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Abstract

Purpose: To develop and validate a data processing technique that allows phase-contrast MRI-

based 4D flow imaging of the aortic valve in a single breath-hold.

Theory and Methods: To regularize the ill-posed inverse problem, we extend a recently 

proposed 2D phase-contrast MRI method to 4D flow imaging. Adopting an empirical Bayes 

approach, spatial and temporal redundancies are exploited via sparsity in the wavelet domain, and 

the voxel-wise magnitude and phase structure across encodings is captured in a conditional 

mixture prior that applies regularizing constraints based on the presence of flow. We validate the 

proposed technique using data from a mechanical flow phantom and five healthy volunteers.

Results: The flow parameters derived from the proposed technique are in good agreement with 

those derived from reference datasets for both in vivo and mechanical flow experiments at 

accelerations rates as high as R = 27. Additionally, the proposed technique outperforms kt 

SPARSE-SENSE and a method that exploits spatio-temporal sparsity but does not utilize signal 

structure across encodings.

Conclusion: Using the proposed technique, it is feasible to highly accelerate 4D flow acquisition 

and thus enable aortic valve imaging within a single breath-hold.
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Introduction

Alterations in hemodynamics have been linked to wide-ranging cardiovascular conditions. 

Phase-contrast (PC)-MRI is an established imaging technique that enables non-invasive 

mapping of hemodynamics (1, 2). For PC-MRI, the encoding can be performed over a 

volume, across the cardiac cycle, and for all three directional components of the velocity 

vector, providing spatially and temporally resolved mapping of the blood velocity vector. 

This technique is often termed as “4D flow imaging,” and it permits evaluation of three-

directional hemodynamics within three-dimensional vasculature across the cardiac cycle (3). 

Because of impractically long acquisition times associated with 4D flow imaging, clinical 

application of PC-MRI is generally limited to planar imaging with a single velocity 

encoding direction. The accuracy of such an approach is sensitive to the placement of the 

imaging plane and the misalignment of the velocity encoding direction with respect to the 

blood flow direction (4), resulting in underestimation of the flow and velocity and, in turn, 

potential misclassification of disease severity. In contrast, 4D flow imaging, with its 

volumetric coverage and ability to capture all three components of the velocity, avoids some 

of the potential measurement errors associated with planar imaging.

In PC-MRI, velocity information is encoded into the phase of the complex-valued image. In 

the case of 4D flow, the 3D k-space at each cardiac phase is sampled multiple times, each 

time with a different set of velocity encoding gradients. At least four different velocity 

encodings are required to encode the nuisance reference phase as well as the phases 

corresponding to three-directional flow. As a result, the acquisition time for 4D flow 

imaging can be excessively long, with scan times exceeding 30 minutes (3). These long scan 

times make 4D flow imaging less cost effective, introduce artifacts related to change in 

physiology or patient motion, and make the acquisition process stressful for patients.

A number of techniques have been developed to accelerate PC-MRI. Parallel MRI (pMRI), 

which employs multiple receive coils, has been shown to provide two to three-fold 

acceleration for PC-MRI (5). State-of-the-art methods to accelerate PC-MRI often combine 

randomized sampling, pMRI, and image recovery inspired by compressed sensing. For 2D 

imaging, Kim et al. proposed kt SPARSE-SENSE that combines randomized sampling, 

pMRI, and sparsity of temporal principal components, yielding a six-fold acceleration to 

measure portal and hepatic venous flow (6). Kwak et al. recovered five-fold accelerated 2D 

PC-MRI by enforcing total variation (TV) minimization of both encoded and compensated 

images as well as exploiting the sparsity of the complex difference between the compensated 

and encoded images (7). Knobloch et al. proposed a method that utilizes both temporal 

principal component analysis and the complex difference of velocity encoded and velocity 

compensated images to report an eight-fold acceleration for 4D flow imaging (8). More 

recently, Sun et al. employed both sparsity and partial separability constraints to achieve an 

acceleration rate of eight for 4D flow imaging (9), and Tan et al. enforced equality of 

magnitudes between the encoded and compensated images and utilized radial sampling to 

achieve a temporal resolution of 36 ms (10).

In this work, we describe an empirical Bayes approach for inversion of highly accelerated 

4D flow data. A novel contribution that characterizes this work is a Bayesian model that, in 
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addition to spatio-temporal sparsity, exploits the spatially varying dependencies in 

magnitude and phase across an arbitrary number of velocity encoded images. The resulting 

problem is made computationally tractable by a combination of standard and loopy belief 

propagation, leading to a novel iterative inversion algorithm. The framework, called 

ReVEAL4D, is a non-trivial extension of our recently described 2D PC-MRI technique 

referred to as Reconstructing Velocity Encoded MRI with Approximate message passing 

aLgorithms (ReVEAL) (11). ReVEAL4D is validated using in vivo and mechanical 

phantom data, yielding acceleration rates in access of twenty.

