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Abstract

Dynamic functional connectivity, i.e., the study of how interactions among brain regions change 

dynamically over the course of an fMRI experiment, has recently received wide interest in the 

neuroimaging literature. Current approaches for studying dynamic connectivity often rely on ad-

hoc approaches for inference, with the fMRI time courses segmented by a sequence of sliding 

windows. We propose a principled Bayesian approach to dynamic functional connectivity, which 

is based on the estimation of time varying networks. Our method utilizes a hidden Markov model 

for classification of latent cognitive states, achieving estimation of the networks in an integrated 

framework that borrows strength over the entire time course of the experiment. Furthermore, we 

assume that the graph structures, which define the connectivity states at each time point, are 

related within a super-graph, to encourage the selection of the same edges among related graphs. 

We apply our method to simulated task-based fMRI data, where we show how our approach 

allows the decoupling of the task-related activations and the functional connectivity states. We also 

analyze data from an fMRI sensorimotor task experiment on an individual healthy subject and 

obtain results that support the role of particular anatomical regions in modulating interaction 

between executive control and attention networks.

1 Introduction

Functional magnetic resonance imaging (fMRI) provides an indirect measure of neuronal 

activity by evaluating changes in blood oxygenation over different areas of the brain. In a 
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typical fMRI experiment, time series of blood oxygenation-level dependent (BOLD) 

responses are collected at each location of the brain, for example in response to a stimulus 

(Poldrack et al., 2011). Statistical methods play a crucial role in understanding and 

analyzing fMRI data (Lazar, 2008; Lindquist, 2008). Bayesian approaches, in particular, 

have shown great promise in applications. A remarkable feature of fully Bayesian 

approaches is that they allow a flexible modeling of spatial and temporal correlations in the 

data, see Flandin and Penny (2007); Bowman et al. (2008); Quiros et al. (2010); Woolrich 

(2012); Stingo et al. (2013) and Zhang et al. (2014, 2016), among others. A comprehensive 

review of Bayesian methods for fMRI data can be found in Zhang et al. (2015).

In neuroscience, it is now well established that brain regions cooperate within large 

functional networks to handle specific cognitive processes (Bullmore and Sporns, 2009). 

FMRI data, in particular, allow scientists to learn on two distinct types of brain connectivity, 

which are referred to as effective and functional connectivity (Friston et al., 1994). Effective 

connectivity refers to the direct, or causal, dependence of one region over another, while 

functional connectivity investigates the undirected relationships between separate brain 

regions characterized by similar temporal dynamics. In this paper we are concerned in 

particular with this latter form of connectivity. Early model-based approaches for the 

estimation of functional connectivity included Bayesian frameworks (Patel et al., 2006a,b) 

that first dichotomised the time series data based on a threshold, to indicate presence or 

absence of elevated activity at a given time point, and then estimated the relationships 

between pairs of distinct brain regions by comparing expected joint and marginal 

probabilities of elevated neural activity. Also, Bowman et al. (2008) developed a two-step 

modeling approach that employs measures of task-related intra-regional (or short-range) 

connectivity as well as inter-regional (or long-range) connectivity across regions. More 

recently, Zhang et al. (2014, 2016) proposed Bayesian nonparametric frameworks that 

capture functional dependencies among remote neurophysiological events by clustering 

voxels with similar temporal characteristics within-and across multiple subjects.

Some of the most commonly used approaches to functional connectivity are not model-

based, but simply rely on measures of temporal correlation. For example, Pearson 

correlation coefficients are calculated between regions of interest, or between a “seed” 

region and other voxels throughout the brain (Cao and Worsley, 1999; Bowman, 2014; 

Zalesky et al., 2012). These methods result in a network characterization of brain 

connectivity, with correlations indicating the strength of the connections between nodes. 

However, there are well-known limitations in using simple correlation analysis as this only 

captures the marginal association between network nodes. Indeed, a large correlation 

between a pair of nodes can appear due to confounding factors such as global effects or 

connections to a third node (Smith et al., 2011). Partial correlation, on the other hand, 

measures the direct connectivity between two nodes by estimating their correlation after 

regressing out effects from all the other nodes, hence avoiding spurious effects in network 

modeling. A partial correlation value of zero implies absence of a direct connection between 

two nodes given all the other nodes. Consequently, methods for graphical models, that 

estimate sparse precision matrices, as inverses of the covariance matrix, have been recently 

applied to fMRI data. These include the graphical LASSO (GLASSO) (Cribben et al., 2012; 

Varoquaux et al., 2010) and Bayesian graphical models based on G-Wishart priors (Hinne et 
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al., 2014). Also, Pircalabelu et al. (2015) developed a focused information criterion for 

Gaussian graphical models to determine brain connectivity tailored to specific research 

questions. Their proposed method selects a graph with a small estimated mean squared error 

for a user-specified focus.

All approaches described above assume static connectivity patterns throughout the course of 

the fMRI experiment. Under such an assumption, functional brain connectivity is 

represented by spatially and temporally constant relationships among the regions of the 

brain. However, in practice, the interactions among brain regions may vary during an 

experiment. For example, different tasks, or fatigue, may trigger varying brain interactions. 

Therefore, more recent work has pointed out that it is more appropriate to regard functional 

connectivity as dynamic over time (Chang and Glover, 2010; Hutchison et al., 2013; 

Calhoun et al., 2014; Chiang et al., 2015). Thus, some approaches have considered 

estimating precision matrices on small intervals of the fMRI time course determined by 

using a sliding window. The estimated matrices are then clustered together, e.g., by using a 

k-means algorithm, and the clustered connectivity patterns are finally used to inform a 

classification of the cognitive processes generated along the experiment (Allen et al., 2012). 

Although straightforward, these approaches have limitations. For example, the length of the 

window is arbitrarily selected before the analysis, through a trial-and-error process. Indeed, 

Lindquist et al. (2014) show that the choice of the window length can affect inference in 

unpredictable ways. To partially obviate the issue, Cribben et al. (2012) and Xu and 

Lindquist (2015) have recently investigated greedy algorithms, which automatically detect 

change points in the dynamics of the functional networks. Their approach recursively 

estimates precision matrices using GLASSO on finer partitions of the time course of the 

experiment, and selects the best resulting model based on the Bayesian Information 

Criterion (BIC). The algorithm estimates independent brain networks over noncontiguous 

time blocks, whereas instead it may be desirable to borrow strength across similar 

connectivity states in order to increase the accuracy of the estimation. Furthermore, greedy 

searches often fail to achieve global optima.

In this paper, we propose a principled, fully Bayesian approach for studying dynamic 

functional network connectivity, that avoids arbitrary partitions of the data. More 

specifically, we cast the problem of inferring time-varying functional networks as a problem 

of dynamic model selection in the Bayesian setting. We do this by first adapting a recent 

proposal for inference on multiple related graphs put forward by Peterson et al. (2015). This 

model formulation further assumes that the connectivity states active at the individual time 

points may be related within a super-graph and imposes a sparsity inducing Markov Random 

field (MRF) prior on the presence of the edges in the super-graph. MRF priors have been 

used extensively in recent literature to capture network structures, particularly in genomics 

(Li and Zhang, 2010; Stingo et al., 2011, 2015) and in neuroimaging (Smith and Fahrmeir, 

2007; Zhang et al., 2014; Lee et al., 2014). We then embed a Hidden Markov Model on the 

space of the inverse covariance matrices, automatically identifying change points in the 

connectivity states. Our approach is in line with recent evidence in the neuroimaging 

literature which suggests a state-related dynamic behavior of brain connectivity with 

recurring temporal blocks driven by distinct brain states (Baker et al., 2014; Balqis-Samdin 

et al., 2017). In our approach, however, the change points of the individual connectivity 
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states are automatically identified on the basis of the observed data, thus avoiding the use of 

a sliding window. Furthermore, in our approach the latent state-space process which governs 

the detection of the change points naturally induces a clustering of the networks across 

states, avoiding the use of post-hoc clustering algorithms for estimating shared covariance 

structures. In contrast to standard approaches, where the connectivity networks are estimated 

separately within each window, within our framework the estimation of the active networks 

between two change points is obtained by borrowing strength across related networks over 

the entire time course of the experiment.

