; Salazar-Gatzimas et al., 

2016; Strother et al., 2017, 2014; Wienecke et al., 2018). The TF-tuning of T4 and T5 

demonstrates that a simple multiplicative nonlinearity cannot account for their direction-

selectivity, since such a model would imply a non-TF-tuned response (Zanker et al., 1999). 

Instead, these tuning results could be consistent with other mechanisms for direction-

selectivity that include more complex spatiotemporal filtering (Leong et al., 2016) or 

multiple direction-selective nonlinearities (Haag et al., 2016). In our modeling we use 

correlators for their simplicity; the exact structure of the underlying TF-tuned subunit is not 

specified by our results. Regardless, our result that silencing subcircuits reverts velocity-

tuned behavior to TF-tuned behavior (Fig. 4 i, ii) suggests that velocity-tuning in the fly 

could arise from a hierarchical set of visual processes, similar to the processing found in 

visual cortex (Felleman and Van Essen, 1991).

Visual control of rotation and translation across phyla

Although vertebrates and invertebrates are separated by hundreds of millions of years of 

evolution, they must both navigate the same natural world, which could provide convergent 

pressures on their algorithms to control orientation and translation. For instance, analogous 

to insect optomotor orientation stabilization, mammals show an optokinetic response, in 

which the eye rotates to follow wide-field motion (Ilg, 1997). Behavioral studies in fish 

show that they exhibit optokinetic responses and body-orienting behaviors, and they regulate 

their translation in response to visual motion (Portugues and Engert, 2009; Severi et al., 

2014). Analogous to the translational stabilization measured here, humans use visual 

feedback to regulate walking speed, slowing down when gain between behavioral output and 

visual feedback is increased, and walking faster when the gain is reduced (Mohler et al., 

2007; Prokop et al., 1997). In mouse retina, direction-selective cells are organized to match 

translational flow fields (Sabbah et al., 2017), suggesting they play a role in detecting 
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translational self-motion. Analogous to honeybees and our results in Drosophila, birds also 

slow when passing nearby objects (Schiffner and Srinivasan, 2016). These examples show 

that navigating vertebrates and insects display many of the same behaviors. In these two 

evolutionarily distant phyla, the circuits and computations in motion detection show 

remarkable parallels (Borst and Helmstaedter, 2015; Clark and Demb, 2016). It will be 

interesting to compare the stabilizing algorithms across these animals and determine whether 

rotational and translational regulation also show parallel structure. If mammals employ TF-

tuned behaviors, as insects do in rotation, then the TF-tuned cells in mammalian cortex 

might be useful in their own right, rather than serving solely as inputs for later speed-tuned 

computations.

Neural circuits and behaviors that are speed- or velocity-tuned have been investigated in the 

visual systems of honeybees (Srinivasan et al., 1996, 1999), pigeons (Crowder et al., 2003), 

and in primate MT (Perrone and Thiele, 2001b), all animals where genetic tools are not 

easily applied to dissect circuits and behavior. The slowing response in walking Drosophila 
represents an opportunity to use genetic tools to dissect how speed-tuning arises, how it 

interacts with other motion estimates, and how multiple motion signals drive distinct 

navigational behaviors.

STAR Methods

Contact for reagent and resource sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Damon Clark (damon.clark@yale.edu).

Experimental model and subject details

Fly Husbandry—Flies for behavioral experiments were grown at 20° C. Flies for imaging 

experiments were grown at either 25 or 29° C. All flies were grown at 50% humidity in 12-

hour day/night cycles on a dextrose-based food. All tested flies were non-virgin females 

between 24-72 hours old. Fly genotypes are reported in Table S1.

Method Details

Psychophysics—We constructed a fly-on-a-ball-rig to measure walking behaviors, as 

described in previous studies (Clark et al., 2011; Salazar-Gatzimas et al., 2016). Each fly 

was anesthetized on ice and glued to a surgical needle using UV epoxy. The fly was then 

placed above a freely turning ball which the fly can grip and steer as if it were walking. The 

rotation of the ball was measured at 60 Hz using an optical mouse sensor with an angular 

resolution of 0.5°. Panoramic screens surrounded the fly, covering 270° azimuth and 106° 

elevation. The stimuli were projected on to the screens by a Lightcrafter DLP (Texas 

Instruments, USA) using monochrome green light (peak 520 nm and mean intensity of 100 

cd/m2). Stimuli were projected such that the fly experienced a virtual cylinder. For higher 

throughput we built 2 rigs with 5 stations in parallel, enabling us to run 10 flies 

simultaneously. Flies were tested 3 hours after lights on or 3 hours before lights off at 34-36° 

C to allow us to use thermogenetic tools (Clark et al., 2011; Salazar-Gatzimas et al., 2016).
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Stimuli—All stimuli were drifting sine wave gratings of a single spatial and temporal 

frequency, which had contrasts c(x, t) = A sin(ω0t + k0x), or were counterphase gratings, 

which had contrasts c(x, t) = A sin(ω0t + k0x) + A sin(ω0t − k0x) = 2A sin(ω0t) cos(k0x). 