Theory

Notation

For this work, bold symbols will be used to represent vectors and matrices, with matrices 

capitalized, e.g., y = Ax to represent the vector matrix product. Elements from a matrix will 

be represented as aij for the jth column and ith row of A, and xi for the ith element of a vector 

x. In the case where the vector contains a subscript, the notation xbi will represent the ith 

element of vector xb. The symbol × will represent element-wise multiplication when used 

with vectors. Let In denote the n-by-n identity matrix. Lastly, the notation 𝒞𝒩 (x; μ, σ2) will 

be used to represent a circularly symmetric complex Gaussian distribution for the random 

variable x with mean μ and variance σ2. The same notation is adopted for jointly Gaussian 

random vectors.

Signal model

We adopt a similar signal model to the one presented in (11) with the 2D operators replaced 

with their 3D equivalents. Noiseless k-space data yi
k, t from the kth receive coil, tth frame, and 

ith velocity encoding are expressed as

yi
k, t = Di

tℱSi
k, tρi

t, [1]

where Di
t is a k-space sampling selection operator, ℱ is the 3D Fourier operator, and Si

k, t is a 

diagonal matrix that represents 3D coil sensitivity map. Here, ρi
t ∈ ℂN is a vectorization of 

the three-dimensional image to be recovered, yi
k, t ∈ ℂM is the vector of noiseless Fourier 

measurements. The signal representing all coils and time indices is denoted as

yi = Aiρi, [2]

where i represents different velocity encodings. In this work, we assume i ∈ {b, x, y, z} 
where b, x, y, and z represent compensated reference, x-encoded, y-encoded, and z-encoded 

measurements, respectively.
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Bayesian data model

We adopt a Bayesian modeling approach to the inversion task. Probabilistic models are 

formulated to describe: the relationship of the measured data to the unknown image 

sequences, the relationships among the four encoded image sequences, and the 

compressibility of the four 3D spatio-temporal sequences. The modeling assumptions, which 

are approximate but physically motivated, provide a flexible and effective means to 

incorporate prior knowledge for the purpose of regularizing the inverse problem. To begin, 

we define the magnitudes and phases of the complex-valued reference, x-encoded, y-

encoded, and z-encoded images (12):

ρb = mb × e
j θb [3]

ρx = mx × e
j θb + θx [4]

ρy = my × e
j θb + θy [5]

ρz = mz × e
j θb + θz [6]

where ρb is the complex-valued reference (velocity compensated) image, θb is the reference 

phase, and mb is the reference magnitude. Here, the x-, y- and z-encoded signals have 

magnitudes mx, my, and mz, respectively, and velocity encoded phases θx, θy, and θz, 

respectively. Each measurement is observed under the following model

yi = Aiρi + ϕi, ∀i = b, x, y, z . [7]

Here yb, yx, yy, and yz are the noisy reference, x-encoded, y-encoded, and z-encoded k-space 

measurements, respectively. The additive noise signals φb, φx, φy, and φz are described by 

zero mean circularly symmetric complex Gaussian distributions with variance ω2. Finally, 

we introduce a Bernoulli indicator, v ∈ {0,1}N, to denote the non-zero velocity locations in 

the image, i.e., where θx, θy, or θz is nonzero.

By application of Bayes’ rule and independence of the additive noise across encodings, the 

posterior distribution of the unknown parameters conditioned on the measurements is given 

by
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p ρb, ρx, ρy, ρz, θx, θy, θz, v yb, yx, yy, yz ∝
p ρb, ρx, ρy, ρz, θx, θy, θz, v

× p yb ρb p yx ρx p yy ρy p yz ρz .

[8]

Since the additive noise terms are Gaussian, it follows that the likelihood terms in Eq. [8] are 

given by

p yi ρi = 𝒞𝒩 yi; Aiρi, ω2I , ∀i = b, x, y, z . [9]

To complete the model requires choice of the prior. By application of the chain rule for 

probability density functions, the prior can be factorized as follows.

p ρb, ρx, ρy, ρz, θx, θy, θz, v = p ρb p(v ρb)p θx ρb, v
× p θy ρb, v, θx p θz ρb, v, θx, θy p ρx ρb, v, θx, θy, θz
× p ρy ρb, v, θx, θy, θz, ρx p ρz ρb, v, θx, θy, θz, ρx, ρy .

[10]

The resulting distributions in Eq. [10] are difficult to model, and the graph drawn using these 

distributions would contain tight loops, greatly increasing the computational complexity 

needed to solve the graph. To avoid these difficulties, we make simplifying conditional 

independence assumptions to yield tractable message passing, while still capturing salient 

physical dependencies that provide a regularizing capability for the inverse problem. The 

simplified prior is given as

p ρb, ρx, ρy, ρz, θx, θy, θz, v ≈ p ρb p(v)p θx p θy
× p θz p ρx ρb, θx, v p ρy ρb, θy, v p ρz ρb, θz, v .