We consider task-based experimental designs and show how our modeling framework allows 

the decoupling of the task-related activations and the functional connectivity states, to 

understand how a particular task affects (e.g., either modulates or inhibits) functional 

relationships among the networks. We first assess the performance of our model on 

simulated data, where we compare estimation results to recently developed methods for 

network estimation. We then apply our method to the analysis of task-based fMRI data from 

a healthy subject, where we find that our approach is able to reconstruct known connectivity 

networks, both under task and resting state. The results also support the role of particular 

anatomical regions in modulating interactions between executive control and attention 

networks.

The remainder of the paper is organized as follows. In Section 2 we describe the proposed 

modeling framework and discuss posterior inference. In Section 3 we assess performances 

of our method on simulated data. Section 4 describes the application of our model to actual 

fMRI data. Section 5 provides some final remarks and conclusions.

2 Bayesian model for dynamic functional connectivity

Brain networks can be mathematically described as graphs. A graph G = (𝒱, ℰ) specifies a 

set of nodes (or vertices) 𝒱 = {1, 2, …, V} and a set of edges ℰ ⊂ 𝒱 × 𝒱. Here, the nodes 

represent the neuronal units, whereas the edges represent their interconnections. Let Yt = 

(Yt1,..., YtV)T, with the symbol (·)T indicating the transpose operation, be the vector of fMRI 

BOLD responses of a subject measured on the V nodes at time t, for t = 1,..., T. Unlike other 

fields (e.g., social networks), in brain imaging the best definition of a node is unclear, with 

some consensus settling toward the consideration of general pragmatic issues and the use of 

data-driven approaches able to capture differences in the functional connectivity profiles 

(Cohen et al., 2008; Zalesky et al., 2010). Thus, nodes could be intended as either single 

voxels or macro-areas of the brain which comprise multiple voxels at once. For example, in 

the application we discuss in Section 4 we define the nodes of the functional networks using 

independent component analysis (ICA), an increasingly utilized approach in the fMRI 

literature, which decomposes a multivariate signal into components that are maximally 

independent in space (McKeown et al., 1998). ICA components can be interpreted as group 

of voxels that covary in time, providing a spatial mapping of anatomical regions, and have 

been found to effectively identify functional networks in both task-based and resting-state 

data (Garrity et al., 2007; Yu et al., 2013). In our modeling framework, the use of ICA 

components allows us to also considerably reduce dimensionality, as the number of 

components of interest is typically low, with most authors considering between 20 and 30 
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components (Erhardt et al., 2011; Damaraju et al., 2014). We note, however, that our 

modeling approach does not depend on the particular choice of ICA-based regions, as it is 

generally applicable to any well-defined set of brain regions for which connectivity is of 

interest.

ICA components, being linear weighed sums of the original source signal at each time point, 

preserve the hemodynamic structure of the underlying BOLD signal (Calhoun et al., 2004). 

In particular, in the analysis of task-based fMRI data, assuming an experiment with K 

distinct stimuli, we can write a linear regression model of the type

Yt = μ + ∑
k = 1

K
Xt

k ∘ βk + εt, (1)

with o denoting the element-by-element (Hadamard) product, and where Xt
k is the V × 1 

design vector for the k-th stimulus, μ the V-dimensional global mean and βk = (β1k,..., βVk)Τ 

the stimulus-specific V-dimensional vector of regression coefficients. The mean term in (1) 

allows to decouple the estimation of the brain activations from that of the spatio-temporal 

correlation of the fMRI time series, which is captured by the error term, while the baseline 

mean μ is included to represent the base signal during periods where no stimulus is present. 

We assume that standard pre-processing has been applied to the fMRI data, including 

smoothing, spatial standardization, motion and slice-timing correction, as well as high-pass 

filtering, and therefore do not include a drift term in the model. Furthermore, we follow the 

predominant literature on task-based fMRI modeling and assume that the BOLD signal is 

characterized by a hemodynamic delay, which accounts for the lapse of time between the 

stimulus onset and the vascular response (Friston et al., 1994). We then model the elements 

of Xt
k as the convolution of the stimulus pattern with a hemodynamic response function 

(HRF), h(t),

Xvt
k = ∫

0

t
xk(τ)hλ(t − τ)dτ, t = 1, …, T , v = 1, …, V , (2)

with xk(τ) representing the time dependent stimulus (e.g., a block or event-related design). 

We assume a Poisson HRF with a region-dependent delay parameter, i.e., 

hλv
(t) = exp( − λv)λv

t /t!, and impose a uniform prior on the delay parameters, λν ~ 

Unif(u1,u2), with u1 and u2 to be chosen based on prior knowledge on physical ranges of 

hemodynamic delay (Zhang et al., 2014). We also impose normal priors on the components 

of the baseline mean vector, μ, that is, μv
iidN(0, σμ), with σμ a hyper-parameter to be 

specified.

We follow recent literature in Bayesian modeling of task-based fMRI data and identify brain 

activations by imposing spike-and-slab priors, also known as Bernoulli-Gaussian prior (or 

degenerated mixture model) in the fMRI community, on the coefficients βvk (Kalus et al., 
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2013; Lee et al., 2014; Zhang et al., 2014, 2016). First, we introduce binary latent indicator 

variables, γvk, such that γvk = 1 if component v is active, and γvk = 0 otherwise. Then, we 

assume

βvk (1 − γvk)δ0 + γvkN(0, σβ), (3)

where δ0 denotes a Dirac-delta at 0 and σβ is some suitably large value encouraging the 

selection of relatively large effects. We place Bernoulli priors on the selection indicators, 

γvk
iidBern(pk), where pk can be fixed at a small value to induce sparsity.

2.1 Modeling functional networks and dynamic connectivity

An accurate modeling the error term in (1) is key in the analysis of fMRI data. This term, in 

fact, captures not only acquisition or measurement noise but also spontaneous brain activity, 

which means all effects that are not directly evoked by the paradigm (i.e. the task-related 

component) (Yu et al., 2016). In our model formulation, we capture spontaneous brain 

activity via Gaussian graphical models (GGMs), also known as covariance selection models 

(Lauritzen, 1996), as a way of estimating functional network connectivity. We assume that 

subjects fluctuate among different connectivity states during the course of the experiment. 

We estimate states and corresponding connectivity networks from the data as follows. 

According to the dynamic paradigm of brain connectivity, fMRI time courses are 

characterized by possibly distinct connectivity states, i.e., network structures, within 

different time blocks (Cribben et al., 2012; Allen et al., 2012; Balqis-Samdin et al., 2017). 

Accordingly, we assume that functional connectivity may fluctuate among one of S > 1 

different states during the course of the experiment. Let s = (s1,..., sT)T, with st = s, for s ϵ 
{1,... S}, denoting the connectivity state at time t. Then, conditionally upon st, we assume

(εt |st = s) NV(0, Ωs), (4)

where Ωs ϵ ℝV x ℝV is a symmetric positive definite precision matrix, i.e., Ωs = ∑s
−1, with 

∑s the covariance matrix. The zero elements in Ωs encode the conditional independence 

relationships that characterise state s, that is graph Gs = (𝒱, ℰs). Specifically, ωi j
(s) = 0 if and 

only if edge (i, j) ∉ ℰs. We discuss the prior distribution on the set of graphs {G1,..., GS} in 

Section 2.2 below.

