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Phylogenetic analysis aims to establish the true relationships between taxa.

Different analytical methods, however, can reach different conclusions. In

order to establish which approach best reconstructs true relationships, pre-

vious studies have simulated datasets from known tree topologies, and

identified the method that reconstructs the generative tree most accurately.

On this basis, researchers have argued that morphological datasets should

be analysed by Bayesian approaches, which employ an explicit probabilistic

model of evolution, rather than parsimony methods—with implied weights

parsimony sometimes identified as particularly inaccurate. Accuracy alone,

however, is an inadequate measure of a tree’s utility: a fully unresolved

tree is perfectly accurate, yet contains no phylogenetic information. The

highly resolved trees recovered by implied weights parsimony in fact con-

tain as much useful information as the more accurate, but less resolved,

trees recovered by Bayesian methods. By collapsing poorly supported

groups, this superior resolution can be traded for accuracy, resulting in

trees as accurate as those obtained by a Bayesian approach. By contrast,

equally weighted parsimony analysis produces trees that are less resolved

and less accurate, leading to less reliable evolutionary conclusions.
1. Introduction
Evolutionary history can be reconstructed using parsimony-based or probabil-

istic approaches. Because models used with molecular datasets generally share

a common probabilistic construction, statistical methods can be used to deter-

mine the most appropriate model [1]. With morphological datasets, however,

it is more difficult to establish whether probabilistic models or parsimony

better reconstruct phylogenetic relationships (which are typically unknown).

A pragmatic approach to this question is to simulate data from a known

tree. With the important caveat that generative trees and simulated morphologi-

cal datasets may be unrealistic [2,3], probabilistic approaches typically

reconstruct the generative tree most accurately (i.e. with least conflict), followed

by parsimony under equal and implied weights in turn [4–9].

Previous studies have advocated accuracy as the sole criterion by which to

select a method [5–11]. Congreve & Lamsdell [9] (problematically [2]) define

the most accurate tree as the one that bears the fewest incorrect splits. Other

authors [5–8,11] use the Robinson-Foulds (RF) distance as a proxy for accuracy

(even though the RF distance is also influenced by precision; a pair of trees can

be made two units more similar by replacing an incorrect partition with a cor-

rect one, or by collapsing two incorrect partitions). Goloboff et al. [2] propose

alternative tree similarity metrics as proxies for accuracy.

Accuracy alone, however, is not the only goal when reconstructing trees

[11]. No tree shows less conflict than a single polytomy, for a total absence of

relationship information guarantees that no relationship is incorrectly resolved.
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An emphasis on accuracy therefore disadvantages methods

that produce highly resolved trees [11] (and vice versa). This

trade-off has been acknowledged by collapsing some poorly

supported groups before calculating accuracy (even if accu-

racy is still equated with ‘performance’) [2,6,8,11]. Naturally

[12], methods that yield less resolution are consistently

more accurate [2,5,7,8,11].

We should be seeking not the most accurate method, but

the method that recovers as much information as possible

about the true tree, striking a balance between the comp-

lementary quantities [12] of accuracy and resolution. For

example, a tree that resolves 20 relationships conveys much

information about the correct tree, even if one of those

relationships is incorrect; a tree that resolves just one relation-

ship conveys less information, even if that single relationship

is correct. If two trees are equally accurate, we should prefer

the more precise. Here I explore the impact on previous

studies of evaluating trees according to their total shared

information content, rather than ‘accuracy’ alone.
0632
2. Material and methods
Congreve & Lamsdell ([9]; CL hereafter) simulated 55-character

matrices from a bifurcating 22-tip tree using a Markov k-state

(Mk) 1 parameter model with rates sampled from a discretized

gamma distribution [13]. Their generative tree is the single

most parsimonious tree obtained from a study of Ordovician tri-

lobites; its edges were assigned a unit length.

O’Reilly et al. ([5]; OR hereafter) simulated matrices contain-

ing 100, 350 and 1000 characters from a bifurcating 75-tip tree

using a modified HKY85 model [14]; they followed a previous

simulation study [4] in selecting a single bifurcating tree from a

morphological þmolecular analysis of Lissamphibia.

I used TNT [15] to conduct parsimony searches on each of

these matrices under equal and implied weights, using the parsi-

mony ratchet and sectorial search heuristics (search options:

xmult:hits 20 level 4 chklevel 5 rat10 drift10). I took a strict con-

sensus of all optimal trees obtained under equal weights, and

under implied weights [16] at the concavity constants used in

each respective study (CL: k ¼ 1, 2, 3, 5 and 10; OR: k ¼ 2, 3, 5,

10, 20 and 200). For each dataset, I generated a further strict con-

sensus of all trees that were optimal under any of the concavity

constants, excluding the unreasonable value of k ¼ 1, which

inadequately penalizes extra steps beyond the first, and thus

exhibits undesirable properties of clique analysis [17] (see elec-

tronic supplementary material).

