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Abstract

Type 2 diabetes mellitus (T2D) and obesity already represent 2 of the most prominent risk factors 

for cardiovascular disease, and are destined to increase in importance given the global changes in 

lifestyle. Ten years have passed since the first round of genome-wide association studies for T2D 

and obesity. During this decade, we have witnessed remarkable developments in human genetics. 

We have graduated from the despair of candidate gene-based studies that generated few 

consistently replicated genotype-phenotype associations, to the excitement of an exponential 

harvest of loci robustly associated with medical outcomes through ever larger genome-wide 

association study meta-analyses. As well as discovering hundreds of loci, genome-wide 

association studies have provided transformative insights into the genetic architecture of T2D and 

other complex traits, highlighting the extent of polygenicity and the tiny effect sizes of many 

common risk alleles. Genome-wide association studies have also provided a critical starting point 

for discovering new biology relevant to these traits. Expectations are high that these discoveries 

will foster development of more effective strategies for intervention, through optimization of 

precision medicine approaches. In this article, we review current knowledge and provide 

suggestions for the next steps in genetic research for T2D and obesity. We focus on four areas 

relevant to precision medicine: genetic architecture, pharmacogenetics and other gene-

environment interactions, mechanistic inference, and drug development. As we describe, the 

genetic architecture of complex traits has major implications for the prospects of precision 

medicine, rendering some anticipated approaches decidedly unrealistic. We highlight obstacles to 

the translation of human genetic findings into mechanism inference but are optimistic that, as these 

are overcome, there is untapped potential for novel drugs and more effective strategies for treating 

and preventing T2D and obesity.
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The pace of discovery in complex trait genetics during the past decade has been 

breathtaking. From the paltry returns of the candidate variant studies in a few hundred 

individuals which were typical until 10 to 15 years ago, we have graduated to genomewide 

association studies in sample sizes 1000 times larger than that. At the time of writing, >300 

loci have been robustly associated with type 2 diabetes mellitus (T2D)1,2 and >500 with 

body mass index (BMI), waist-hip ratio, and other obesity traits.3–8 These discoveries 

provide the substrate for a systematic assessment of the pathophysiological basis of these 

conditions, one that embraces both environmental and genetic contributors to predisposition. 

This has led to increasing hope that these discoveries will pave the way for new approaches 

to diagnosing, stratifying, monitoring, preventing, and treating disease.

Such improvements in prediction, diagnosis, and prognosis have long been, and remain, one 

of the principal goals of genomic medicine. Once the Human Genome Project was 

completed9 and low-cost commodity genotyping brought the first successes from genome-

wide association analyses, there was a hope that genomics would have a dramatic impact on 

risk stratification and therapeutic decisions regarding individual patients.10,11 This 

expectation was predicated on the assumption that the most important common risk variants 

would have at least moderate effect sizes and could, therefore, substantially move the needle 

in clinical decision-making for individual patients. However, 10 years after the landmark 

study by the Wellcome Trust Consortium,12 which represents the start of a truly remarkable 

period in biomedical research, there remain relatively few examples of results from genome-

wide association studies (GWAS), or human genetics generally, that have impact on clinical 

decision-making for complex, multifactorial traits, such as obesity and T2D.

The chief reason for this is that biology has turned out to be more complicated than many 

believed—or perhaps hoped—15 years ago. As discussed elsewhere in this review, rather 

than being dominated by a small number of common variants with modest-to-large 

phenotypic effects, the genetic architecture of complex traits is now known to be 

characterized by a vast number of causal variants, most of them with only a tiny additive 

effect on risk.13–15 This extreme polygenicity— or, as has been recently suggested, 

omnigenicity16—of complex traits does not necessarily mean that GWAS findings cannot be 

translated into paradigm-shifting new therapies, but it substantially increases the effort 

required to establish and characterize causal variants, genes, and pathways.

When it comes to individual prediction of complex traits, the limited variance in disease risk 

attributable to the subset of common risk variants that reach genome-wide significance 

translates into low discriminative capacity. Although some early studies indicated a potential 

role for common variant risk scores as tools for predicting T2D risk,17,18 subsequent studies 

demonstrated limited increment in performance over clinical models that can be generated 

from more readily accessible risk factors (such as age, BMI, and ethnicity).19–21 The recent 

wave of huge GWAS has reinvigorated interest in the potential of genetic risk profiling, but 

the potential for clinical utility remains contested.2,22–24 In a future where genome sequence 
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forms part of every individual’s health record, such information could prove useful for a host 

of clinical indications, but the benefits are not yet seen to be sufficient to motivate the 

dedicated collection of such data for any single specific medical purpose (eg, to obtain 

slightly more precise estimates of future T2D risk). Further, even though there are reports 

that knowledge of personal genetic risk could have some impact on individual motivation to 

modify behavior so as to reduce diabetes mellitus risk,25,26 randomized clinical trials have 

failed to show an effect of genetic risk counseling on self-reported motivation or prevention 

program adherence for individuals at risk of diabetes mellitus.27,28 Hence, at the moment, 

there is no evidence to suggest that knowledge about genetic risk for T2D can appreciably 

change risk assessment or improve motivation and adherence to lifestyle intervention.