[11]

The x-, y-, and z-encoded images are assumed to be conditionally independent given the 

reference image, e.g., p ρz | ρb, v, θx, θy, θz, ρx, ρy = p ρz | ρb, θz, v . The advantages of these 

conditional independence assumptions in Eq. [11] are two-fold. First, the resulting posterior 

factor graph takes on a tree-like structure that avoids loops, which greatly reduces the 

computational complexity of the algorithm. Second, the resulting Generalized Approximate 

Message Passing (GAMP) prior can be further simplified to a two-component mixture that 

has tractable message derivations and computation. As described in (11), we choose the 

following conditional prior on each complex-valued voxel:

p ρin ρbn, θin, vn = 1 − vn 𝒞𝒩 ρin; ρbn, σ2 + vn𝒞𝒩 ρin; ρbne
jθin, σ2 ∀i = x, y, z . [12]
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Here, n =1, 2,..., N is the voxel index, and vn, ρin, ρbn, and θin represent nth elements of v,ρi, 

ρb, and θi, respectively. Eq. [12] expresses a spatially varying dependency between encoded 

and compensated voxels. For a voxel with flow (vn = 1), only magnitude similarity is 

enforced between encoded and compensated images; for a voxel with no-flow (vn = 0), both 

magnitude and phase similarities are enforced between encoded and compensated images. 

The variance σ2 > 0 is used to allow for potential mismatch in the measured data compared 

to the idealized assumptions in Eq. [3–6].

The unknown velocity indicator variable, v, is also treated as an unknown and is jointly 

inferred along with other parameters. Since the presence of flow at each voxel is likely to be 

sustained across adjacent frames, we further regularize the problem by enforcing a temporal 

prior of a steady-state Markov chain on v. Let vn
t  be the velocity indicator variable at spatial 

location n at time t; then

p vn
t vn

t − 1 = 1 = 1 − p01
vn
t

p01
1 − vn

t
(13)

p vn
t vn

t − 1 = 0 =
δp01
1 − δ

vn
t

1 −
δp01
1 − δ

1 − vn
t

(14)

p01 ≜ p vn
t = 0 vn

t − 1 = 1 (15)

δ ≜ p vn
t = 1 . (16)

The parameters δ and p01 for the Markov chain are learned from the data via expectation 

maximization (EM) from the GAMP approximate posteriors as described here (13). To 

remove loops on the graph, we use separate indicator variables vx, vy, and vz to represent 

velocity in the x-, y- and z-encoded images. For the velocity encoded phase, i.e., p(θx), 

p(θy), and p(θz), we choose a non-informative prior with uniform density on the interval [0, 

2π). Finally, instead of postulating a prior on the image pixels themselves, we choose an 

analysis compressed sensing formulation (14) and apply a complex-valued Laplace prior on 

the wavelet coefficients, i.e., s

p ρi ∝ ∏
j = 1

N λ
2π

2
e

−λ Ψρi j ∀i = b, x, y, z, [17]
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where Ψρi j
 is the jth coefficient under 3D spatio-temporal sparsifying transform Ψ.

We use the term ReVEAL4D to describe the integrated approach that exploits spatially 

varying magnitude and phase structure unique to 4D flow imaging, utilizes image 

compressibility in the non-decimated wavelet domain, and employs message passing 

computation to recover 4D flow images from highly under-sampled data. For comparison, 

we also evaluate the performance of L1-SENSE and kt SPARSE-SENSE (6). Both 

ReVEAL4D and L1-SENSE utilize the same wavelet penalty, sampling pattern, and message 

passing computation; however, L1-SENSE (15) reconstructs each of the four encoded 

images independently and therefore does not exploit any regularizing relationships among 

the encoded images - a distinguishing feature of ReVEAL4D. In contrast to ReVEAL4D and 

L1-SENSE, kt SPARSE-SENSE, when extended to 4D flow imaging, does not utilize spatial 

sparsity but exploits sparsity of the temporal principal components when all four velocity 

encodings are concatenated.

Message passing computation

The posterior distribution in Eq. [8] is visualized as the factor graph in Fig. 1. By applying 

belief propagation, we approximately compute the posterior marginal distributions for ρb, ρx, 

ρy, ρz, θb, θx, θy, θz, and v. For the non-loopy portions of the graph, a single forward and 

backward pass is sufficient to find a solution. However, each of the likelihood terms creates 

loops in the graph. For these portions, we apply the GAMP algorithm which uses central 

limit theorem and Taylor series approximations to greatly reduce the computational 

complexity (16). The GAMP algorithm is a generalization of the approximate message 

passing algorithm (AMP) (17) to arbitrary measurement matrices and output channel 

distributions. The algorithm proceeds in three phases. First, update the messages in the loopy 

portions of the graph with GAMP and no input prior. Second, use the approximate messages 

from GAMP and standard belief propagation to update the input priors for each GAMP sub-

block. Third, iterate each GAMP block with the new input prior. Repeat steps two and three 

until convergence.

The resulting GAMP prior, derived from the graph in Figure 1, for each encoded image is an 

eight component mixture. Seven of the eight components contain a product of Bessel 

functions. Due to the presence of the product of Bessel functions, the required GAMP 

message updates, consisting of the mean and variance of this prior, are difficult or 

impossible to describe exactly. As such, we apply two simplifications to the GAMP prior to 

yield tractable update rules. The first approximation reduces the number of mixture 

components from eight to two. The second approximates the product of three Rician 

distributions as again a Rician. The resulting approximate prior for an encoded image is give 

in Appendix A.