Each presentation of the stimulus was preceded by a period of a blank mean luminance 

screen. Behavioral experiments used an amplitude A of 0.25 and imaging experiments used 

an amplitude of 0.5. Behavioral experiments had a prestimulus interval of 5s, a stimulus 

duration of 1s, and was presented for 20 minutes. Imaging experiments had a prestimulus 

interval of 5s, a stimulus duration of 4s, and was presented for 15 minutes.

Each open-loop stimulus presentation was chosen at random from the full set of TFs at a 

single spatial wavelength. Each fly was presented with two spatial wavelengths. Each 

closed-loop stimulus presentation was chosen at random from the full set of gains.

Stimuli were generated in Matlab using Psychophysics Toolbox (Brainard, 1997; Kleiner et 

al.; Pelli, 1997). Stimuli were mapped onto a virtual cylinder before being projected onto flat 

screens subtending 270° of azimuthal angle. This provided the fly with the visual experience 

of being in the center of a cylinder. The spatial resolution of the stimulus was ~0.3° and the 

stimuli were updated at either 180 or 360 Hz. Stimulus spatiotemporal frequency is reported 

in Table S2.

Virtual hourglass hallway: The virtual hallway stimulus consisted of three 20 mm 

segments with infinitely high walls diagrammed in the top of Fig. 2B. The first segment had 

walls were 20 mm apart, the second segment had walls that narrowed from 20 mm to 2mm, 

and the third segment had walls that widened from 2mm to 20mm. The spatial pattern on the 

walls was a sine wave with a 5.4 mm spatial wavelength. Supplemental Movie M2 moves 

through the virtual hallway at a constant speed. The stimulus has two phases. The first phase 

is the pre-stimulus interval where the fly is held in open-loop position but closed-loop with 

the sine wave texture. The second phase the fly is in closed-loop with its position in the 

hallway while the texture remains fixed.

2-photon Calcium Imaging—Neurons were imaged in a two-photon rig as previously 

described (Clark et al., 2011; Salazar-Gatzimas et al., 2016). The fly was anesthetized on ice 

and placed in a stainless-steel holder which pitched the head forward. The cuticle, fat, and 

trachea were removed from the back of the fly’s head and the brain was perfused with a 

ringer solution (Wilson et al., 2004). Chlordimeform (CDM, Sigma-Aldrich 31099) was 

added to the ringer solution at a concentration of 20 μM during the experiments shown in 

Fig. 5ABC ii (Arenz et al., 2017). All imaging was performed on a two-photon microscope 

(Scientifica, UK). Stimuli were displayed using a digital light projector (DLP) on screen in a 

setup similar to behavior. The screen covered 270° azimuth and 69° elevation and the virtual 

cylinder was pitched forward 45° to account for the angle of the head. A bandpass filter was 

applied to the output of the DLP to prevent the stimulus light from reaching the emission 

photomultiplier tubes (PMTs). The filters had centers/FWHM of 562/25 nm (projector) and 

514/30 nm (PMT emission filter) (Semrock, Rochester, NY, USA). A precompensated 

femtosecond laser (Spectraphysics, Santa Clara, CA, USA) provided 930 nm light at power 

<30 mW. Images were acquired at ~13 Hz using ScanImage (Pologruto et al., 2003). 
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Regions of interest for T4 and T5 were defined as in previous studies (Salazar-Gatzimas et 

al., 2016).

Data analysis

Blinding: Experimenters were not blinded to fly genotype or presented stimuli. All analyses 

were automated.

Data exclusion: Flies were excluded from behavioral analysis based on three criteria 

applied to behavior during the prestimulus intervals. These criteria were intended to exclude 

flies that did not walk, did not turn, or had an extreme bias in turn direction. Flies were 

excluded if (1) their mean walking speed was less than 1 mm/s; (2) the standard deviation of 

their turning was less than 40°/s; or (3) the mean turning exceeded two-thirds of the standard 

deviation in turning.