The explosion of interest in the potential for precision medicine often leads to a tendency to 

see that potential purely in terms of genetic and genomic profiling. However, although 

genomics is an important and integral part of precision medicine, these terms are not 

equivalent. Indeed, integrative approaches using several layers of biological and clinical 

information are likely to be required if we are to achieve accurate diagnostic and prognostic 

precision for complex, multifactorial traits. For reasons discussed in detail in this review, 

genomics may not yet be ripe for widespread clinical implementation in enabling precision 

treatments for obesity and T2D. But are there other ways in which the insights from human 

genetics could provide a path toward precision medicine? In this review, we aim to 

summarize current knowledge and provide some thoughts about the next steps in this 

respect, with a focus on four areas that are relevant to the future implementation of precision 

medicine: genetic architecture, pharmacogenetics and other gene-environment interactions, 

mechanistic inference, and drug development.

GENETIC ARCHITECTURE AND WHY IT MATTERS

There has been a longstanding debate (dating back more than a century) as to whether the 

genetic differences that influence individual predisposition to common traits, such as height 

or T2D are mostly driven by common alleles widely shared within and across populations, 

or whether they are more often attributable to rare, or even unique, events, specific to an 

individual and their family. This question matters because the answer has profound 

implications for the ways in which genetic data can be used to support personalized 

medicine. The advent of GWAS, a decade ago, reignited this debate. The first wave of 

GWAS studies (for T2D, BMI, and many other traits) demonstrated the power of this 

approach to deliver robust discovery of novel association signals. These discoveries featured 

common variants (by design, of course, given the content of the early commodity 

genotyping arrays), but it was soon clear that most of these had, at best, modest effects on 

disease risk.29 The apparent disparity between the observed heritability of these conditions 

(derived from twin studies, for example) and the desultory performance of the GWAS 

signals to explain those observations (even when considered in aggregate) spawned endless 

discussions about the basis for this apparently missing heritability and, in particular, the 

extent to which this gap might be filled by rare variants of large effects that were largely 

invisible to GWAS studies.29–31
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During the past 2 to 3 years, the ability to directly assay the contribution of lower frequency 

and rare alleles in complex trait predisposition has advanced to the point where this 

vexatious question can now be answered with confidence. Large GWAS, conducted on more 

informative arrays, bolstered by imputation from large, dense reference panels have 

extended the scope of GWAS to include variants with minor allele frequencies <1%.32 

Bespoke genotyping panels (such as the exome array) and direct sequencing (of exomes 

predominantly) have provided access for association analysis to even rarer variants.33 In 

parallel, methodological advances (such as genome-wide complex trait analysis [GCTA]) 

have facilitated assessments of explained heritability that go beyond just the genome-wide 

significant hits and consider the contribution of variants genome-wide to observed variation 

in trait levels or disease predisposition.34 These diverse approaches have produced a clear 

and consistent answer: for T2D and obesity, as well as for many other complex traits, 

genetic risk is driven predominantly by common risk variants that are shared both within and 

between populations.33,35

Collectively, these variants (most of which have small effects and lie far below genome-wide 

significance, despite GWAS studies involving many hundreds of thousands of individuals) 

can explain most of the variation in disease predisposition that is attributable to genetics.2,34 

It is not widely appreciated that, although there are far more sites of rare variation than there 

are of common, most of the genetic differences between 2 individuals reside at the latter. 

Thus, the allele frequency spectrum of T2D disease risk variants broadly mirrors the 

distribution of genetic variation at large. This should not come as a great surprise, 

particularly for traits of recent origin (such as T2D), which remain largely post reproductive 

in terms of their impact on health. These factors will have limited the extent to which T2D 

risk alleles were exposed to adverse selective pressure and allowed them to be maintained in 

populations at relatively high frequency.

Crucially, this is not to deny any role for rare risk alleles in predisposition to these traits. 

Rare alleles that contribute to T2D risk and variation in BMI are being increasingly revealed 

as the sample sizes exposed to dense imputed genotyping, exome, or whole-genome 

sequencing grow.2,7,8,33 Because detectable rare variant association signals will necessarily 

be dominated by rare alleles with relatively large effects, their identification can provide 

valuable and rapid biological insights, particularly when they map to well-annotated 

sequence (such as coding regions).36–38 However, the evidence from T2D indicates that, 

with the possible exception of isolated or endogamous populations, rare variant signals are 

neither numerous enough nor of sufficient collective effective size to explain much of the 

variation in phenotype.