Many of the estimation techniques for GGMs rely on the assumption of sparsity in the 

precision matrix, which is generally considered realistic for the small-world properties of 

brain connectivity in fMRI data (Smith et al., 2011; Varoquaux et al., 2012). We consider 

general, not necessarily decomposable, graph structures. More specifically, we use the G-

Wishart distribution as a conjugate prior on the space of the precision matrices Ω with zeros 

specified by the underlying graph G (Roverato, 2002; Jones et al., 2005; Dobra et al., 2011). 

A G-Wishart prior, Ω ~ WG(b,D), is characterized by the density
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p(Ω |G, b, D) = IG(b, D)−1 |Ω |
b − 2

2 exp{1
2tr(ΩtD)}, Ω ∈ PG

+, (5)

where b > 2 is the degrees of freedom parameter, D is a V × V positive definite symmetric 

matrix, IG denotes the normalizing constant and PG
+ is the set of all V × V positive definite 

symmetric matrices with off-diagonal elements wij = 0 if and only if edge (i, j) ∉ ℰ.

We treat the estimation of the unknown connectivity states at each of the time points as a 

problem of change points detection. More precisely, we identify the functional networks 

acting at any time point by modeling the temporal dependence of the discrete latent 

indicators st. We assume that at each time point the probability of being within each state is 

given by a time-dependent probability vector, π(t) = (π1(t),..., πS(t))T, with πs(t) = p(st = s) 

≥ 0, for s = 1,...,S, and ∑s = 1
S πs(t) = 1. Since fMRI experiments are locally stationary in time 

(Ricardo-Sato et al., 2006; Liu et al., 2010; Messe et al., 2014), we account for the temporal 

persistence of the states by modeling the selection indicators st through a Hidden Markov 

Model (HMM). Thus, we assume that two subsequent time points are characterized by 

connectivity states st-1 and st according to a law determined by a matrix P of transition 

probabilities, with elements p(st = s|st-1 = r) = prs, for r, s = 1,...,S and t = 2,...,T. The r-th 

row of P is assumed to have a Dirichlet distribution with parameter vector ar = (ar1,...,arS). 

Marginalizing over the Wishart distribution, we can express the marginal distribution of εt as 

a mixture of type

εt ∑s = 1
S πs(t)p(εt |Gs), t = 1, …, T , (6)

with mixing weights πs(t) = ∑r = 1
S prsπr(t − 1) and p(εt|Gs) = ∫ p(εt|Ωs) p(Ωs|Gs)dΩs. It is 

important to note that marginalizing over the Wishart distribution reduces expression (6) to a 

mixture of scaled multivariate t distributions.

2.2 Joint modeling of the connectivity states

We assume that the graph structures, which define the connectivity states active at each time 

point, may be related within a super-graph, so to encourage the selection of the same edges 

in related graphs. In order to achieve such an objective, we adapt a recent proposal by 

Peterson et al. (2015) for the analysis of (known) cancer subtypes to the analysis of the 

(unknown) states of fMRI time series. More precisely, we introduce binary vectors of edge 

inclusion, gij = (gij1,..., gijS)T with elements gijs indicating the presence or absence of edge 

(i,j) in graph Gs, s = 1,..., S, i.e., gij ∈ {0,1}s, 1 ≤ i < j ≤ V. Then, we assume that the super-

graph defines the presence of an edge across graphs through a Markov random field (MRF) 

prior,

p(gi j |νi j, Θ) = C(νi j, Θ)−1exp(νi j1Tgi j + gi j
TΘgi j), (7)
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where 1 is the unit vector of dimension S, vij is a sparsity parameter specific to each vector 

gij, and Θ is an S × S symmetric matrix which captures relatedness among networks. More 

specifically, the diagonal entries of Θ are set to zero, whereas the off-diagonal entries θrs, r ≠ 

s, are assumed to be non-negative and provide a measure of the strength of the association of 

two networks. The normalizing constant in (7) corresponds to p(gij = 0|vij, Θ) = 1
C(νi j, Θ)  and 

can be easily computed, especially since the number of identifiable connectivity states S is 

expected to be low in a typical fMRI experiment. The parameters Θ and ν = (vij)i,j=1,...,V 
affect the prior probability of selection of the edges in each graph. We impose prior 

distributions on ν and Θ to help control for multiplicity and allow learning about the 

networks’ similarity directly from the data. More specifically, we assume a spike-and-slab 

prior on the off-diagonal entries of Θ, that is

θrs |ξrs (1 − ξrs)δ0 + ξrsGamma(α, β), (8)

where ξrs is a binary random variable that indicates if graph r and s are related, and the 

parameters (α,β) are chosen to ensure probability to both small and large values of the θrs. 

We set ξrs
iidBern(pξ), where pξ is selected to promote an overall level of sparsity, and also 

sharing of information across networks only when it is appropriate, based on the data. The 

parameter ν in (7) can be used both to encourage sparsity within the graphs G1,..., GS and to 

incorporate prior knowledge on particular connections. In particular, a prior which favors 

smaller values for ν reflects a preference for model sparsity, and thus can be used for 

modeling the small-world properties of brain networks (Smith et al., 2011; Varoquaux et al., 

2012). We can set a hyper-prior on ν by considering the case of null Θ. In such a case, the 

probability of inclusion of edge (i,j) in graph Gs is p(gs, i j |νi j) = e
νi j

1 + e
νi j

= qi j, which induces 

a prior on the elements vij, since vij = logit(qij·). We assume qij ~ Beta(a,b).

A schematic representation of the proposed Bayesian model for dynamic functional 

connectivity is given in Figure 1. A regression model describes the observed BOLD 

response to a number of different stimuli, via convolution with a HRF. The noise term, 

capturing spontaneous brain activity, is modeled by a Gaussian graphical model indexed via 

a HMM, to allow the connectivity structure to change over time. A “super-graph” links the 

graphs. We note that the modeling construction (1) and (4) induces a marginal distribution 

on the observed time course data, Yt, which is multivariate Normal, with the regression 

component as the mean of the distribution and the Gaussian graphical model imposed on the 

variance-covariance term. This results in a decoupling of the task-related activations and the 

functional connectivity states. Furthermore, the characterization of connectivity via latent 

states and, in particular, the use of the HMM add flexibility to the model formulation, as we 

can learn on interesting patterns of state persistence in connectivity that may arise during the 

course of the experiment, as distinct from those induced by the task.
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2.3 Posterior Inference

We rely on Markov Chain Monte Carlo (MCMC) techniques to sample from the joint 

posterior distribution of (Ω, β, μ, s,v, γ, ξ, Θ, G, λ). We report here a brief description of the 

sampling steps and give the full details of the algorithm in Appendix A.1.

A generic iteration of the MCMC algorithm comprises the following steps:

• Update λ: This is a Metropolis-Hastings (MH) step across all λν for v ∈ {1,.., 

V} with a uniform proposal centered at the current value of the parameter.

• Update s: For each s ∈ {1,..., S}, the state transition probabilities are sampled 

from a Dirichlet(αs) distribution, with αs an S dimensional vector. Then the 

stationary distribution of this transition matrix is calculated and accepted or 

rejected based on an MH step. The states are then sampled using the Forward 

Propagate Backward Sampling method of Scott (2002).

• Update G and Ω: For each s ∈ {1,..., S} and pair i ≠ j ∈ {1,..., V}, an edge 

indicator gi j
(s) is proposed with probability p(

GsnewH(e, Ω)
Gsold

), where H(e, Ω), with e 

= (i,j) the edge being updated, is as outlined in Wang and Li (2012). If the 

proposed value of edge indicator is different, then Ωsnew
|Gsnew

 is sampled from 

its conditional distribution and the joint proposal is accepted or rejected in an 

MH step. This step uses an adaptation of the sampling scheme of Wang and Li 

(2012), which avoids computation of prior normalizing constants and does not 

require tuning of proposals.