Average response and standard error of the mean: Fig. 1, 2AB, 3D, 4BC, 5CDEF, 6BC, 

S1CDEF, S2, S3AD, S4AD, S5

To calculate a fly’s average behavioral response to a given stimulus we first averaged over 

stimulus presentations to find a mean time trace per fly; then over time, to find an average 

response per fly to each stimulus; then over flies to find the mean response over flies. For 

imaging data, the same process was applied but regions of interest were averaged before 

averaging across flies. The reported standard error of the mean is calculated across the flies’ 

average responses to a stimulus, using the number of flies as N. Responses to rotational 

stimuli were averaged over the first 250 ms of stimulus and responses to translational stimuli 

were averaged over the first 1000 ms of stimulus. For rotational behavioral stimuli, leftward 

and rightward stimuli were averaged together. For imaging stimuli progressive and 

regressive T4 and T5 were averaged together. Time traces of responses are calculated 

identically but without averaging over the time of stimulus presentation.

Normalized walking speed: Before averaging, each walking speed trace was divided by the 

average walking speed of the fly in the 500 ms of the preceding the stimulus. After this 

normalization operation, the trace represents a fold change from baseline walking. Average 

fly walking speed for each genotype is reported in Table S3.

Gain: Fig. 2ADE, S2ACE

The gain the closed-loop stimuli is the multiplicative factor (°/mm) that relates the walking 

speed of the fly (mm/s) to the stimulus velocity (°/s). The exact number chosen is arbitrary 

and roughly corresponds to a depth to an object in the real world. For this study we used 

18 °/mm which corresponds to a stimulus velocity of 18 °/s per every 1 mm/s of fly walking 

speed. We refer to this as a gain of 1.

Averaging controls: Fig. 4B
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Each experimental genotype had two associated controls; shibire/+ and GAL4/+ (Table S2). 

These controls behaved similarly so we present their averaged spatiotemporal response 

under the control column. The controls are split apart for statistical tests.

Peak slowing calculation: Fig. 4D

The mean slowing is equal to 1 minus the normalized walking speed. The peak slowing was 

found by averaging over the 6 spatiotemporal frequencies flies slowed most to.

Measuring Maxima: Fig. 3DE, 4BC, 5EF, 6BEG, S3A, S6B

The temporal frequency (TF) of a sine wave grating which produced the maximum 

measured response was identified. Then a 3rd order polynomial was fit to the 3 TFs before 

and after the maximum location for a total of 7 points. The location of the maximum of this 

polynomial was reported. This method reduced susceptibility to noise.

Testing for temporal-frequency-vs. velocity-tuning and spatiotemporal slope 
(STS): Fig. 3DFG, 4BCE, 5EFGH, S6BEG, S3AC, S3, S6B

A temporal-frequency-tuned system has the property that the temporal frequency (ω) of a 

sine wave grating that produces the peak response does not depend on the spatial frequency 

(k) of the grating. More broadly, a temporal-frequency-tuned response has a response r that 

is separable, such that r(ω, k) = f(ω)g(k). Analogously, a velocity-tuned system has a 

response r that is separable such that r(v, k) = f(v)g(k), where ν = ω
k  is the velocity. We 

therefore modeled the response as r(β, k) = f(β)g(k) where β ≡ ωk−γ If γ = 0 then β = ω and 

one has a temporal-frequency-tuned model, while if γ = 1, then β = ω
k = ν and one has a 

velocity-tuned model. Varying γ between those limits allows the model to move smoothly 

between velocity-tuning and temporal-frequency-tuning. In log-log space, log(β) = log(ω)-

γlog(k). This means that regions of constant log(β) correspond to lines with slope γ when 

plotting log(ω) against log(k) (Fig. S4D). We calculate the likelihood that the data is 

separable for many values of γ to find the maximum likelihood γ (Fig. S4Dii) and term this 

the spatiotemporal slope (STS) of the response. We also specifically consider the case of 

perfect TF-tuning (γ = 0) and perfect velocity-tuning (γ = 1), fit a separable model to each 

case, and determine which model has a higher likelihood (Fig. S4ABC).

In order to compute the STS, we had to test for separability of many different models. For 

each value of γ, we resampled spatiotemporal responses along the new axes k and β using 

Delaunay triangulation (Fig. S4D). We then fit the resampled data to a separable model that 

maximized the explained variance. We computed the log likelihood for that model (Fig. 

S4Dii) from the sum of the squared residuals, using an estimate of error (the denominator in 

the log likelihood) equal to the variance in response averaged over all spatiotemporal 

frequencies.