These discoveries about the genetic architecture of traits such as T2D are hugely relevant to 

the perspectives we should be adopting with regard to patient stratification. It is increasingly 

evident that personal risk of T2D or obesity is driven by an individual’s pattern of genotypes 

across many hundreds (or, more likely, thousands) of, mostly common, variant sites. These 

act in concert with environmental exposures that, judging by the global nature of these 

conditions, are likely to be pervasive. Thus, although each individual’s predisposition 

barcode (across variants and exposures) is likely to be unique, at the same time, these 

profiles are substantially overlapping across individuals.
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In contrast to many Mendelian diseases, this makes it inherently unlikely that it will be 

possible to define robust phenotypic clusters that map onto distinct etiological pathways, in a 

manner consistent with a traditional view of precision medicine. One recent study indicating 

the potential to stratify individuals with newly-diagnosed diabetes mellitus on the basis of 

clinical and biochemical characteristics suggests that this assessment may be overly 

pessimistic, but it remains unclear how the group-level structure uncovered in this study 

maps onto clinical response and the extent to which this provides a platform for individual 

decision-making.39

In addition, longitudinal studies are required to ensure that any clustering detected in cross-

sectional studies is truly reflective of etiological heterogeneity and does not simply reflect 

different stages of disease evolution or other temporal variation (Figure). This is particularly 

true for biological readouts, such as novel proteomic or metabolomic biomarkers, as well as 

traditional risk factors for T2D, which, in contrast to DNA variation, change over time and 

may provide valuable opportunities for dynamic tracking of disease progression.

The above argues for a shift to a more nuanced, probabilistic, molecular taxonomy of 

disease, which recognizes that what we consider disease is, for complex traits at least, 

usually the consequence of a confluence of risk across multiple processes (in the case of 

T2D, these would include insulin secretion, insulin sensitivity, islet autoimmunity, fat 

distribution, etc).40 This model allows for a redefined perspective on precision medicine, one 

focused on understanding the mix of abnormalities contributing to disease risk and 

progression for a given individual at a given point of time, and in developing the tools (eg, 

biomarkers for each component process) and interventions (capable of reversing as many of 

those defects as possible) that allow for a more targeted response. We discuss some of the 

clinical implications of this model in the next section.

One last question needs to be posed. What can we expect to learn about disease mechanisms 

when genetics points to the involvement of thousands of regulatory elements and genes 

influencing many disparate pathways? This is an important and thought-provoking question 

to which we only have partial answers.16 First, it is worth emphasizing that thousands of 

genes and many pathways are not the same as all genes and all pathways, and as we define 

more of the processes through which disease risk is mediated, we will better understand 

whether the mechanisms involved in disease-specific biology continue to proliferate or 

whether they start to converge on a limited set of key pathways. Second, it is important to 

consider the importance of temporal and tissue specificity, which after all is what defines 

many diseases in the first place: the dimensionality of disease mechanisms is not merely 

measured in genes and pathways but in their impact across cell and tissue types and across 

the life course.

PHARMACOGENETICS AND OTHER GENE-ENVIRONMENT INTERACTIONS

Pharmacogenomic testing to personalize diabetes mellitus treatment has been an area of 

intense research in the past 10 years.41 Given the large interindividual variations in efficacy 

and side effects of different treatment regimens, more precise ways to predict individual 

treatment response would be of huge importance to clinical care. The hope is that genetic 
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information can be used to define subgroups that share more similar responses to the various 

preventative and therapeutic treatments available. Such developments would epitomize 

precision medicine, which seeks to deliver the right treatment to the right person at the right 

time.

Needless to say, there is also a fair bit of hype surrounding these concepts. One frequent 

expectation arising from the evident heterogeneity in the presentation, course, and treatment 

response in T2D is that it will become possible to decompose the T2D monolith into some 

number of etiologically distinct and more phenotypically homogeneous subtypes, each of 

which will be exquisitely responsive to interventions targeted to reversing the specific lesion 

responsible. However, as we described above, such a model is at variance with what we 

know of the genetic architecture of T2D.

In the palette model described earlier,40 there may well be opportunities to match phenotypic 

presentation and disease course to specific genetic profiles, but this is likely to be the most 

effective in those (possibly exceptional) individuals in whom the phenotype is dominated by 

a single phenotypic defect (ie, those with monogenic disease or something approaching it). 

In such circumstances, it is likely that genetic information will allow us to stratify 

individuals who may optimally respond to different treatments. However, we have some way 

to go before that such strategies are clinically validated, and the effects are likely to be more 

nuanced than the more extreme expectations referred to above. It is possible that genetic 

information may be more useful for target engagement (ie, selecting a specific diabetes 

mellitus therapy) than for prediction of disease risk because the genetic effects on drug 

response are likely to be stronger than those seen for associations with disease. This is, in 

part, because of the closer biological connection between a genetic variant in or near a gene 

encoding a drug target and the response to the corresponding drug and, in part, because there 

may be less selective pressure against variants of large effect for novel drug exposures.