• Update Θ and ξ: We update these parameters jointly by performing between-

model and within-model MH steps. For the between-model step, for each r ≠ s ∈ 
{1,..., S} we propose to change the value of ξrs from 0 to 1, or vice versa. If the 

new ξrs = 0 we set θrs = 0, and if the new ξrs = 1 we sample a new θrs from a 

Gamma proposal. For the within-model step, for each pair r ≠ s ∈ {1,..., S} such 

that ξrs = 0 we sample a proposed θrs from a Gamma proposal.

• Update γ and β: We update these parameters jointly by performing between-

model and within-model MH steps. For the between-model step, for each k ∈ 
{1,..., K}, we either add, delete, or swap values of the γk vector, then sample βk 

conditional on the proposed values of γk. For the within-model step, for each k 
∈ {1,..., K} and for each v ∈ {1,...,V} such that γkv ≠ 0 we sample a proposed 

from a normal distribution centered at the old value of βkv.

• Update μ: For each v ∈ {1,..., V} we sample μu from a univariate normal 

distribution centered at the current value of μu, and accept or reject in an MH 

step.

• Update v: For each i ≠ j ∈ {1,..., V} we sample qij from a Beta proposal, then 

compute the proposed vij = logit(qij), and accept or reject the proposed value in 

an MH step.
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For posterior inference, we are primarily interested in the detection of the connectivity states 

st, for t = 1,...,T, and the estimation of the connectivity networks Gs, for s = 1,..., S. Inference 

on the connectivity states can be achieved by looking at the proportion of iterations in the 

MCMC samples that a time point is classified to each of the S states, and then assigning the 

most probable state at each time point. Network connectivity structures can then be 

estimated by computing marginal probabilities of edge inclusion as proportions of MCMC 

iterations in which an edge was included. More precisely, for each s = 1,..., S, the posterior 

p(gijs = 1|data) is estimated as the proportion of iterations that gijs = 1. Included edges are 

then selected by thresholding the posterior probabilities to control for the Bayesian false 

discovery rate (FDR, Newton et al., 2004). For testing a sequence of R null hypotheses H0r 

vs alternative hypotheses H1r, r ∈ R, let hr = p(H1r |data) denote the posterior probability of 

each alternative hypothesis. Then, the Bayesian FDR is defined as

FDR(κ) =
∑r = 1

R (1 − hr)I(hr > κ)

∑r = 1
R I(hr > κ)

,

where IA is an indicator function such that IA = 1 if A is true, and 0 otherwise, and κ is a 

given threshold on the posterior probabilities hr ‘s. A FDR control at a given level 

monotonically correspond to a threshold on hr. In our setting, R = ℰ, i.e. the set of all edges 

being tested, whereas H0r and H1r denote the null and alternative hypotheses that an edge is 

either absent or present in a connectivity state, respectively. Given the estimated networks, 

estimates of the strength of the associations can then be obtained from the corresponding 

precision matrices by averaging sampled MCMC values. In addition to the inference on the 

estimated graphs, our model returns a spatial map of the activated components obtained by 

thresholding the posterior probabilities of activation, p( γvk = 1| data), for v = 1,...,V and k = 

1,..., K, estimated as the proportion of times that γvk = 1 across all MCMC iterations, after 

burn-in.

3 Simulation Study

In order to assess the performance of our proposed method in a controlled setting, we 

simulated data intended to mimic an actual fMRI time course experiment. We employed the 

publicly available SimTB toolbox (Erhardt et al., 2012, http://mialab.mrn.org/software/

simtb/) which provides flexible generation of fMRI data.

In the simulation setting we present here, we considered a design with rest and K = 2 stimuli 

over T = 180 time points (see Figure 2, top) and generated data corresponding to the time 

courses of V =10 separate ICA components. We followed the framework outlined in Erhardt 

et al. (2012) and modeled the signal for each component time course as an increase or a 

decrease in the mean value in response to the stimuli. We set the baseline mean μ in model 

(1) to zero and the stimulus-specific regression coefficients as given at the bottom of Figure 

2. The SimTB toolbox implements a canonical hemodynamic response function (Lindquist 

et al., 2009), which is defined as the linear combination of two Gamma functions that model 

both the typical response delay observed after activation and the post-stimulus undershoot, 

Warnick et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mialab.mrn.org/software/simtb/
http://mialab.mrn.org/software/simtb/


that is h(t) = t
a1 − 1

b1
a1exp( − b1t) − c t

a2 − 1
b2

a2exp( − b2t). For the simulation presented here 

we set a1 = 6, b1 = 1, a2 = 15, b2 = 1, and c = 1/3. Within the SimTB toolbox we also added 

some unique events, generated by uniformly sampling from the interval (−0.025, 0.025) with 

probability .1, as well as a Gaussian noise component with mean zero and standard 

deviation .1, which is added at each time point of the convolved hemodynamic time series.

The next step in the data generation is to induce dynamic spatio-temporal correlation in the 

time series, which in our model is captured by the error term εt. Our interest is in testing 

whether our method can recover the functional connectivity states that characterize task and 

resting conditions. We therefore set S = 3 connectivity states corresponding to the rest and 

task conditions. We then generated 3 functional networks {G1,G2,G3} as follows. First, a set 

of cliques, i.e., fully connected subsets of the 10 simulated components, were selected for 

inclusion in each of the three connectivity states. These cliques define the 3 graphs and their 

adjacency matrices are provided in Figure 3 (top). Then, at each time point t, given state st = 

s ∈ {1,..., S}, and for each clique in Gs, correlation among the nodes of the clique was 

induced by randomly adding or subtracting a fixed quantity (0.5) to all node values at that 

time point with probability 0.95. There may be nodes in a clique which are negatively 

correlated with the others, and to these nodes we would subtract instead of add, or vice 

versa. As a result, within a clique there may be nodes either negatively or positively 

correlated with other components in the same clique. The resulting correlation matrices for 

each state are depicted in Figure 3 (bottom). We note that our approach simulates errors 

according to a specified conditional independence structure, while avoiding simulation from 

a Gaussian graphical model.

For model fitting, we specified independent Unif(0, 8) priors on the Poisson hemodynamic 

delay parameters λν in (2), to ensure prior mass within a reasonable area of the expected 

hemodynamic delay. We also specified a N(0,1) prior on the individual components of the 

baseline mean, μν, and as the slab portion of the spike-and-slab prior (3) on the regression 

coefficients, ßvk. The prior probability of a component being activated was specified as pk 

= .2, for k = 1, 2. We note that this specification is different from the true proportion of 

activated components, which is .5 and .3 for stimulus 1 and 2, respectively. As for the 

parameters of the G-Wishart prior in (5), we specified b = 3 and D = IV, which corresponds 

to a vague distribution on the space of precision matrices. For the prior specification on the 

MRF prior (7) on (G1,..., GS}, we recall that vij = logit(qij), where qij defines a marginal 

probability of edge inclusion. Here, we set qij ~ Beta(1,3), which corresponds to a prior 

marginal probability of edge inclusion of .25. Further, for the prior specification on Θ in (8), 

we set α = 4 and β = 16, and fixed ρξ = 0.1, in order to further promote sparsity. Peterson et 

al. (2015) note that monotonically higher values of ρξ correspond to monotonic increases in 

P(θrs ≠ 0|data) ∀r = s ∈ (1,...,S}, and this motivates a low value for ρξ to correspond with 

our expectation of a reasonable, but small, amount of graph similarity. In our experience, 

results appeared to be robust to the different choices of ρξ we considered, as long as the 

prior overall encouraged a reasonable level of sparsity. For example, for the settings we 

considered here, there were not appreciable differences for values of ρξ < 0.2. The priors on 

the rows of the HMM transition matrix were set as uniform, i.e., Dir(1,1,1), to characterize 

lack of prior knowledge on state transitions.
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We ran the MCMC algorithm for 20,000 iterations and used a burn in of 10,000. The code 

took approximately 1 hour and 40 minutes to run on an iMac 3.2 GHz Intel Core i5. 