Model of walking speed stability—For turning, the fly’s rotational velocity can be 

modeled as a simple function f of the rotation stimulus it sees:
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τr. = f (vr) − r

vr = − r

Where r is the fly’s rotational velocity, f is the fly’s average open-loop response to a 

stimulus with rotational velocity vr. In the natural world, every rotation of the fly 

corresponds to an opposite rotation in the world so vr = −r. The rotational velocity adjusts to 

new stimuli with a time constant τ. Since f is odd (direction-selective) and f(0) = 0, this 

system ensures that a fixed point is zero rotation. If f′ > 0 at the origin, then the system will 

be stable to small perturbations in r. This acts as a negative feedback on rotation, and this 

sort of model has been previously explored in depth (Reichardt and Poggio, 1976). The 

curves described are shown in Figure S2B.

Following a similar approach to rotational responses, we define fly walking speed as w. The 

flow field created by translation through an environment is not spatially homogeneous, and 

depends on the angle and depth of objects relative to the trajectory (Sobel, 1990). However, 

the flow field is proportional to the translation speed w, and inversely proportional to a 

positive environmental lengthscale R. We assume that the flow field is weighted over space 

in some way, so that the constant of proportionality α is positive, and a scalar quantity vt = 

αw/R represents the translational velocity signal. Then:

τw. = g(vt) − w

vt = αw R

where g is the open-loop response to a specific translational velocity. The walking speed 

adjusts itself with time constant τ until it reaches g(vt).

Combining these two equations, we find

τw. = g(αw R) − w

This has a fixed point at w* = g(αw*/R). By changing the gain in closed-loop, or by placing 

the fly in a virtual wasp-waist corridor, we modulate R, and change the fixed point of the 

system. Furthermore, this fixed point will be stable when g′(αw*/R) < 0. Since the g(x) is 

measured empirically to be approximately even (non-direction-selective) and is decreasing 

as ∣x∣ increases, then this system will be stable to small perturbations in walking speed even 

when the gain is negative. As long as vt is less than the velocity the fly responds maximally 

to, then this mechanism will act as a feedback to stabilize the walking speed of the fly, 

achieving a slower walking speed when objects are closer (R is smaller). The curves 

described are shown in Figure 2D.

Model requirements—We evaluated the ability of different models to explain our results 

based on 4 characteristics of the slowing response: non-direction-selectivity, opponency, 

temporal-frequency-tuned subunits, and speed tuning (Fig. S6).
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Non-direction-selective: The model must respond to both front-to-back (FtB) and back-to-

front (BtF) stimuli with the same sign and similar magnitude. Most models in the field are 

direction-selective; to make such models non-DS, we rectified model outputs before 

averaging over space and time so as to measure the (non-DS) amplitude of response.

Opponent: An opponent system is often defined as one that responds positively to motion in 

one direction (preferred direction) and negatively to motion in the opposite direction (null 

direction) (Adelson and Bergen, 1985; van Santen and Sperling, 1984). However, consider 

the case that such an opponent system is operated on by a full-wave rectifying nonlinearity. 

The system now responds equally to stimuli of different directions, hiding its internal 

opponency.

To probe this internal opponency, one can show the system motion in the preferred direction 

and add motion in the null direction. If the system was not opponent, then adding motion in 

the null direction should not change its response, or its response should become larger. An 

opponent system, even one acted upon by a rectifying nonlinearity, should not respond to 

such a stimulus because the preferred and null direction motion should cancel out. 

Counterphase gratings are equal to the sum of FtB and BtF stimuli. We define a model as 

opponent if it responds individually to FtB and BtF stimuli, but not to their sum (Heeger et 

al., 1999; Levinson and Sekuler, 1975).

Temporal-frequency-tuned subunits: We observed that T4 and T5 are necessary for the 

walking response (Fig. 4 iv) and that they are temporal-frequency-tuned (Fig. 5EFGH). 

Therefore, to agree with the data, a model must use temporal frequency tuned subunits as 

part of its computation rather than achieving velocity tuning in a single step from non-

direction-selective neurons.

Speed-tuning: The model must have a positive spatiotemporal slope (STS).

We examined several candidate models, which we could rule out based on one or more of 

the criteria above.

Model summaries

Hassenstein-Reichardt Correlator (HRC): The HRC has been the favored model to 

describe fly turning response for over 50 years (Borst, 2014; Silies et al., 2014). The HRC 

consists of two “half correlator” subunits which are spatially reflected versions of one 

another. While the HRC is predictive of the turning response, it is does not explain the 

slowing response, since the model is temporal-frequency-tuned (Egelhaaf et al., 1989) and 

thus has a STS of 0 (Fig. S6 i).