Many of those with typical T2D will have several processes contributing in parallel to their 

metabolic state (elevated BMI, unfavorable fat distribution, suboptimal β-cell function, etc), 

and neither their genetic profiles nor their clinical features will necessarily provide a 

distinctive pattern that can be matched to available therapies. Much will depend on the 

extent to which it becomes possible, through the integration of information on genetic 

predisposition, measures of external and internal environmental exposures, clinical 

phenotype, and biomarker readouts of relevant pathophysiological processes, to characterize 

the dominant mechanisms contributing to ill health in a given individual at a given point of 

time and to define specific interventions and treatments that demonstrably have differential 

merit for returning that individual toward health.

Genetic testing in maturity onset diabetes of the young and neonatal diabetes mellitus has 

already provided the diabetes mellitus field with proof-of-principle examples, where genetic 

knowledge guides treatment.42 However, it will be more challenging to develop robust 

pharmacogenomic tests to aid therapy decisions in T2D than for these monogenic disorders 

because of the complex web of genetic and environmental factors influencing T2D risk. 

Indeed, there has been a multitude of small, post hoc studies addressing the 

pharmacogenomics of different diabetes mellitus drugs, such as metformin43 and 
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sulfonylureas.41 In a systematic review of 34 studies published in 2014, there was some 

evidence of pharmacogenetic interactions for metformin, sulfonylureas, repaglinide, 

thiazolidinediones, and acarbose consistent with their pharmacokinetics and 

pharmacodynamics but a lack of large, prospective, high-quality studies.44 An example of 

the kind of large, high-quality study that will be crucial for clinical implementation was 

published by the Metformin Genetics Consortium last year.45 In this study of 10 577 

participants of European ancestry, an allele in the intron of SLC2A2, which encodes GLUT2 

(Glucose transporter 2), was associated with greater metformin response. Among obese 

individuals, homozygote carriers had a 0.33% (3.6 mmol/mol) greater absolute Hemoglobin 

A1c (HbA1c) reduction than reference allele carriers. Although this effect size is likely too 

modest to justify genotyping of this variant for this indication alone, this study provides 

some evidence of pharmacogenomic markers with potential to inform precision medicine in 

T2D. Crucially, this is another example of the kind of association that could have clinical 

utility in a world where individual genome sequence (or GWAS) data were widely available. 

It also illustrates the need to extend large, international collaborations—the single most 

important success factor for GWAS of complex traits—into the pharmacogenomic arena.

There have been parallel efforts to find genetic variants that modify the response to lifestyle 

interventions that might prevent obesity and T2D and which might, therefore, support 

optimization of individually tailored behavioral modifications. Most such gene-environment 

studies have suffered from the same problems as the candidate gene studies of the 1990s. 

They have been based on questionable hypotheses: candidates from known biology, or even 

GWAS loci associated with main effects on the trait of interest, are not the best candidates 

for gene-environment interaction effects because of the nature of their discovery (which 

would generally be biased against discovery of signals that are contingent on environmental 

exposures). Further, most studies have been way too small and underpowered, lacking 

replication in independent study samples.46 A recent systematic review reported that none of 

the eight gene-macronutrient interactions for T2D risk that had been reported in prior 

literature could be replicated.47 The most promising advance in this area has come from 

analyses that suggest the combination of clinical information and assays of gut microbiome 

content can predict individual excursions in glucose profile in response to specific dietary 

components.48

Although there are some successful studies of gene-environment interactions of obesity, they 

have typically combined risk alleles into genetic risk scores49–51—an approach that 

increases power but does not provide insights on specific loci. Also, these studies too have 

typically been performed in small samples with limited replication, so their value is still 

uncertain. For gene-environment effects of physical activity on obesity, there is one locus, 

FTO, which shows a well-replicated interaction. The effect of this variant on BMI has been 

reported, in a study of ≈200 000 individuals, to be attenuated by ≈30% in physically active 

individuals compared with inactive individuals.52 As in the case of the Metformin Genetics 

Consortium, this highlights the importance for investigators interested in gene-environment 

interactions to follow the successes of the GWAS era and understand the importance of 

forming alliances to maximize sample sizes and replicate findings. Indeed, there are strong 

reasons to argue that this is going to be even more important for gene-environment studies 

than for analyses of main effects.
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Unfortunately, this paucity of robust findings for gene-environment interactions in T2D and 

obesity has not prevented commercial companies from attempts to monetize the field of 

consumer genetics. Although there are some serious businesses out there, there are all too 

many examples of genetic tests being oversold without much, if any, science to support 

them. There are companies that claim that their genetic tests can provide personalized diet or 

exercise advice53–57; predicting what wine you like,58 whether you are likely to like 

Marmite,59 or indicating that your child is likely to be a successful soccer player.60