Methods

To design an informative k-space sampling pattern, Dt, we extend VISTA sampling patterns 

(18). VISTA forms variable density, constrained, incoherent sampling patterns by 

minimizing the Riesz energy on a Cartesian grid. Constraints on the pseudo-random VISTA 
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patterns include: equal samples per time frame; a bound on excursions in k-space, to limit 

eddy currents; and fully sampled k-space when averaged across time frames. The third of 

these constraints facilitates estimation of the unknown coil sensitivity maps. We extend the 

VISTA strategy to jointly design the sampling pattern across a 4D grid consisting of two 

phase encoding, one temporal, and one velocity encoding dimensions; the third spatial 

encoding dimension is fully sampled via frequency encoding. An example VISTA pattern 

over a 4D grid is given in Figure 2, where each marker shape represents a different velocity 

encoding.

Retrospectively undersampled phantom data

To validate ReVEAL4D, a flow phantom was constructed consisting of an aortic arch 

phantom and a CardioFlow 5000 MR flow pump (Shelley Medical Imaging Technologies, 

Toronto, Ontario, Canada). To simulate conditions in vivo, a synthetic valve, shown in 

Figure 3, was inserted into the aortic arch phantom. The valve consisted of a thin rubber 

membrane held between two plastic rings. A Y-shaped opening was cut into the membrane 

to mimic a tricuspid aortic valve. To secure the membrane in place, the two rings were 

connected together using nylon screws.

All data were collected on a 1.5 T scanner (MAGNETOM, Avanto, Siemens Healthcare, 

Erlangen, Germany) with an 18-channel cardiac array. A total of four fully sampled datasets 

were acquired with slightly different flow settings. For the first dataset, collected with 

isotropic spatial resolution, the volumetric field-of-view (FOV) was oriented such that the 

readout direction was parallel to the length of the aorta and hence the nominal flow 

direction. The scan parameters for this data provided isotropic resolution: TE 2.27 ms, TR 

4.46 ms, temporal resolusion 36 ms, and VENC 420 cm/s, matrix size 192 × 84 × 30, FOV 

402 × 176 × 62 mm, 2.1 mm isotropic resolution, acquisition time 21 minutes, and flip angle 

10°. The second through fourth datasets were collected with anisotropic spatial resolution 

and the readout direction was rotated 75°, 90°, and 105°, respectively, resulting in a nominal 

flow approximately perpendicular to the largest face of the imaging volume. For datasets 2–

4, the scan parameters were: TE 2.27 ms, TR 4.46 ms, temporal resolusion 36 ms, VENC 

420 cm/s in the dominant flow direction, VENC 300 cm/s for the remaining two directions, 

matrix size 168 × 84 × 20, FOV 400 × 175 × 60 mm, a spatial resolution of 2.4 × 2.1 × 3.0 

mm3, acquisition time 14 minutes, and flip angle 10°. The data were retrospectively 

downsampled by acceleration rates R = 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30. All 

datasets were acquired using a spoiled gradient echo pulse sequence and prospectively 

triggered segmented acquisition with referenced four-point encoding.

Prospectively undersampled in vivo data

To further test the efficacy of ReVEAL4D, 4D flow data were collected from five healthy 

volunteers with Imaging slab placed perpendicular to the aorta, centering at the aortic valve. 

Two 4D acquisitions were acquired per volunteer. The first was a reference scan using 

respiratory navigator GRAPPA acquisition with an acceleration factor of R = 3. The second 

scan was a single breath-hold acquisition using VISTA sampling with acceleration rate R 
between 20 and 27, depending on the FOV. All 4D flow data were collected using a 1.5 T 

scanner (MAGNETOM, Avanto, Siemens Healthcare, Erlangen, Germany) and an 18-
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channel cardiac array. The 4D flow data were collected using prospectively triggered 

segmented acquisition with referenced four-point encoding. Through plane resolution was 6 

mm. Eight slices with 50% oversampling were acquired for a total of twelve slices, with a 

usable slab thickness of 48 mm. Depending on the patient size, the acquisition matrix was 

160 × 108 × 12, 144 × 96 × 12, or 128 × 84 × 12. From these three options, the smallest 

acquisition matrix that yielded in-plane resolution of ≤ 3 mm was selected. The resulting in 

plane resolutions for all 5 volunteers were 2.2 × 2.9 mm2, 2.4 × 2.8 mm2, 2.4 × 2.8 mm2, 2.3 

× 2.9 mm2, and 2.3 × 3.0 mm2. Further scan parameters were as follows: TE 2.4 ms, TR 4.6 

ms, two views per segment yielding a total of eight readouts per cardiac phase in each 

heartbeat, temporal resolution 36 ms, VENC 130–180 cm/s, and flip angle 10°. The 

acquisition time for reference datasets ranged from 8 to 14 minutes, while the acquisition 

time for the accelerated datasets was fixed at 24 heartbeats. In addition, to test the 

repeatability of ReVEAL4D, ten identical datasets were collected and processed from a sixth 

volunteer.