Sum of half -correlators: The HRC consists of two multiplicative units that are subtracted 

from one another. Instead of subtracting the two subunits, one could add them to remove the 

direction-selectivity of the model (Fig. S6 ii). The resulting model is not direction-selective, 

but it is also not opponent. While this model is approximately speed tuned by some metrics 

(Dyhr and Higgins, 2010b; Higgins, 2004), it is separable in spatiotemporal frequency space 
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and thus has an STS of 0. Finally, this model predicts that the behavioral slowing response 

should be maximal at low spatial frequencies, which we did not observe.

Half-correlator: An HRC half correlator is approximately velocity tuned and has a positive 

STS (Zanker et al., 1999). However, this model is direction-selective, not opponent, and 

achieves velocity tuning in a single step without using TF-tuned subunits (Fig. S6 iii).

Combining a single correlator with non-DS cells: We constructed a model to generate the 

non-DS, speed-tuned, opponent average behavioral responses by combining a single TF-

tuned HRC with other non-DS cells (Fig. S6 iv). By combining the two components 

multiplicatively, the entire model possessed the opponency of the HRC, while the non-DS 

cells could sculpt the response to be speed-tuned.

Multiple correlators: This model uses TF-tuned subunits with different spatial and 

temporal characteristics to measure stimulus velocity. This model is capable of reproducing 

all the features of our results (Fig. 6). It is worth noting that there are multiple ways to 

combine differently-tuned correlators to achieve velocity-tuning (Simoncelli and Heeger, 

1998; Srinivasan et al., 1999). Furthermore, it is not necessary that the units be correlators; 

they need merely be TF-tuned and respond to a limited range of spatiotemporal frequencies.

Quantification and statistical analysis

Statistical analysis—Fig. 3FG, 4DE, 5GH, S3BC

Confidence intervals for the spatiotemporal slope (STS), slowing amplitude, and log 

likelihood ratio were created by bootstrapping the spatiotemporal responses 1000 times 

across flies and recalculating the metric. We report the 95% confidence intervals of this 

bootstrap distribution. Bootstrapping is a nonparametric method for generating confidence 

intervals and does not make strong assumptions about the distribution of the data. We 

assume that each fly is independent and comes from the same underlying distribution. This 

method also assumes that our datasets have adequately sampled the population.

Sample-size—Sample-sizes for imaging experiments were chosen based on typical sample 

sizes in the field. Sample-sizes for behavioral experiments were chosen based on a pilot 

study used to determine how many flies were required to measure response tuning. Once this 

pilot study was completed, we acquired the data sets in the paper with approximately this 

sample-size. The number of flies for each figure is reported in Table S4.

All wildtype behavioral data was reproduced multiple times over several years. All neural 

silencing data was reproduced from several independent crosses over two years.

Model equations and parameters—The functions p and q represent the temporal 

filtering steps and the spatial filtering steps at the input to an HRC model.
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p1(t) = δ(t)

p2(t) = Θ (t)1
τ e

− t
τ

php(t) = p1 − p2

q1(x) = 1

2π ϕ
2

2e

− x2

2 ϕ
2

2

q2(x) = 1

2π ϕ
2

2e

− (x − ϕ)2

2 ϕ
2

2

The function p1 acts as the non-delay line, while p2 low pass filters input to delay light 

signals in time. The two spatial filters are Gaussian with width ϕ/2, displaced by a distance 

φ. The function is Θ(t) is the Heaviside step function and the function δ(t) is the Dirac delta 

function.

We combine p and q into 4 different spatiotemporal filter combinations:

h1, 1(x, t) = p1(t)q1(x)

h2, 1(x, t) = p2(t)q1(x)

h1, 2(x, t) = p1(t)q2(x)

h2, 2(x, t) = p2(t)q2(x)

The HRC computes the net, oriented spatiotemporal correlations. To compute the output of 

the HRC model, one convolves each of the filters with the stimulus contrast at each point in 

time and space, s(x, t), and then takes the difference between pairs of products of those 

filtering steps:

R(x, t) = β s ∗ h2, 1 s ∗ h1, 2 − α s ∗ h1, 1 s ∗ h2, 2

Here, the parameter β is an overall scaling factor for fitting. The parameter α represents an 

imbalance between the two correlators. When α = 1, this is a classical HRC.

Each of the models tested is a modified version of R. The fit parameters for each model are 

presented below. Note that the model in Fig. S6 ii, as published, contained a high-pass filter 

in time on all inputs to the model, an operation we also performed in our version of that 

model, using php(t) from above. Parameters for each model are in Table S5. Parameters in 

parenthesis were not fit, but were set to generate the model.

To construct a model that was opponent everywhere but contained only 1 opponent DS cell 

(Fig. S6 iv), we generated two non-DS cells that would be summed together. To do this, we 
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generated the form of the response in frequency space by adding together two TF-tuned 

responses.