LOST IN TRANSLATION: MECHANISTIC CHALLENGES

One of the key goals of human genetic enquiry for complex traits, such as diabetes mellitus 

and obesity, is to reveal the fundamental mechanisms, which lead to disease predisposition 

and development, as well as those that influence the risk of subsequent complications. In 

contrast to the findings from traditional approaches to physiological and epidemiological 

investigation from which it can be difficult to disentangle causal effects from those which 

reflect reverse causation or confounding, human genetics offers the opportunity to define 

mechanistic relationships that link inherited variants to consequent changes at the molecular, 

cellular, tissue, and physiological level.61,62

Mechanistic insights can provide the foundation for uncovering novel interventions that 

better prevent and treat disease and for the detection of biomarkers that monitor disease 

progression. Those same insights may also presage a more rational mechanistic taxonomy of 

disease, which enables a more personalized approach to disease prevention and 

management.63 The value of this approach has been reinforced time and again from studies 

of monogenic and syndromic conditions, including many early-onset familial forms of 

diabetes mellitus and obesity. The demonstration that many cases of neonatal diabetes 

mellitus result from mutations in the KCNJ11 gene, encoding a component of the β-cell 

KATP channel, suggested that patients with this rare condition might be amenable to 

treatment with sulphonylureas, rather than insulin—a hypothesis that received rapid 

empirical confirmation.64,65 In similar fashion, the identification, in some rare instances of 

extreme early obesity and hyperphagia, of causal mutations in the leptin gene enabled 

successful treatment with replacement leptin.66

The discoveries just described led to rapid clinical advances and some of the clearest 

examples of personalized medicine in current medical practice. This was, in part, because 

the disease-causing mutations had dramatic and unequivocal impacts on the protein 

sequence of genes that could be easily positioned within existing understanding of disease 

pathogenesis. At the same time, the specific phenotypic presentation in these cases provided 

confidence that the remedial treatments concerned were likely to be both effective and safe. 

The situation for a multifactorial disease like T2D is a deal more complex. As described 

above, the genetic contribution to T2D predisposition is made up from many hundreds 

(likely thousands) of mostly common variants of individually small effects.33 Each of us 

(diabetic or not) carries our own particular configuration of risk and protective alleles across 

these variants. Because they are common, causal variants at these loci are typically hidden 

among a forest of highly correlated alleles (because of linkage disequilibrium), frustrating 

efforts to identify the specific variants involved. And, because most of the signals map to 
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noncoding sequence, the identity of the genes (protein coding or otherwise) through which 

they operate is often obscure.67 All of these aspects represent challenges to proceeding from 

genetic discovery (for example, of a signal detected by GWAS) to enumeration of the 

mechanisms involved. Indeed, many thousands of GWAS loci have been identified in the 

past decade, but a compelling mechanistic description has been forthcoming for only a small 

proportion. Having said that, recent advances are propelling far more complex trait loci 

toward mechanistic resolution.

One illustrative example from the T2D arena concerns a GWAS signal mapping near 

MTNR1B, encoding one of the receptors for the hormone melatonin.68–70 The progressive 

accretion of GWAS data through consortium efforts provided replication of this signal and 

the capacity to disentangle the correlations between adjacent single nucleotide 

polymorphisms (SNPs) through fine mapping, such that the association signal could be 

resolved to a single variant (rs10830963).71 Analysis of intermediate metabolic traits in 

nondiabetic individuals indicated that the T2D-predisposing action of the risk allele was, at 

least in part, mediated through a deficit in insulin secretion, highlighting the pancreatic islet 

as one key tissue of interest.72 In genome-wide analyses, it had been demonstrated that T2D 

GWAS signals were enriched for overlap with binding sites (in islet and liver) for the 

Forkhead Box A2 (FOXA2) transcription factor, and the MTNR1B risk variant was shown 

to map into an islet enhancer region containing such a site (although rs10830963 appeared to 

be modifying a binding site in that enhancer for Neurogenic differentiation factor 1 

(NEUROD1) rather than FOXA2 itself). The T2D risk allele was subsequently shown to 

increase enhancer activity and to preferentially bind NEUROD1 in islet-derived cells.71 

These findings were consistent with evidence from human islets that the T2D risk allele was 

associated with increased MTNR1B RNA expression. This, in turn, chimed with the 

hypothesis that one of the desirable physiological consequences of the circadian (nocturnal) 

release of melatonin from the pineal gland is suppression of insulin secretion during a period 

of restricted energy intake.73,74

However, there are reasons to consider this reductionist narrative—focused around 

identifying a single causal variant, a clearly defined effector gene, and a single plausible 

physiological mechanism—as overly simplistic. At some loci, at least, the truth may be a 

deal more complex.

For a start, the concept of a single causal variant may, for some GWAS signals, be illusory. 