Convergence was checked by examining the number of edges included in each iteration, for 

the graph component, and number of variables included in each iteration, for the regression 

component (plots not shown). Furthermore, the Geweke diagnostic test (Geweke, 1992), as 

implemented in the R package coda, was performed on the number of edges, the number of 

included variables in the regression, and the regression coefficients. The convergence test 

was significant at the alpha = .01, for all variables.

We comment first on the inference on the connectivity states. Figure 4 displays the posterior 

probabilities of st = s for s ∈ {1,2, 3}, across all T time points. A visual comparison with 

Figure 2 highlights that State 1 characterizes the absence of any stimulus, that is the resting 

state, while States 2 and 3 capture the presence of the two stimuli with high probability. As 

expected, transition points between connectivity states have the highest uncertainty. This 

result also highlights the fact that our method is able to correctly identifying non-contiguous 

temporal regions as belonging to the same connectivity state, effectively borrowing strength 

in estimation across time windows characterized by similar connectivity states. Figure 5 

(top) illustrates our inference on the 3 estimated connectivity networks, {G1,G2,G3}, 
obtained by thresholding the posterior probabilities p(gijs = 1|data) at a level corresponding 

to a Bayesian FDR of .1. Figure 5 (bottom) shows the corresponding estimated precision 

matrices. Overall, our method appears to capture the main features of the true dependence 

structures, namely positive and negative correlations, quite well. As a formal comparison, 

we calculated the RV-coefficient, a measure of similarity between positive semi-definite 

matrices (Josse et al., 2008), between the true correlation matrices and our estimates. 

Denoted by RV ∈ [0,1], the RV-coefficient can be viewed as a generalization of the 

Pearson’s coefficient, with values closer to one indicating more similarity. For the three 

correlation matrices we obtained values of .9625, .9802, and .9892, respectively. Formal 

permutation tests for H0 : RV = 0 vs. H1 : RV ≠ 0 rejected the null hypotheses, at the .01 

significance level after adjusting for multiplicity with a Bonferroni correction.

In addition to the inference on the latent connectivity states, our model also allows the 

detection of brain activations and the estimation of the HRF. Figure 6 shows the marginal 

posterior probabilities of activation of the 10 components during Stimulus 1 and Stimulus 2 

and the estimates of the Poisson HRFs, computed at the posterior mean of λυ and scaled to 

have maximum at one, each of the 10 components v = 1,..., 10. Our method is able to 

accurately detect the functional units which change their activation status in response to the 

stimuli, also providing a good estimation of the hemodynamic delay.

3.1 Comparison Study

For a performance comparison, we looked into the sliding window method of Allen et al. 

(2012), and the methods of Cribben et al. (2012) and Xu and Lindquist (2015), which are 

based on greedy algorithms. We did not obtain satisfactory results with the greedy algorithm 

methods, as those estimate independent brain networks over noncontiguous time blocks. As 

an example, in the simulated scenario presented above, the Dynamic Connectivity Discovery 

method of Xu and Lindquist (2015) detected three change points (roughly at the 1st, 3rd, and 
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4th transitions between states in Figure 2) and therefore estimated 4 unique connectivity 

states with corresponding networks (result not shown) when only 3 states exist. On the other 

hand, the sliding window clustering approach by Allen et al. (2012) provided a more 

reasonable comparison with our procedure, although their method also required fixing the 

number of clusters, which we set to the ground truth, i.e., 3.

In order to measure performances in the estimation of the state-dependent connectivities, we 

first computed the Frobenius distance between the true correlation matrices, as depicted in 

Figure 3, and the estimated ones, separately for our approach and the method by Allen et al. 

(2012). The Frobenius distance of two matrices Â and A, is defined as 

A − A F = tr((A − A)(A − A)T), and is often employed to measure the total squared error in 

matrix estimation. Boxplots of Frobenius distances are reported in Figure 7, for each of the 

three connectivity states, over 30 replicated datasets, and indicate that our method displays 

the best performance overall. Furthermore, we calculated precision, accuracy and Matthews 

correlation coefficient achieved by the two methods, for each network state. Let TP indicate 

the number of true positive edges detected by a method, TN the number of true negatives, FP 
the number of false positives and FN the number of false negatives. The precision of the 

method is defined as the fraction of true positive detections over all detections, i.e. TP
TP + FP , 

whereas the accuracy is defined as the fraction of true conclusions (i.e., both truly present 

and truly absent edges) over the total number of edges tested, i.e. TP + TN
TP + FP + FN + TN . The 

Matthews correlation coefficient (MCC) is a measure that combines all the above 

performance measures in a single summary value as

MCC = TP × TN − FP × FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN) .

The MCC ranges from −1 to 1, with values closer to 1 indicating better performance in the 

network detection, and it is generally regarded as a balanced representation of the quality of 

a binary classification. Results are reported in Table 1, averaged over the 30 replicates, and 

confirm the improved performance of our method.

Finally, we also compare the performance of our method with respect to the detection of the 

change points in the connectivity states. Figure 8 illustrates the accuracy of the state 

classification at each time point along the fMRI time series, by plotting the proportion of 

correctly identified states at each time point, averaged over the 30 replicated datasets, for 

both our method and the method by Allen et al. (2012). Both methods are able to capture the 

5 change points quite well. However, the method by Allen et al. (2012) appears to be 

characterized by an increased frequency and uncertainty of state transitions within each 

interval, most likely due to the nature of the sliding-window estimation. On the other hand, 

our method is characterized by increased accuracy and stability of state identification at each 

time point. The transitions between states have the highest uncertainty; however, they are 

still very consistent with the true timing of the change points.
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4 Analysis of Sensory Motor Task fMRI Data

We applied our method to data obtained from an actual fMRI experiment conducted by the 

Mind Clinical Imaging Consortium (MCIC, Gollub et al., 2013). The particular experiment 

considered here is a block design fMRI study, designed to activate the auditory and 

somatosensory cortices. The design of the experiment alternated 16 second blocks of 

auditory stimulus and 16 second blocks of fixation. During the stimulus blocks, the subject, 

keeping eyes closed for the duration of the scan, was presented with a series of bi-aural 

audio tones of varying frequencies at irregular intervals and asked to press a button in 

response to each of the stimuli as quickly as possible. More precisely, the auditory stimulus 

consisted of 16 different tones of monotonically increasing frequency from 236 Hz to 1318 

Hz, with each tone lasting 200 ms. The tones rose to the maximum value, and then 

descended. This pattern was repeated for 16 seconds, and the subject was asked to press a 

button with their right thumb after hearing each individual tone. The experiment lasted for 

240 seconds, during which the subject was scanned in intervals of 2 seconds. This resulted 

in a total of 120 time points across the scanning session. The first block of each scanning 

session is a fixation block, giving a total of 8 fixation blocks and 7 sensory motor blocks. 

The data were collected on a 3 T Siemens Trio, with a bandwidth of 3125Hz/pixel. The 

spatial resolution was 3.4mm cubic voxels in a 53 × 63 × 46 cubic grid. Motion correction 

was performed using SPM12.