RNDS(ω, k) = 1
2πσω1

σk1
e

−

log ∣ ω ∣
μω1

2

2σω1
2 −

log ∣ k ∣
μk1

2

2σk1
2

+ A
2πσω2

σk2
e

−

log ∣ ω ∣
μω2

2

2σω2
2 −

log ∣ k ∣
μk2

2

2σk2
2

This form could be the result of adding the squared outputs of two cells with different 

spatiotemporal selectivity; this generates the speed tuning of the final model. This form 

takes the response as averaged over time and space, which could be accomplished with 

spatial integration (as in HS- or VS-like cells) and low-pass temporal filtering. This non-DS 

response is then multiplied by a similarly averaged HRC of the form above. The model 

parameters that fit our data were: τ = 10.4 ms, ϕ = 3.26 °, α = (1), β = 3000, μω1 = 1.12 Hz, 

μk1
= 0.0111

∘ , σω1 = 1.4, σk1 = 0.67, A = 25.6, μω2 = 0.72 Hz, μk2
= 0.0171

∘ , σω2 = 5.48, σk2 

= 1.61.
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Highlights

• Drosophila slows in response to visual motion to stabilize its walking speed

• Slowing is tuned to the speed of visual stimuli

• Walking speed modulation relies on T4 and T5 neurons

• A model combining multiple motion detectors can explain the behavioral 

results
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Figure 1. Flies turn and slow in response to visual motion
Error patches represent standard error of the mean. Icons in the bottom left indicate the 

stimulus presented (outside) and the behavioral response measured (inside).

(A) Behavioral responses were measured by tethering the fly above an air suspended ball 

and monitoring the rotation of the ball as visual stimuli were presented on 3 screens 

surrounding the fly.

(B, C) Diagram of the stimuli and fly behavioral response for (B) rotational and (C) 

translational motion stimuli.
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(D) Fly turning velocity over time in response to clockwise (green, n=69), counterclockwise 

(orange, n=69), and counterphase (purple, n=19) sine wave gratings. Counterphase gratings 

are equal to the sum of clockwise and counterclockwise stimuli. Stimulus is presented 

during gray shaded region.

(E) As in D but measuring the fly’s walking speed.

(F) Fly turning velocity over time in response to front-to-back (FtB, green, n=18), back-to-

front (BtF, brown, n=14) and counterphase (purple, n=19) sine wave gratings. Counterphase 

gratings are equal to the sum of FtB and BtF stimuli. Stimulus is presented during gray 

shaded region.

(G) Same as in F but measuring the fly’s walking speed.

(H) Mean fly turning to rotational sine wave gratings (green, orange, n=69) and 

counterphase gratings (purple, n=19) at a variety of temporal frequencies. Data colored as in 

(D).

(I) Same as in H but measuring the fly’s walking speed.

(J) Mean fly turning to FtB (green, n=18) and BtF (brown, n=14) sine wave gratings and 

counterphase gratings (purple, n=19) at a variety of temporal frequencies. Data colored as in 

(E).

(K) Same as in J but measuring the fly’s walking speed.

Throughout, error patches represent standard error of the mean.

See also Figure S1 and Supplemental Movie M1.
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Figure 2. Slowing to visual motion stabilizes walking speed
Error patches represent standard error of the mean.

(A) Flies were presented with translational sine wave gratings with velocity determined by 

the walking speed of the fly. The gain relating the visual stimulus to the walking speed of the 

fly was set to 1 during the pre-stimulus interval, and then transiently changed to ±1/9 or ±9 

during the stimulus presentation. Different gains correspond to different visual stimulus 

speeds for a given walking speed (top). Gain of 1 corresponded to 18 °/s for 1 mm/s walking 

speed and was changed during gray shaded region (bottom). Dotted lines indicate negative 

gains. n=29.

(B) Flies were placed in a one-dimensional closed-loop environment, consisting of a hallway 

with an hourglass narrowing (top). Mean fly locations are plotted every 400 ms (top). Fly 

walking speed is plotted as a function of position in the hallway (bottom). n=35.
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(C) Schematic of the model of fly walking behavior in closed-loop. Walking forward 

generates a visual flow field that is determined by distances in the environmental. The fly 

changes its walking speed based on the visual flow.

(D) Simple model of fly walking behavior in closed-loop. Open-loop slowing responses 

(Fig. 1K) for FtB (green) and BtF (brown) are plotted as a function of stimulus velocity. 

Natural stimulus gain (indicating the visual velocity experienced for a given fly walking 

speed) for environments with distant (pink), intermediate (blue), and close (yellow) objects. 