Not only may there be multiple independent signals in a given region (revealed by 

conditional analysis for example)75 but each independent signal may not be resolvable to a 

single variant. This could arise where multiple highly correlated alleles on a single haplotype 

are causal, each contributing to disease predisposition, for example through combinatorial 

effects on enhancer activity. An alternative mechanism, relevant to alleles that create or 

destroy CpG sites, could involve a joint haplotype-specific impact on local methylation 

status. For obvious reasons, examples of this kind of behavior have been hard to 

demonstrate, although the haplotype-specific methylation signal at the FTO locus may be 

one.76 At some loci, potentially including PPARG, predisposition may reflect the joint 

effects of both regulatory and coding alleles.32,77 The potential for such scenarios to 
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confound efforts to obtain functional evidence for the causal variant is obvious and speaks to 

the need to consider potential risk variants in relation to their genomic context.

A subsequent challenge lies in connecting the causal variant(s) identified through fine 

mapping and genomic integration with the effector transcripts through which they operate. 

In the absence of a compelling biological candidate in the region (for example, a gene 

known to harbor rare severe mutations that result in a broadly similar, albeit more extreme, 

phenotype), these connections are often made on the basis of the detection of cis-expression 

signals or evidence of physical interaction with target gene promoters (typically derived 

from conformational capture methods).78,79 There are issues here with ensuring that the 

GWAS and cis expression quantitative trait loci (eQTL) signals are truly colocalized (rather 

than merely overlapping)80 and in establishing that the tissues or cells analyzed are relevant 

to both the disease of interest and the specific locus under consideration. As studies become 

larger, increasing numbers of GWAS and cis eQTL signals are seen to be composed of 

multiple independent signals, posing challenges to interpretation when only a subset of these 

colocalize. We still lack unbiased information on the sensitivity and specificity of these 

approaches, although the current evidence would suggest that neither is sufficiently high to 

command robust inference from any single quantum of experimental data.

A third consideration concerns the phenotypic consequences of the variants of interest. It is 

interesting to note that the first-discovered landmark GWAS loci for BMI, T2D, and 

coronary artery disease (FTO, TCF7L2, and CDKN2A, respectively) have proven 

particularly refractory to mechanistic resolution, despite large effect sizes and the most 

extended—and most intensive— research efforts.81–84 Might it be that the reason that these 

loci have the largest common variant impacts for their respective traits (prompting their early 

discovery) is because they influence multiple processes? Recent work has shown that 

common variants near the FTO gene that influence BMI and obesity compromise the 

thermogenic potential of adipose tissue via altered regulation of IRX3 and IRX5,85 but that 

does not necessarily prove that this is the only mechanism through which the variants 

operate. Other genes in the region (RPGRIP1L and FTO itself) are reasonable candidates 

with strong experimental support, and central, as well as peripheral effects on BMI at this 

locus are plausible.86,87

Also, going beyond cis effects, it is likely that some GWAS loci tag genes or other elements 

acting as master regulators of disease. A well-known example of this is KLF14, where an 

imprinted trans eQTL has multiple downstream effects on gene expression88 and metabolic 

traits, including T2D and high-density lipoprotein (HDL) cholesterol.62 Distinguishing 

between such true master regulators of gene expression acting in trans and correlations 

resulting from the downstream consequences of variation in one phenotype impacting others 

will require careful attention and thoughtful experiments because the pathways and 

mechanisms underlying obesity and T2D are complex and involve many negative and 

positive feedback loops.

Given the difficulties in assigning function to weak regulatory variants in humans, it is 

natural for researchers to seek to fold in additional ways of confirming the causal role of 

proposed effector transcripts. The most obvious route is to observe the consequences of 
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direct perturbation of gene function in humans, rodent models, or cellular systems. Here 

again, there are limits to the facile interpretation of the data arising from such studies. Most 

obviously, the cellular system used in such studies may lack authenticity (a poorly chosen 

cell line or a tissue inappropriate for the disease of interest or the specific locus under 

consideration) or the rodent model fail to recapitulate the human phenotype.

Less widely appreciated is the likely divergence in the phenotypic expression of coding and 

regulatory variants even when both impinge on the function or expression of the same gene. 

Most GWAS signals map to tissue-specific enhancers, and their phenotypic consequences 

will be filtered by that tissue specificity. In contrast, the impact of a coding variant will be 

felt in any tissue that expresses that gene (or, more precisely, any tissue that expresses the 

isoform in which that variant is transcribed), leading in many cases to a broader or more 

divergent phenotype.36,89 This is analogous to the difference between a tissue-specific and a 

global knockout mouse. This distinction is highly relevant from the perspective of 

therapeutic intervention, given that most pharmaceuticals will be active across all tissues in 

which the target is expressed, and the profile of action (and side effects) may be better 

captured by coding than regulatory variants. This may explain some of the apparent 

discrepancies between regulatory and coding variants at the MTNR1B locus. Whereas the 