Image reconstruction and quantitative evaluation

For the phantom data, the images were reconstructed using ReVEAL4D, kt SPARSE-

SENSE after it was extended to 4D flow imaging, and L1-SENSE with retrospective 

downsampling, and the reference was based on fully sampled data. For the four phantom 

datasets, a volume of interest (VOI) was hand selected downstream from the synthetic valve 

to extract flow parameters. All pixels in the VOI resided within the aortic arch and in close 

vicinity of the valve. Within the VOI, one plane was selected to compute volume flow rate 

(VFR) per frame, stroke volume (SV), and peak velocity (PV). For PV, the search was 

performed across all frames. To compare ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE 

to reference, SV, PV, and normalized mean-squared error (NMSE) were computed across 

different acceleration rates. NMSE is defined by

NMSE = 10log
‖xref − x‖2

2

‖xref‖2
2 , [18]

where xref is the noisy reference image from fully sampled data and x is the reconstructed 

image from accelerated data.

For the in vivo data, the images were reconstructed using ReVEAL4D, kt SPARSE-SENSE, 

and L1-SENSE, and the reference was based on GRAPPA reconstruction from rate-3 dataset 

collected with respiratory navigators. To extract flow parameters, a VOI was manually 

selected downstream but in the vicinity of the aortic valve. Within the VOI, the values of SV 

and PV were computed at four parallel, adjacent slices. ReVEAL4D and L1-SENSE were 

compared using Bland-Altman analysis, which was performed from twenty (five volunteers, 

four planes) SV and PV measurements.

Reconstruction algorithms were implemented in custom Matlab (Mathworks, Natick, MA) 

software running on a Windows 7 PC with a Tesla K40c (Nvidia, Santa Clara, CA). All 

reconstructions were performed off-line. The coil sensitivity maps were estimated by time-
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averaging the k-space data and applying the adaptive array combination method (19). The k-

space noise variance, ω2, was estimated from a 200–240 ms pre-scan data. For faster 

computation, the 18 measurement coils were compressed to 12 virtual coils (20). For 

ReVEAL4D and L1-SENSE, 4D (x-y-z-t) wavelet transform had 16 sub-bands. The first 

sub-band (LLLL), where L represents low frequency, is usually not sparse and was not 

regularized; the next seven “spatial” sub-bands (***L) were give a relative weight of λ0, and 

the last eight “temporal” sub-bands (***H), where H represents high frequency, were given 

a relative weight of 10λ0. The global regularization weight, λ0, was hand-tuned using one 

flow phantom dataset at R = 12 acceleration and held constant across all datasets and all 

accelerations. The parameter σ2 was set to 1% of the maximum image magnitude, and γn 

(i.e., the prior probability that vn = 0) was learned via expectation maximization for every n 
as a function of δ and p01 in Eq. [13–16]. Codes to perform ReVEAL4D reconstruction are 

provided on Github1, and codes for the GAMP algorithm are provided here 2.

Results

For the phantom data, image quality metrics‒NMSE, SV, and PV‒are displayed in Figure 4; 

these metrics, for all four datasets, are plotted as function of R. In addition, representative 

images from fully sampled reference, ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE for 

acceleration rate R = 20 are shown in Figure 5. Related time-resolved images comparing 

reference, ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE are included as a movies 

Supporting Video S1 (R = 8) and Supporting Video S2 (R = 20). To further examine the 

fidelity of accelerated images, Figure 6 shows representative VFR and PV profiles for two 

acceleration rates (R = 8 and R = 20).

For in vivo data, Bland-Altman analyses were performed for PV and SV and shown in 

Figure 7. In Figure 8, representative images from GRAPPA, ReVEAL4D, kt SPARSE-

SENSE, and L1-SENSE are compared. Related time-resolved images comparing reference, 

ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE are included as Supporting Video S3. 

Representative flow profiles for in vivo data are shown in Figure 9. The results from the 

reproducibility study of ReVEAL4D are provided in Supporting Figure S1, which compares 

PV and SV across 10 acquisitions of prospectively accelerated datasets. The positive impact 

of employing Markov chain to regularize v is illustrated in Supporting Figure S2.

For the phantom data, offline reconstruction required approximately 20 minutes for 

ReVEAL4D and 8 minutes for L1-SENSE. These reconstruction times were accomplished 

by using Matab GPU support and single precision floating point arithmetic. Most of the 

increase in runtime is due to ReVEAL4D requiring more iterations to converge versus L1-

SENSE. The computation time for kt SPARSE-SENSE, which did not utilize GPU 

computation, was 5 hours.

1Open source software available at http://github.com/arg-min-x/ReVEAL
2Open source software available at http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing
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Discussion

The Bayesian imaging approach in ReVEAL4D allows for a data model that exploits the 

unique structure of PC-MRI. The signal structure present between encodings is exploited in 

ReVEAL4D using a non-Gaussian mixture density, which significantly reduced both bias 

and variance in the estimated flow parameters; thus, the approach extends the classical use 

of a regularization penalty, such as L1-norm of wavelet transform coefficients, to exploit a 

richer set of relationships present among the unknown quantities. Additionally, the 

conditional mixture density provides a “soft” constraint on the magnitudes among 

encodings, in contrast to strict equality of magnitudes proposed in other regularization 

techniques (10). Compared to our previous Bayesian modeling approach for 2D PC-MRI 

(11), ReVEAL4D also enforces temporal continuity on v using EM-tuned Markov random 

chain (Eq. [16]) and employs a GAMP prior that regularizes magnitude and phase structure 

across four velocity encodings (Appendix A).