Stable fixed points are indicated by black circles. Black arrows indicate the change in 

walking speed for fluctuations near the intermediate distance fixed point. See STAR 

Methods for a detailed analysis.

(E) Predictions of the closed-loop model of fly behavior, colored as in (A).

(F) Prediction of the closed-loop model of fly behavior for the hourglass hallway experiment 

in (B).

See also Figure S2 and Supplemental Movie M2.
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Figure 3. The slowing response is speed-tuned while the turning response is temporal-frequency-
tuned
(A) Lines of equal temporal frequency (TF) (orange) and velocity (purple) shown in log-log 

spatiotemporal frequency space. Darker lines indicate greater velocities and temporal 

frequencies.

(B) Spatiotemporal response of a TF-tuned model. Black circles mark the TF of the maximal 

response for each wavelength. Gold line is the spatiotemporal slope (STS) (see STAR 

Methods).

(C) Spatiotemporal response of a speed-tuned model. Plot features are as in B.
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(D) Mean fly turning (i) and slowing (ii, iii) to sine wave gratings as a function of spatial and 

temporal frequency. Positive/negative spatial frequencies indicate rightward/leftward (i, ii) 
or front-to-back/back-to-front (iii) sine waves. Icons on the left indicate the stimulus 

presented (outside) and the behavioral response measured (inside). Black isoresponse lines 

are plotted every 10 °/s for turning (i) and every 0.2 fold change for walking speed (ii, iii). 
Black circles mark the TF of the maximal response for each wavelength and only reported 

when the maxima occurs within the TF range measured. Gold line is the spatiotemporal 

slope (STS). (i, ii) n=467. (iii) FtB n=124. BtF n=104.

(E) TF at which the response is maximal plotted as a function of spatial wavelength. Error 

bars are standard error of the mean. Dashed lines indicate average TF or average velocity 

across all maxima. When plotting TF against spatial wavelength, lines of equal TF have 

slope 0 while lines of equal velocity are proportional to inverse spatial wavelength.

(F) The log likelihood ratio of TF-tuned to speed-tuned models (see STAR Methods). 

Positive values indicate that a TF-tuned model is more likely while negative values indicate 

that a velocity-tuned model is more likely. Error bars are 95% confidence intervals and 

asterisks represent significant difference from 0 at α=0.05.

(G) STS of plots in D, where a value of 0 corresponds to perfect TF-tuning and 1 

corresponds to perfect speed-tuning (see STAR Methods). Error bars are 95% confidence 

intervals.

See also Figures S3 and S4.
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Figure 4. Visual control of slowing and turning requires overlapping circuits
Synaptic transmission was silenced acutely by expression of shibirets using the GAL4/UAS 

system.

(A) Schematic of the fly optic neuropils, with silenced neuron types crossed out. In this 

diagram, light is detected by photoreceptors (PRs) at top and visual information is 

transformed as it moves down through the neuropils.

(B) Average fly response as a function of spatial and temporal frequency. Control is the 

average of the neuron-GAL4/+ and UAS-shibire/+ genetic controls (see STAR Methods). 

Black isoresponse lines are plotted every 0.2 fold change in walking speed. Black circles 

mark the TF of the maximal response for each wavelength. The gold line is the 

spatiotemporal slope (STS). Shibire control FtB n=274, BtF n=247 (i-iv). GAL4 control: (i) 
FtB n=109, BtF n=115. (ii) FtB n=83, BtF n=98. (iii) FtB n=121, BtF n=116. (iv) FtB n=95, 

BtF n=105.

(C) Fly response when each cell type is silenced by expressing shibire under the GAL4 

driver. (i) FtB n=126, BtF n=146. (ii) FtB n=134, BtF n=126. (iii) FtB n=120, BtF n=131. 

(iv) FtB n=99, BtF n=96.
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(D) Maximal slowing response of each genotype across all spatiotemporal frequencies, 

where 0 represents no walking speed modulation and 1 represents stopping completely. 

GAL4/+ is in dark gray, shibirets/+ is in light gray, and GAL4>shibirets is in red. Error bars 

are 95% confidence intervals and asterisks represent significant difference from both 

controls at α=0.05.

(E) Spatiotemporal slope (STS) for each map, where 0 corresponds to perfect TF-tuning and 

1 corresponds to perfect speed-tuning. GAL4/+ is in dark gray, shibirets/+ is in light gray, 

and GAL4>shibirets is in gold. Error bars are 95% confidence intervals and asterisks 

represent significant difference from both controls at α=0.05.