Applying ICA, using the GIFT Matlab toolbox (Calhoun et al., 2001), reduced the voxel 

space to 40 ICA components, representing a spatial map of anatomical regions with 

associated time courses. Many of these components corresponded to biological structures 

not of interest here, such as cerebrospinal fluid, the sinuses, or the brainstem, and other 

components corresponded to motion artifacts. These components do not have any functional 

relationship with relevant anatomical regions and were removed from the analysis, as a 

standard data preprocessing step (Allen et al., 2012). After these components were removed, 

we were left with 14 ICA components corresponding to anatomical regions of interest, as 

depicted in Figures 9 and 10. As it is known that there is low frequency drift in fMRI time 

courses, which is not associated with neurological behavior in the subject (Smith et al., 

1999), we removed linear and quadratic trends from the time courses of the obtained 

components.

We used a similar prior specification to the one adopted in the simulation study. In 

particular, we imposed independent Unif(0, 5) priors on the hemodynamic delay parameter 

λν in (2) and placed N(0,1) priors on the slab components in (3) and the baseline mean 

components. Also, we set the prior probability of a component being activated to .2. For the 

parameters of the G-Wishart prior in (5) we specified b = 3 and D = IV, which corresponds 

to a vague distribution on the space of precision matrices. We specified the parameters of the 

MRF prior (7) on {G1,..., GS} to obtain a prior marginal probability of edge inclusion of .25. 

For the prior specification on Θ in (8), we set α = 4 and β = 16, and fix ρξ = 0.1. Finally, we 

set the priors on the rows of the HMM transition matrix as uniform Dir(1,1). We ran the 

MCMC algorithm for 20,000 iterations and used a burn in of 10,000. The code took 

approximately 2 hours to run on an iMac 3.2 GHz Intel Core i5. As in the simulation study, 

the model convergence was analyzed by looking at number of edges included in the graphs, 
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number of components included in the regression, and the regression coefficients. These 

quantities were tested using the Geweke criteria, and were rejected at a .01 significance 

level.

4.1 Inferred connectivity networks and activations

The experimental design alternates between two conditions, fixation and auditory stimulus. 

Accordingly, we set S = 2, to understand how the particular task affects (e.g., either by 

modulating or inhibiting) functional relationships among the networks. This choice was also 

supported by model selection criteria, such as the BIC and AIC. For example, for S = 2, 3 

the corresponding AIC values were (2939, 5544), respectively, whereas for the BIC we 

obtained (4804, 7409). Figure 11 displays the posterior probabilities of st = s for s ∈ {1,2}, 

across all T time points. Non-contiguous temporal blocks where the method estimates with 

high posterior probability that the individual is in either State 1 or State 2 are clearly 

recognizable, and they correspond well to the temporal intervals between the offset of the 

auditory stimulus and rest in the experiment, respectively.

Figure 12 shows the inferred connectivity networks under the two states, obtained by 

thresholding the posterior probabilities of edge inclusion at a .1 expected Bayesian FDR, 

together with the estimated precision matrices. Negative correlations are depicted in blue 

and positive correlations in red. In the graphs, dashed and solid lines correspond to shared 

and differential edges, respectively. Our findings on the connectivity networks under task 

(auditory stimulus - State 1) and rest (fixation - State 2) reveal several interesting features.

First, the connectivity network under fixation is characterized by more negatively correlated 

edges. Those negative correlations are prevalent between regions associated with executive 

control or task functioning, including the Basal Ganglia (C), Cingulo Opercular Network 

(D), Dorsal Attention System (M), and Bilateral Motor System (N), and regions in the 

default mode system (the Precuneus (G), Dorsal Posterior Default Mode (J), Anterior 

Default Mode (F), and the Lateral Default Mode (I)). Indeed, the default mode network 

(DMN) has been found to exhibit higher metabolic activity at rest than during performance 

of externally-oriented cognitive tasks (Uddin et al., 2009), and those negative correlations 

could suggest an inhibitory effect from these regions over the executive control regions. 

Furthermore, some researchers have suggested that the DMN is associated with monitoring 

of the external environment and the dynamic allocation of attentional resources, with some 

form of depression showing altered DMN patterns during implicit emotional processing 

(Koshino et al., 2011; Shi et al., 2015). Our estimated networks also identify regions which 

are typically related to executive control, i.e., the Posterior Insula (B), Basal Ganglia (C), 

Cingulo-Opercular Network (D), and the Ventral Attention Network (E), as engaged both 

during the auditory stimulus and fixation. Indeed, this finding is consistent with the 

expectation that at any time the subject is either controlling a response to a stimuli or waiting 

for a stimuli to be presented. Also regions belonging to the DMN appear engaged in both the 

resting and the task networks, a remark consistent with the understanding that DMN 

processes unconscious task-related information, despite being characterized by general 

decreased activity levels during task performance (De Pisapia et al., 2011). We also observe 

a more pronounced correlation between the Sensory Motor Network (A) and the Basal 
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Ganglia (C) during fixation. The Basal Ganglia (C) has been observed to moderate attention 

networks (Jackson et al., 1994), and specifically to moderate executive attention (Berger and 

Posner, 2000).

Figure 13 shows the marginal posterior probabilities of activation of the 14 components 

during task. The Sensory Motor (A), Cingulo-Opercular Network (D), Ventral Attention 

Network (E), Anterior Default Mode (F), Precuneus (G), Ventral Posterior Default Mode 

(H), Lateral Default Mode (I), and Dorsal Posterior Default Mode (J) components all have 

high posterior probability of being activated by the task. The posterior means and 95% 

credible intervals of the regression coefficients in (1) corresponding to these components are 

also reported in Figure 13. Interestingly, our method selects all default mode related regions 

(F-J), while also selecting the sensory motor region (A), and regions associated with 

attention or executive control (D-E). As expected, the sensory motor region (A) exhibits 

significantly higher activity during the task, similarly to the two selected executive control 

regions (D-E). On the contrary, most DMN regions (F, G, H, J) exhibit deactivation during 

the task, with the interesting exception of the Lateral DMN component (I). As mentioned, it 

has been established that regions which are part of the DMN are usually characterized by 

greater activity during task preparation than during task performance (Koshino et al., 2014). 

The Lateral DMN component (I) includes areas corresponding to the right angular gyrus, 

which has been shown in meta-analysis reviews to be consistently activated in go/no-go 

tasks, as it may be involved in the restraining of an inappropriate response from being 

executed (Wager et al., 2005; Nee et al., 2007).

5 Conclusion

The investigation of dynamic changes in functional network connectivity has recently 

received increased attention in the neuroimaging literature, as it is believed to provide 

greater insights into brain organization and cognition (Hutchison et al., 2013). In this 

manuscript, we have introduced a fully Bayesian approach to the problem, which allows 

simultaneous estimation of time-varying networks, with corresponding change points, and 

detection of brain activations in response to a set of external stimuli. With respect to current 

methods for studying dynamic connectivity, our approach does not require an ad-hoc choice 

of sliding-windows for estimating the network dynamics, and inference is conducted in a 

unified framework. By using a Hidden Markov Model formulation to detect change points in 

the connectivity dynamics, our framework allows posterior assessment of the probability of 

each connectivity state at each time point, and further allows borrowing of information 

across the entire fMRI scan to improve accuracy in the estimation of the networks.

We have considered task-based fMRI data, where we have shown how our method achieves 

decoupling of the task-related activations and the functional connectivity states, to 

understand how a particular task affects (e.g., either by modulating or inhibiting) functional 

relationships among the networks. We have shown good performances of our model on 

simulated data and illustrated the method on the analysis of an actual fMRI dataset obtained 

from a healthy subject involved in a sensory motor task with an auditory stimulus. The 

results were consistent with current findings in the neuroimaging literature, showing an 

increased role of the regions involved in the default mode network at rest. Interestingly 
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enough, regions related to executive control appeared involved both at rest and during task, 

consistent with the pattern implied by the “wait-to-hear” design of the auditory stimulus. 