For the phantom data, ReVEAL4D consistently outperforms L1-SENSE in terms of NMSE 

by approximately 1.5 dB across all acceleration rates (Figure 4). The performance of 

ReVEAL4D is comparable to kt SPARSE-SENSE at low acceleration rates; however, at high 

acceleration rates, ReVEAL4D outperforms kt SPARSE-SENSE by approximately 2 dB. For 

SV and PV quantification, ReVEAL4D and L1-SENSE perform similarly at acceleration 

rates R < 16. For R = 18 and above, ReVEAL4D shows consistently better performance over 

L1-SENSE for both SV and PV quantification. The performance of kt SPARSE-SENSE, in 

terms of SV and PV quantification, resides between that of ReVEAL4D and L1-SENSE. For 

ReVEAL4D, both SV and PV quantification error stayed below 20% across all acceleration 

rates. Images from an example frame at R = 20 are shown in Figure 5, with kt SPARSE-

SENSE and L1-SENSE showing significantly increased error in the region of high-velocity 

jet around the valve. This temporal blurring from L1-SENSE is also evident from Figure 6. 

At R = 8, ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE recover the VFR profile with 

high fidelity; however, for PV, the ReVEAL4D reconstruction tracks the fully sampled data 

more closely. At the higher acceleration rate of R = 20, L1-SENSE shows significant 

blurring of VFR and severe underestimation of PV, and kt SPARSE-SENSE also shows 

underestimation of PV. In contrast, ReVEAL4D shows only slight blurring in both VFR and 

PV.

For in vivo data, the Bland-Altman analyses indicates that ReVEAL4D yields lower bias and 

narrower limits of agreement compared to L1-SENSE and kt SPARSE-SENSE. For 

ReVEAL4D, the maximum discrepancy with respect the reference was 18% for PV and 15% 

for SV. In contrast, for L1-SENSE, the maximum discrepancy with respect the reference was 

42% for PV and 27% for SV. Likewise, for kt SPARSE-SENSE, the maximum discrepancy 

with respect the reference was 36% for PV and 33% for SV. Figure 8 also shows that 

ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE, compared to GRAPPA, exhibit noise 

suppression albeit at the cost of visible image blurring. The blurring can be attributed to the 

high acceleration rate and the resulting lack of data, requiring the acceleration techniques to 

rely heavily on the regularization compared the data fidelity constraint. The ReVEAL4D 

images, however, exhibit lesser blurring and more well-defined valve opening. Note, the 

GRAPPA reference itself contains significant noise, which may be responsible for some of 
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the flow quantification discrepancy between GRAPPA and other methods. Supporting 

Figure S1 shows the repeatability of ReVEAL4D in a healthy volunteer. For the ten datasets 

collected back-to-back, the standard deviation in the quantification of PV and SV was 6.0% 

and 2.6%, respectively.

We identify several limitations of our work. First, our claim of enabling 4D flow imaging in 

a single breath-hold may not apply to all applications or for all parameter settings. For 

example, performing 4D flow imaging of the entire aortic arch or performing aortic valve 

imaging at isotropic resolution of 3 mm or better would not be feasible in a single breath-

hold even at acceleration rates of 20 to 27. Second, the results presented in this work focus 

on two physiological parameters-peak velocity and stroke volume-that are relevant to 

clinical diagnosis of aortic valve disease. It is, however, not evident if the highly accelerated 

images generated by ReVEAL4D possess the quality to extract other advanced parameters, 

including wall shear stress, pulse wave velocity, turbulence intensity, helicity, and 3D 

pressure gradients. It is likely that extraction of these advanced parameters would require 

higher overall image quality and spatial resolution. Note, ReVEAL4D can deliver higher 

imaging quality at the cost of longer acquisition time if breath-holding is not a requirement. 

Third, ReVEAL4D, like other regularization-based methods, has tuning parameters that can 

impact the image quality. These parameters include the regularization weights for wavelet 

bands and the parameter, σ2, that controls the variance of the two-component mixture. In 

this work, we manually optimized these parameters using an additional phantom dataset; the 

results from this dataset were not included. Once selected, the parameter values were not 

adjusted on per-dataset basis. Although it is possible that these parameters become highly 

sub-optimal for a certain experimental setup, ReVEAL4D, being a Bayesian approach, 

offers the opportunity to automatically tune these parameters using EM methods. Fourth, 

computation time for ReVEAL4D is long. By using Matlab GPU support, the runtime has 

been reduced by a factor of 9 over CPU computation; however, the reconstruction time of 20 

min for ReVEAL4D may still not be practical in all clinical settings. Yet, there are further 

opportunities to reduce the runtime either by using multiple GPUs or by further optimizing 

the code. Fifth, despite realism in the phantom flow dynamics, with peak velocity in excess 

of 300 cm/s, and in vivo data from a small cohort of healthy subjects, it is not guaranteed if 