See also Figure S4 and Table S3.
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Figure 5. Elementary motion detectors T4 and T5 are temporal-frequency-tuned
(A) Diagram of two-photon imaging setup.

(B) Image of the lobula plate with T4 and T5 FtB and BtF regions of interest (ROIs) 

highlighted.

(C, D) Responses of T4 (C, n=7) and T5 (D, n=8) to rotational sine wave gratings measured 

with GCaMP6f. Legend denotes the temporal frequency (TF) of the sine wave stimulus.

(E, F) Mean calcium response of T4 and T5 (F, n=22) when presented with sine wave 

gratings of different spatiotemporal frequencies. Black isoresponse lines are plotted every 

0.2 ΔF/F. Black circles mark the TF of the maximal response for each wavelength. Gold line 

is the spatiotemporal slope (STS).

(G) The log likelihood ratio of TF-tuned and speed-tuned models of T4 and T5 responses 

(see STAR Methods). Positive values indicate that the TF-tuned model is more likely. Error 

bars are 95% confidence intervals and asterisks represent significant difference from 0 at 

α=0.05.

(H) Spatiotemporal slope (STS) for T4 and T5 responses, where 0 represents to perfect TF-

tuning and 1 represents to perfect speed-tuning (see STAR Methods). Error bars are 95% 

confidence intervals.
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(i) Imaging without pharmacological stimulation. T4, n = 20; T5, n=22.

(ii) Imaging in the presence of octopamine agonist chlordimeform (CDM). T4, n = 13; T5, 

n=12.

See also Figures S4 and S5.
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Figure 6. A model with multiple detectors is sufficient to explain the slowing response
Black isoresponse lines are plotted every 0.2-fold change for walking speed. Black circles 

mark the TF of the maximal response for each wavelength. Gold line is the spatiotemporal 

slope (STS).

(A) Diagram of the behavioral setup from Fig. 1A.

(B) Mean fly responses to sine wave gratings as a function of spatial and temporal 

frequency. Data is from Fig. 2D. Positive/negative spatial frequencies indicate front-to-back/

back-to-front sine waves. FtB n=124. BtF n=104.

(C) Mean fly walking to FtB (green, n=18) and BtF (brown, n=14) sine wave gratings and 

counterphase gratings (purple, n=19) at a variety of temporal frequencies. Error patches 

represent standard error of the mean. Data is from Fig 1G.

(D) Schematic of the model consisting of two Hassenstein-Reichardt correlators (HRC) 

summed together, marked as 1 and 2. Their sum is marked as 3. Distance between the two 

visual inputs for each correlator is denoted by Φ. τ indicates a first-order low-pass filter. M 

denotes a multiplication of the two inputs. Σ indicates summation of the inputs. ∣·∣ indicates 

taking full-wave rectifying the signal.
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(E) The model’s average response as a function of spatial and temporal frequency. Positive/

negative spatial frequencies indicate front-to-back/back-to-front sine waves.

(F) Mean model response to FtB sine wave, BtF sine wave, and counterphase gratings at a 

spatial wavelength of 45°. Colors the same as (C).

(G) Average spatiotemporal frequency response of each of the two HRC’s individually (left, 
center). Average spatiotemporal frequency response of the two correlators summed before 

taking the magnitude (right). Red indicates a positive response, blue indicates a negative 

response. Numbers correspond to (D).

See also Figures S4 and S6 and Table S5.
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Key Resource Table:

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Chlordimeform Sigma-Aldrich 31099

Experimental Models: Organisms/Strains

D. melanogaster: WT: +; +; + Gohl et al., 2011 N/A

D. melanogaster: shibirets: +/hs-hid; +; UAS-shibirets Kitamoto, 2001; Silies et al., 2013 N/A

D. melanogaster: GCaMP6f: +; UAS-GC6f; + Chen et al., 2013
Bloomington Drosophila Stock Center

RRID:BDSC_42747

D. melanogaster: L1: +; L1-GAL4; + Rister et al., 2007; Silies et al., 2013 N/A

D. melanogaster: L2: +; +; L2-GAL4 Rister et al., 2007; Silies et al., 2013 N/A

D. melanogaster: L3: +; +; L3-GAL4 Silies et al., 2013 N/A

D. melanogaster: T4 and T5: +; +; R42F06-GAL4 Maisak et al., 2013
Bloomington Drosophila Stock Center

RRID:BDSC_41253

D. melanogaster: T4 and T5: w; R59E08-AD; R42F06-DBD Schilling and Borst, 2015 N/A

Software and Algorithms

MATLAB and Simulink, R2017a Mathworks http://www.mathworks.com/

Psychtoolbox 3 Psychtoolbox http://psychtoolbox.org/
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