During the task, a stronger connection between the Ventral Attention Network and the Basal 

Ganglia was observed, relating the attention to the stimulus to the voluntary muscle 

movements triggered by the task.

In our approach we have fitted a model to fMRI BOLD responses over macro-regions 

identified via ICA, rather than to the voxel-level data itself. As we have noted, our modeling 

approach does not depend on the particular choice of ICA-based regions, as it is generally 

applicable to any well-defined set of brain regions for which connectivity is of interest. In 

ICA, components are effectively spatial regions that share a common time course, and the 

shared time course is different enough from those of other regions to be distinct components. 

This leads to model order. One advantage of ICA, therefore, is that if we want to consider a 

graph with a small set of nodes, a low-model order ICA decomposition will help decide 

which structural areas can be grouped based on similar time course activation. Another 

advantage to ICA is that it chooses spatial components that have time courses that are the 

most distinct from each other; therefore, unlike in an atlas specification of regions where two 

regions can be highly functionally connected, ICA gives us the starting point of components 

that are as temporally unalike as possible. Then, the Bayesian graphical model will find the 

relationships between these distinct components. For future extensions of the method, an 

interesting question to explore is the interaction between the results of our model and the 

pre-processing step. Indeed, it might be possible to have the identification of the macro 

regions be not a preprocessing step but be included within the Bayesian hierarchical model 

fitting. This requires addressing the resulting non-trivial computational challenges. In 

addition, scalability of the methods can be facilitated by the implementation of 

computationally efficient algorithms for posterior inference, such as Variational Bayes and 

Hamiltonian Monte Carlo methods constrained on the space of positive definite matrices 

(Neal, 2011; Holbrook et al., 2016), in place of the more computationally expensive MCMC 

methods. Such strategy can allow the estimation of graphs with a larger number of nodes 

than what we have considered in our examples, also making it possible to validate findings 

on whole-brain parcellations and functional brain atlases, such as the Willard and MSDL 

atlas, instead of ICA components, in order to ensure the robustness of the results and assess 

the impact of the pre-processing.

In model (1) we have considered the case of a Poisson hemodynamic response function. 

Clearly, other parametric HRFs, such as the canonical or the gamma HRFs (Lindquist, 

2008), can be used with our model. Also, our approach can be extended to incorporate 

methods for joint detection-estimation (JDE) of brain activity that allow both to recover the 

shape of the hemodynamic response function as well as to detect the evoked brain activity 

(Makni et al., 2008; Badillo et al., 2013). In such approaches, whole brain parcellations are 

typically used, to make the HRF estimation reliable by enforcing voxels within the same 

parcel to share the same HRF profile. Extensions that allows simultaneous inference of the 

parcellation have also been proposed (Chaari et al., 2013; Albughdadi et al., 2017), at the 

expense of the computational cost.
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The use of a Hidden Markov Model for change point detection requires the predetermination 

of the upper bound, S, on the number of possible states. In task-based fMRI data, a 

reasonable value for S can often be surmised on the basis of the experiment, e.g., the number 

of different tasks. However, in our model formulation connectivity is not defined by the 

presence of a stimulus but rather characterized by a latent state. This adds flexibility to the 

model, as we can learn on interesting patterns of state persistence that may arise during the 

course of the experiment. For example, model selection criteria, such as the AIC and BIC, 

can be employed to determine the optimal value of S. Alternatively, one could use flexible 

Bayesian nonparametric generalizations of the Hidden Markov Models that do not require 

fixing S in advance and instead estimate E(S|Y) directly from the data (Beal et al., 2002; 

Airoldi et al., 2014). This will be an objective of future investigations. Other possible 

extensions of our modeling framework include incorporating external prior information on 

the networks, whenever available. For example, estimates of structural connectivity obtained 

using diffusion imaging data can be incorporated into the sparsity prior on the precision 

matrices (Hinne et al., 2014). Finally, even though we have discussed here the analysis of 

fMRI data from a single subject, multiple subjects analyses would also be of interest, as they 

would allow comparisons of functional connectivity dynamics between groups of subjects, 

for example healthy controls and patients affected by neuropsychiatric disorders, such as 

Alzheimer’s and schizophrenia. For such extensions, however, several aspects of the 

modeling and computations need careful thought, as one might expect the connectivity states 

and the change points to vary subject-by-subject.
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A Appendix

A.1 Markov chain Monte Carlo algorithm

We describe here the MCMC algorithm for posterior inference.

• Update λv : This is a Metropolis Hastings (MH) step. Propose 

λvnew
Unif(λvold

− h, λvold
+ h) and adjust the Xvt

k  element of Xnew to be 

Xvt
k = ∫ 0

t xk(τ)hλvnew
(t − τ)dτ, then accept λvnew

 with probability:

min{1,
p(λvnew

|Y, Xnew, s, β, Ω)q(λvnew
, λvold

)

p(λvold
|Y, Xold, s, β, Ω)q(λvold

, λvnew
) },

where p(λ |Y, X, s, β, Ω) ∝ ∏s ∈ {1, …, S} ∏t:st = s N(μ + ∑k = 1
K Xt

k ∘ βk, Ωs).

• Update s: This is an MH step followed by a Gibbs sampler.
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1. Sample state transition probabilities for state i from a Dirichlet(αi) 

distribution where [αi]j = #i j + 1 is the number of state transitions 

from i to j plus 1.

2. Calculate the stationary distribution πnew given the transition 

probabilities.

3. Accept resulting transition matrix and stationary distribution with 

probability:

min{1,
πnew(Current States)
πold(Current States) }

4. Perform Gibbs sampling using Forward Propagate Backward Sampling 

(Scott, 2002). Obtain the forward transition probabilities for each state 

at each time point as: Pt = [ptrs] where ptrs is the transition probability 

from r at time t — 1 to s at time t. The formula for ptrs is obtained by 

computing:

ptrs ∝ πt − 1(r |θ)q(r, s)N(Xtβ + μ, Ωs)

and normalizing. The term πt(r|θ) = ∑r ptrs is computed after each 

transition.

5. Once Pt has been obtained for all t, sample sT from πt, and then 

recursively sample st proportional to the st+1-th column of Pt+1; until s1 

is sampled.

• Update G and Ω: This is an MH step.

1. For each s ∈ {1,..,S}, and each off diagonal pair (i,j) ∈ {1,...,V} 

propose an edge with probability 
p(Gnew)H(e, Ω)

p(Gold) , with e = (i,j) the edge 

being updated, and with H(e, Ω) as defined in Wang and Li (2012) 

section 5.2 Algorithm 2. If the new edge / lack of an edge is different 

from the previous edge state continue with MH step. Otherwise, 

proceed forward to the next edge.

2. Sample Ωsnew
|Gsnew

WGsnew
(b + nk, D + cov({Yt:st = s})).

3. Accept or reject the move with the following probability:

min{1,
f (Ωnew\(ωi jnew

, ω j jnew
) |Gold)

f (Ωnew\(ωi jnew
, ω j jnew

) |Gnew)},

with f(Ω\(wij,wij)|G) as defined in Wang and Li (2012).
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• Update Θ and ξ: This is done using within-model and between-model MH 

steps.

1. Between-Model

(a) For each r, s G {1,.., S}

i. If ξrs = 1 set ξrsnew
= 0 and θrsnew

= 0

ii. If ξrs = 0 set ξrsnew
= 1 and sample θrsnew

 from the 

proposal Gamma(α*, β*) distribution.