ReVEAL4D will be able to achieve equally high acceleration rates in patients with aortic 

valve stenosis due to high velocity jets and turbulent flow. Sixth, we have made a 

simplifying assumption of conditional independence (Eq. [11]) to make ReVEAL4D 

computationally efficient. By making this assumption, we may have forfeited additional 

regularization benefits. Seventh, for the in vivo study, we compare breath-held scans with a 

respitory gated free-breathing reference. Due to pysiological differences between free-

breathing and breath-hold states of the cardiopulmonary system, the hemodynamics between 

the scans could be slightly different. The presented phantom study, however, does not suffer 

from this limitation. Finally, it is likely that a fraction of patients with valve disease would 

not be able to hold their breath for 20 s. Despite these limitations, some of which will be 

investigated in future studies, ReVEAL4D is a promising technique that has a potential to 

facilitate highly accelerated 4D flow exams in clinic. Also, we believe that there is a room to 

further shorten the breath-hold. For example, the oversampling of 50% may not be necessary 

if eSPIRiT based coil-sensitivity maps, which are more tolerant to reduced FOV (21), are 
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used. Also, the breath-holding time can be reduced by 33% by degrading the temporal 

resolution from 36 ms to 54 ms, which may be adequate in some applications. Even for 

applications where ReVEAL4D cannot generate results in a single breath-hold, it would be 

possible to combine ReVEAL4D with prospective or retrospective respiratory gating to 

enable a free-breathing 4D flow scan that is 5 to 10 fold faster compared to rate-2 GRAPPA.

Conclusion

We have presented an accelerated imaging procedure for phase-contrast MRI-based 4D flow 

imaging. The procedure has been demonstrated at 1.5T using data from a realistic aortic 

flow phantom and in vivo data from healthy volunteers. The proposed approach, 

ReVEAL4D, combines optimized k-space sampling, Bayesian signal modeling, and iterative 

message passing to regularize the inversion problem for highly under-sampled data. 

Quantitative flow parameters, including peak velocity and stroke volume, were recovered 

within 20% of reference values at acceleration rates up to 27, with part of the discrepancy 

attributable to physiological variations and noise in the reference dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

In this section, we describe the prior used for each GAMP block in Figure 1. Each prior 

depends on the posterior means and variances estimated from the other three GAMP blocks. 

For brevity, we adopt a short hand notation for Rician distributions as

R(ρ; η, α) = |ρ|
πα2exp − |ρ |2 + η2

α2 I0
2 | ρ |η

α2 [19]

where I0(·) represents the zeroth order, modified Bessel function of the first kind. We drop 

the subscript n and note that the following distributions are for a single voxel. From the 

message passing updates, the prior for a background encoded voxel, ρb, is given by
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p ρb = 𝒞𝒩 ρb; τx, αx
2 + R ρb; τx, αx

2 𝒞𝒩 ρb; τy, αy
2 + R ρb; τy, αy

2

𝒞𝒩 ρb; τz, αz
2 + R ρb; τz, αz

2

= 𝒞𝒩 ρb; τx, αx
2 𝒞𝒩 ρb; τy, αy

2 𝒞𝒩 ρb; τz, αz
2

+ 𝒞𝒩 ρb; τx, αx
2 R ρb; τy, αy

2 R ρb; τz, αz
2

+ 𝒞𝒩 ρb; τx, αx
2 𝒞𝒩 ρb; τy, αy

2 R ρb; τz, αz
2

+ 𝒞𝒩 ρb; τx, αx
2 R ρb; τy, αy

2 𝒞𝒩 ρb; τz, αz
2

+ R ρb; τx, αx
2 𝒞𝒩 ρb; τy, αy

2 𝒞𝒩 ρb; τz, αz
2 + R ρb; τx, αx

2 R ρb; τy, αy
2 𝒞𝒩 ρb; τz, αz

2

+ R ρb; τx, αx
2 𝒞𝒩 ρb; τy, αy

2 R ρb; τz, αz
2 + R ρb; τx, αx

2 R ρb; τy, αy
2 R ρb; τz, αz

2 .

(20)

In Eq. [20], τ and α are the means and variances, respectively, of the Gaussian messages 

emitted from each GAMP block; for example, the message emitted from the ρx block is 

𝒞𝒩 ρx; τx, αx
2 . The first of two simplifiying assumptions is to ignore all but the first and last 

terms of Eq. [20] yielding

p ρb = 𝒞𝒩 ρb; τx, αx
2 𝒞𝒩 ρb; τy, αy

2 𝒞𝒩 ρb; τz, αz
2

+ R ρb; τx, αx
2 R ρb; τy, αy

2 R ρb; τz, αz
2 .

[21]

The product of Gaussian pdfs is again Gaussian. Therefore, we can rewrite the first term of 

Eq. [21] as

𝒞𝒩 ρb; τx, αx
2 𝒞𝒩 ρb; τy, αy

2 𝒞𝒩 ρb; τz, αz
2 = 𝒞𝒩 ρb; μ, β2 [22]

μ =
τxαy

2αz
2 + τyαx

2αz
2 + τzαx

2αy
2

αy
2αz

2 + αx
2αz

2 + αx
2αy

2 [23]

β2 =
αx

2αy
2αz

2

αy
2αz

2 + αx
2αz

2 + αx
2αy

2 . [24]

For the second simplifying assumption, we approximate the product of three Rician 

distributions as again Rician in a similar manner to the Gaussians above, yielding
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R ρb; τx, αx
2 R ρb; τy, αy

2 R ρb; τz, αz
2 ≈ R ρb; η, β2 [25]

η =
|τx|αy

2αz
2 + |τy|αx

2αz
2 + |τz|αx

2αy
2

αy
2αz

2 + αx
2αz

2 + αx
2αy

2 . [26]

The resulting approximate prior has a simplified form of

p ρb = γR ρb; η, β2 + (1 − γ)𝒞𝒩 ρb; μ, β2 γ ∈ [0, 1), [27]

which yields tractable message passing updates and lower computational cost than Eq. [20]. 