T2D risk allele discovered by GWAS is, as described earlier, associated with increased 

MTNR1B expression in islets,90 a study of rare functionally deficient coding alleles in the 

same gene demonstrated an aggregate effect, which was also supportive of increased T2D 

risk.91 One explanation for this directional divergence could involve the impact of coding 

variants on melatonin receptor function at sites outside the islet (such as the brain).74,92

In the face of these challenges, it may be tempting to despair of our capacity to make 

mechanistic headway. Our view is that, although some GWAS loci may feature daunting 

mechanistic complexity (along the lines described), there is no reason to think that this is 

universal. The ability to build a mechanistic narrative from diverse lines of functional 

evidence and to place findings in their genome-wide, tissue-specific context is allowing 

researchers to reduce reliance on single data points of uncertain significance. Emerging 

high-throughput genome-wide techniques, such as HiChIP93,94 and Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq),95,96 that can map chromatin 

interactions and accessibility with higher resolution than previous methods will improve our 

ability to disentangle GWAS loci; while single-cell RNA sequencing97,98 and CRISPR-

based pooled gene perturbation methods99–103 provide unprecedented opportunities for 

studies of how RNA expression patterns differ between cells within tissues and how those 

tissues and cells react to perturbation of multiple genes in parallel.

In this way, more and more GWAS loci will start to reveal their secrets: the hope is that 

solving the biological puzzle at a subset of loci will provide clues that allow other, less 

immediately tractable, loci to gather mechanistic momentum. Although there is no guarantee 

that the puzzle can ever be fully solved or even that solving the puzzle would lead to 

important clinical insights, we think that combining genomic information with 

characterization of relevant disease pathways in a temporal and tissue-specific manner is 

more likely to be successful than sequencing of static DNA variation alone.
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CAN GENETICS INCREASE EFFICIENCY OF THE T2D DRUG 

DEVELOPMENT PIPELINE?

Although there have been indisputable scientific and technological advances in biomedicine 

during the past 50 years, this has not translated to an improved efficiency of pharmaceutical 

drug research and development (R&D). On the contrary, we have seen a remarkable decline 

in R&D efficiency because the number of drugs approved per amount spent on R&D has 

halved every 9 years since 1950.104 The consequence of this disturbing and clearly 

unsustainable trend—described by some as Eroom’s law, to highlight the contrast with 

Moore’s law regarding computing costs—is that every new drug reaching market costs at 

least $1 billion104 (and according to some estimates up to $3–5 billion USD) to develop.
105–107 The reasons for this failure of pharmaceutical R&D have been discussed widely. 

Even when considering other reasons for drugs not reaching market, such as strategic, 

commercial, or operational aspects, there seems general agreement that the main obstacle 

lies in lack of efficacy rather than safety issues.108–111 This may be particularly true for 

drugs failing late in development (phase III trials), especially problematic from an 

economical and ethical standpoint.109

Many have argued that the main reason for the lack of efficacy is the limited predictive value 

of the preclinical models of disease that have dominated the discovery and evaluation of 

therapeutic targets.112 The dramatic advances in human genetics during the past decade offer 

the prospect for improved assessment of drug development efficacy in early pharmaceutical 

R&D through provision of a stronger evidence base for linking perturbation of a given target 

or pathway to a desirable phenotypic outcome in humans. In addition, human genetics can 

offer an opportunity to detect less welcome consequences of perturbation that may presage 

safety or toxicity concerns. There are already several examples in the public domain 

demonstrating these concepts, and more are likely to follow given the current reallocation of 

resources to human genetics at a growing number of pharmaceutical companies.

Retrospective proof-of-principle examples of this concept (where the drug was already in 

use before the genetic finding was made) include PPARG113 and thiazolidinediones,114 as 

well as HMGCR115 and statins.116 There are also several recent examples where genetic 

studies have predicted the outcome of an ongoing randomized controlled trial, even though 

the genetic finding may not have been the basis for initiating drug development. These 

include the reports of inactivating variants in NPC1L1117 that correctly predicted the clinical 

effect of ezetimibe on recurrent cardiovascular events118 and of loss-of-function variants in 

apolipoprotein C3 (APOC3)119 that predicted a clinical effect of ISIS 304801—an antisense 

inhibitor of APOC3 synthesis—on triglyceride levels.120

However, there are also several emerging prospective examples where the genetic discovery 

preceded and underpinned the development of the drug. These include variation in Cystic 

fibrosis transmembrane conductance regulator (CFTR; causing cystic fibrosis)121 and 

ivacaftor (a CFTR potentiator)122 and from the cardiovascular area, the well-known example 

of PCSK9 inhibitors.123–127 The CFTR-ivacaftor gene-drug pair illustrates a time frame 

typical for pharmaceutical R&D, with >20 years from initial scientific discovery to 

commercial availability of a drug. In contrast, the PCSK9 story highlights how the new era 
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in human genetics can accelerate this process. The first study describing a gain-of-function 

variant in PCSK9 causing hypercholesterolemia was published in 2003.125 It was rapidly 

followed by landmark studies that described loss-of-function alleles, particularly in African 