(b) Accept proposal with probability:

i. min{1,

Γ(α)
Γ(α*)

(β*)α*

βα (θkm)α* − αe
(β − β*)θrs∏i < j

C(νi j, Θ)exp( − 2θrsgr, i jgs, i j)
C(νi j, Θnew)

1 − w
w

}

ii.
min{1,

Γ(α*)
Γ(α)

βα

(β*)α* (θrsnew
)α − α*e

(β* − β)Θrsnew∏i < j

C(νi j, Θ)exp( − 2θrsnew
gr, i jgs, i j)

C(νi j, Θnew)
w

1 − w

}

.

Here C(ν, Θ) is the MRF normalizing constant.

2. Within-Model

(a) For each r, s ∈ {1,.., S} such that ξrs = 1 and θrs ≠ 0 sample 

θrsnew
 from the same proposal Gamma(α*,ß*) distribution.

(b) Accept proposal with probability: 

min{1, (
θrsnew

θrs
)
α − α*

e(β* − β)(θrsnew
− θrs

) ∏
i < j

C(νi j, Θ)exp(2(θrsnew
− θrs)gk, i j, gm, i j)

C(νi j, Θnew) }

• Update γ and β: Updated using between-model and within-model MH steps:

1. Between-Model

(a) For each k ∈ {1,...,K} either swap two values of γk or select 

an index and change it’s value.
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— When swapping two values to obtain γkinew
 and 

γk jnew
 then, without loss of generality, if γkinew

 = 0 

set βk jnew
 = 0 and sample βk jnew

 from N(0, σβ).

— When changing the value of an individual index j, 
then if γk jnew

 = 0 set βk jnew
 = 0, otherwise sample 

βk jnew
 from N(0,σβ).

(b) Accept proposal with probability:

min{1,

∏t = 1
T p(Yt | X, βnew, s, Ω)p(βnew)p(γnew)q({γnew, βnew}, {γold, βold})

∏t = 1
T P(Yt | X, βold, s, Ω)p(βold)P(γold)q({γold, βold}, {γnew, βnew})

},

where p(Yt | X, β, μ, s, Ω) = N(Xtβ + μ, Ωst
), and q(o, o) is the 

transition probability.

2. Within-Model

(a) For each k ∈ {1,..., K} and v ∈ {1,..., V} such that γkv = 1 

propose βkvnew
= βkvold

+ N(0, σβ
prop)

(b) Accept the proposal with probability:

min{1,
∏t = 1

T p(Yt | X, βnew, s, Ω)p(βnew)

∏t = 1
T p(Yt | X, βold, s, Ω)P(βold)

},

where p(Yt | X, β, s, Ω) = N(Xtβ + μ, Ωst
).

• Update μ: Updated using an MH step:

1. ∀v ∈ {1,..., V} perform a random walk on μν to obtain

μnew = {μ1old
, …, μvnew

, …, μpold
} .

2. Accept or reject μvnew
 with the following probability:

Warnick et al. Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min{1,
∏t = 1

T P(Yt | X, β, μnew, s, Ω)p(μnew)

∏t = 1
T p(Yt | X, β, μold, s, Ω)p(μold)

},

where p(Yt | X, β, μ, s, Ω) = N(Xtβ + μ, Ωst
).

• Update v: Updated using an MH step:

1. ∀i,j ∈ {1,.., V} such that i < j, sample qij ~ Beta(a*, b*).

2. Obtain νi jnew
 as a function of qij by setting νi jnew

 = logit(qij).

3. Accept νi jnew
 with the following probability:

min{1,
exp((νi jnew

− νi j)(a − a* + 1Tgi j))C(νi j, Θ)(1 + e
νi j)

a + b − a* − b*

C(νi jnew
, Θ)(1 + e

νi jnew)
a + b − a* − b* } .
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Figure 1: 
Schematic representation of the proposed Bayesian model for dynamic functional 

connectivity. A regression model describes the observed BOLD response to a number of 

different stimuli, via convolution with a HRF. The noise term, capturing spontaneous brain 

activity, is drawn from a Gaussian graphical model indexed via a HMM, to allow the 

connectivity structure to change over time. A “super-graph” links the graphs. This results in 

a marginal multivariate Normal distribution on Yt, with the regression component as the 

mean and the Gaussian graphical model imposed on the variance-covariance term.
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Figure 2: 
Simulation study design: Resting and stimulus conditions (top figure) and stimulus-specific 

regression coefficients (bottom table).

Warnick et al. Page 28

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Simulation study design: Simulated connectivity networks (top) and corresponding 

correlation matrices (bottom - only the lower triangular part is displayed).
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Figure 4: 
Simulation study: Posterior probability of each connectivity state across all time points, P(st 

= s) for t ∈ (1,..., T} and s ∈ (1, 2, 3}.
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Figure 5: 
Simulation study: Estimated connectivity networks (top) and correlation matrices (bottom - 

only the lower triangular part is displayed).
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Figure 6: Simulation study: Top: Marginal posterior probabilities of activation (p(γvk = 1|data) 
for v ∈ {1,..., V} and k =1, 2 of the V = 10 components during Stimulus 1 and 2.
Black dots indicate components simulated as activated by the stimulus. Bottom: Posterior 

densities of the Poisson HRFs, centered on λν, for v = 1,..., V, and scaled to have maximum 

at one. The true canonical HRF used to simulate the data is also depicted
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Figure 7: 
Simulation study: Box plots of Frobenius distances between the true and the estimated 

correlation matrices, for our method and the method of Allen et al. (2012), across 30 

replicated datasets.
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Figure 8: 
Simulation study: Accuracy of change point detections and state identifications, for the 

proposed method (solid line) and the method of Allen et al. (2012) (dashed line), averaged 

across the 30 replicates.
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Figure 9: Case study: Z-score maps of components of interest, overlaid in Montreal Neurological 
Institute (MNI) space.
For each component, three representative slices are displayed, in the coronal, sagittal, and 

axial orientations, respectively. Components are sorted based on their anatomical and 

functional properties, with the executive control sorted together and all of the Default Mode 

Network (DMN) components sorted together.
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Figure 10: Case study: Z-score maps of components of interest, overlaid in Montreal 
Neurological Institute (MNI) space.
Three representative slices are displayed, in the coronal, sagittal, and axial orientations, 

respectively, for each component. Components are sorted based on their anatomical and 

functional properties, with the executive control sorted together and all of the Default Mode 

Network (DMN) components sorted together.
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Figure 11: Case study: Posterior probability of each connectivity state across all time points, p(st 
= s) for t ∈ {1,... ,T} and s ∈ {1, 2}.
The shaded regions mark the presence of the auditory stimulus.
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Figure 12: Case Study: Estimated precision matrices (left) and connectivity networks (right) 
corresponding to a .1 Bayesian FDR, under task (auditory stimulus - State 1 - top plots) and rest 
(fixation - State 2 - bottom plots).
A blue line corresponds to a negative correlation, whereas a red line indicates a positive 

correlation. Dashed and solid lines correspond to shared and differential edges, respectively.
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Figure 13: 
Case study: Marginal posterior probabilities of activation of the V = 14 components during 

the sensory motor task (left), and posterior means and 95% credible intervals of the 

regression coefficients in (1) corresponding to the selected components (right)
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Table 1:

Simulation study: Performance comparison of our method (BDFC) and the method of Allen et al. (2012) on 

edge detection for individual network states. Results are given as precision, accuracy (ACC) and the Matthews 

Correlation Coefficient (MCC) averaged across 30 simulations. Standard deviations are given in parentheses.

BDFC Allen et al.

Precision (sd) ACC (sd) MCC (sd) Precision (sd) ACC (sd) MCC (sd)

State 1 .575 (.067) .857 (.037) .611 (.080) .496 (.255) .757 (.146) .547 (.257)

State 2 .500 (.053) .822 (.024) .471 (.079) .537 (.298) .773 (.177) .555 (.320)

State 3 .958 (.083) .890 (.037) .742 (.092) .548 (.251) .691 (.182) .389 (.348)
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