The weight, γ, is learned for each voxel from the data as a function the Markov chain 

parameters δ and p01, described in Eq. [13–16]. The simplified prior of Eq. [27] may forfeit 

some regularizing structure compared to the exact description of Eq. [20]. However, the 

underlying regularization of Eq. [27] admits an easily interpreted meaning. Based on the 

value of γ, ρb is close in magnitude to the variance weighted mean, η, or ρb is close in 

magnitude and phase to the variance weighted mean, μ. Prior distributions for ρx, ρy, and ρz 

have the same form as Eq. [27], with different μ, β and η. Each encoded image uses means 

and variances from the remaining three, e.g., ρx uses τb, τy, and τz to form μ, β, and η in Eq. 

[27].
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Figure 1: 
A factor graph provides a visualization of the Bayesian modeling used for regularized 

inversion. The reconstruction algorithm is constructed via message passing on the graph and 

results in an iterative thresholding procedure. (a) The complete graph of the approximate 

posterior in Eq. [8] in compact vector notation. (b) The subgraph defining the Markov 

random chain prior on the velocity indicator, v, where vt represents a given pixel at time 

point t. (c) The loopy subgraph describing the likelihood terms in Eq. [8]. These loopy 

portions of the graph are computed using Generalized Approximate Message Passing 

(GAMP).
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Figure 2: 
An example VISTA sampling pattern optimized over the 4D grid consisting of two phase 

encoding dimensions, ky and kz, one time dimension (cardiac frame, t), and one velocity 

encoding dimension. For visualization, the four velocity encodings are represented by 

distinct symbols, and only four time frames are shown. To enforce partial Fourier, ky < −24 

was not sampled.
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Figure 3: 
The mechanical flow phantom and valve used in this work. (a) The valve consists of a rigid 

outer ring and a flexible rubber membrane with opening that mimics the tricuspid aortic 

valve. (b) The aortic arch phantom with fluid flow direction depicted by arrows. (c) The 

location and orientation of the valve within the aortic phantom.

Rich et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Image quality metrics computed from retrospectively accelerated data. ReVEAL4D, kt 

SPARSE-SENSE, and L1-SENSE are compared to fully sampled data. NMSE, stroke 

volume, and peak velocity are plotted versus acceleration rate, R. Each row depicts results 

from one of the four datasets. Each column presents a given quality metric.
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Figure 5: 
Example images selected from the 4D flow data. ReVEAL4D, kt SPARSE-SENSE, and L1-

SENSE are compared to fully sampled data. The first row contains the normalized 

magnitude images. The second row contain the absolute difference in magnitude between 

the fully sampled data and accelerated images. The third row contains the velocity maps 

(cm/s). The fourth row displays the absolute difference between the fully sampled velocity 

maps and reconstructed velocity maps. Images were reconstructed at an acceleration rate R 
= 20.
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Figure 6: 
Representative flow profiles comparing fully sampled data to accelerated data reconstructed 

with ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE. (a) The VFR per frame for an 

acceleration rate R = 8. (b) The PV per frame for an acceleration rate R = 8. (c) The VFR 

per frame for an acceleration rate R = 20. (d) The PV per frame for an acceleration rate R = 

20.

Rich et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Bland-Altman analyses comparing ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE data 

acquired in a single breath-hold to respiratory navigator GRAPPA acquisition. Peak velocity 

and stroke volume were computed in the volume of interest for 4 slices above the aortic 

valve. (a) Peak velocity recovered using L1-SENSE compared to GRAPPA. (b) Peak 

velocity computed using kt SPARSE-SENSE compared to GRAPPA. (c) Peak velocity 

computed using ReVEAL4D compared to GRAPPA. (d) Stroke volume recovered with L1-

SENSE compared to GRAPPA. (e) Stroke volume recovered with kt SPARSE-SENSE 

compared to GRAPPA. (f) Stroke volume recovered using ReVEAL4D compared to 

GRAPPA.

Rich et al. Page 23

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Comparison of various 4D flow acquisition techniques in vivo. The first column contains 

images reconstructed using GRAPPA for respiratory navigator based acquisition and 

acceleration R = 3. The second, third and fourth columns contain images reconstructed from 

the same prospectively accelerated acquisition using VISTA sampling with R = 21. The 

second column contains images reconstructed using L1-SENSE. The third column contains 

images reconstructed using kt SPARSE-SENSE. The fourth column contains images 

reconstructed using ReVEAL4D.
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Figure 9: 
Representative flow profiles for in vivo data, comparing GRAPPA reference data (R = 3) to 

accelerated data reconstructed with ReVEAL4D, kt SPARSE-SENSE, and L1-SENSE. (a) 

The VFR per frame for an acceleration rate R = 21. (b) The PV per frame for an acceleration 

rate R = 21.
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