Americans, that were associated with decreased low-density lipoprotein (LDL) 

cholesterol124 and, importantly, protection against coronary heart disease.123 After a tight 

head-to-head competition between several pharmaceutical companies, two antibody-based 

PCSK9 inhibitors—evolocumab and alirocumab—were approved by the Food and Drug 

Administration and European Medicines Agency in 2015, barely a decade after the initial 

genetic discovery. It would be misleading to claim that the PCSK9 target was discovered 

using GWAS—on the contrary, it was mapped using a traditional family-based design—but 

we argue that it is likely that there will be many other examples arising from GWAS that can 

be developed into successful drugs.

Currently, many hope that large-scale exome sequencing will provide new leads for 

development of drugs treating T2D and other diseases. Certainly, an advantage of exome 

sequencing is the focus on exonic variants, which makes the translation easier than with lead 

variants from GWAS, as discussed in detail in the previous section. An example lies in the 

study of loss-of-function alleles in the SLC30A8 gene (encoding an islet-specific zinc 

transporter): these have been associated with decreased risk of T2D and highlight zinc 

transporter 8 (ZnT8) inhibition as a potential novel strategy for T2D therapy.128 However, 

most exome sequencing studies so far have been too small to provide much additional value 

beyond previous GWAS. As recently demonstrated for T2D, most variants discovered on 

exome sequencing were common or located in regions already identified by GWAS.33

It is important, therefore, not to overlook the enormous potential in already existing 

knowledge about loci robustly associated with T2D and other diseases that has been 

generated through the past decade of GWAS. Presumably, there are many pointers to novel 

therapeutic regimens among these loci: the challenge is to systematically work through this 

treasure trove of associations to find them, starting with establishing causal genes in the loci, 

followed by careful characterization of the downstream mechanisms to understand 

underlying biology and to identify druggable mechanisms.89,129 There are strong indications 

that GWAS loci are enriched with genes that are successfully targeted with existing 

drugs130,131 and that a drug development pipeline built on support from human genetics will 

be more efficient and lead to improvements in clinical development success.131,132 For 

example, the proportion of drug targets with genetic support from GWAS or the Online 

Mendelian Inheritance in Man database increases significantly across stages in the drug 

development pipeline; from ≈2% in the preclinical stage to ≈8% for approved drugs—a 

proportion that is even higher for drugs treating diabetes mellitus and metabolic diseases.131

Even if the often-cited PCSK9 example may represent particularly low-hanging fruit, there 

is no good reason to think that human genetics as a drug discovery vehicle should be less 

efficient for obesity and T2D than for lipid-lowering treatment. Indeed, there are several 

examples of GWAS loci with genes encoding targets of already established drugs against 

T2D.71,133 In addition to the already mentioned PPARG-thiazolidinediones113,114 pair, other 

examples of GWAS hit drug combinations include ABCC8-sulfonylurea134,135 and GLP1R–

GLP-1 agonists.136,137 Although these genes and corresponding drugs were established 
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before the GWAS era – a necessity given the lead time in drug development – such 

reidentification of druggable targets illustrates the promise of GWAS for discovery of new 

targets that can be entered into the drug development pipeline.

CONCLUSIONS

Ten years have passed since the first round of GWAS for T2D and obesity. This decade has 

been transformative for human genetics and has already had a major impact on the 

understanding of these diseases. We have learned much about their genetic architecture, 

including the high degree of polygenicity and tiny effect sizes of most risk variants, which 

have major implications for precision medicine. Several mechanistic challenges complicate 

the translation of novel loci, but overcoming these will expose untapped potential for the 

development of novel drugs to treat T2D and obesity. In parallel, there is the expectation that 

we will move to a more informed molecular taxonomy of disease that provides a more 

precise framework for the delivery of preventative and therapeutic interventions. There is a 

clear need for increased focus on translational and mechanistic research to make sense of the 

hundreds of loci associated with these diseases, but this work can be conducted with the 

knowledge that, provided we can find ways to better capitalize on them, the rewards will be 

momentous.
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Figure. Drawing the wrong conclusions from clustering of cross-sectional data.
Your alien spacecraft crashes near a ski resort. In an effort to understand the diversity of 

human life, you apply your favorite clustering algorithm to the life forms visible through the 

window. You conclude that there are 14 subtypes of human life with distinctive and 

nonoverlapping appearances and behaviors. However, as you await rescue, you realize that 

this clustering was only transient and an artifact arising from the restriction to a single cross-

sectional view. Over time, you observe that almost all life forms progress through all 4 

stages at various points and that membership of a given cluster at a single point of time 

provides little insight into long-term behavior.
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