I also generated majority-rule consensus trees in MrBayes

3.2.2 [18] using an Mk model, with rates distributed according

to a gamma parameter. I combined results from four indepen-

dent runs, each of which employed four Metropolis-coupled

Markov chains. After a burn-in period of 4 000 000 generations,

the cold chain in each run was sampled every 10 000 generations

for 6 000 000 generations. The sampled topologies faithfully

reflected the posterior distribution for each dataset (0.999 ,

potential scale reduction factor , 1.001; estimated sample

size . 400).

To explore the relationship between resolution and accuracy,

I generated further trees for each analysis by collapsing poorly

supported groups. Under the Mk model, I collapsed groups

whose posterior probability was less than 95%, 90%, 85%, . . .

50%. In parsimony analyses, I compared different measures of

node support. Under jackknife and bootstrap resampling, I col-

lapsed groups with (i) absolute frequency supports of less than

0%, 2%, 4% . . . 100%; (ii) relative frequency (GC) support of

less than 2100%, 295%, . . . 95%, 100%. Under Bremer support,
I collapsed groups with Bremer support values less than 1, 2,

3, . . . 20 with equally weighted trees (TNT command subopt x;

bbreak;); under implied weighting, Bremer support values

were drawn from a logarithmic distribution (0.730. . .19, 2.5 �
1023! 1 � 100), reflecting the fractional nature of tree scores

under implied weights [16].

Symmetric difference metrics calculate how much information

two trees hold in common [19]—that is, how much information a

generated tree contains about the generative tree. Where the

generative tree is bifurcating, a particular relationship may be

resolved the same way (s) or a different way (d ) on each tree, or

resolved in the comparison tree only (r) [20,21]. The symmetric

difference (‘SD’, also termed the Robinson-Foulds distance) is

given by 2d þ r. The symmetric difference is conventionally

normalized against the total information present (TIP) in the two

trees, 2d þ 2s þ r [21]. Undesirably, this assigns a fully unresolved

tree the same score as a tree that is perfectly resolved and comple-

tely incorrect (figure 1a). In the present context, therefore, it is more

appropriate to normalize against the maximum information

(MaxI) that could potentially have been resolved, 2(d þ s þ r).

The unit of relationship information may be a quartet (a four-

taxon statement) [20–22] or a bipartition split [23–25]. (Each

clade in a tree corresponds to a bipartition that splits taxa

into ‘members’ and ‘non-members’.) Partitions offer a simple

but incomplete measure of the topological information accom-

modated in a tree. The trees ((A, (X, B)), (C, D)) and ((A, B),

((C, X), D)) both contain the same information regarding the

relationships between (A, B) and (C, D), yet have no partitions

in common. As a consequence, the partition difference ( ¼

Robinson-Foulds distance) suffers four essential shortcomings

[23]. First, it is imprecise; the number of unique values that the

metric can take is two fewer than the number of taxa. (Simply

put, a precise method can allocate distinct difference values to

two trees that an imprecise method would assign an identical

score.) Second, it is rapidly saturated; relatively minor differences

can result in the maximum distance value. Third, its value can be

counterintuitive; for example, moving a single tip to a particular

location can generate a higher difference value than moving both

that tip and its immediate neighbour to the same point (elec-

tronic supplementary material). Fourth, balanced trees contain

proportionally more uneven partitions, and thus attract lower

average distances than asymmetric trees (electronic supplemen-

tary material).

Quartets, by contrast, represent all topological information

within a tree. The quartet dissimilarity measure is precise, does

not rapidly reach saturation, generates a meaningful value for

random trees, is robust to the placement of wildcard taxa and

consistently increases in value as trees become more different;

and every quartet represents an equal quantity of information. I con-

sider it to represent a more useful, meaningful and interpretable

indicator of tree similarity.

I calculated quartet distances using the tqDist algorithm [26]

via the QuartetStatus function in the new R package

Quartet [27]. Partition distances were calculated using the

Quartet function SplitStatus. To summarize results, s, d
and r were calculated for each individual tree relative to the gen-

erative tree, and the mean of each parameter was calculated at

each resolution in each analysis.

Previous studies (e.g. [5,6]) have plotted unnormalized sym-

metric difference against the resolution. The unnormalized

symmetric difference, however, is a function of both resolution

and accuracy: a change in resolution (x) necessarily influences

the value, and the range of possible values, of the symmetric

difference (y). Because the axes are not independent, this is ana-

logous to plotting x against y/x; the inherent correlation between

the axes makes it difficult to interpret the relative contributions of

x and y to the plotted function. I instead plotted the proportion of

quartets or partitions that are the same in both trees (s), different
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Figure 1. Method selection. (a) Normalizing symmetric difference against the total information present in two trees (SD/TIP, dashed lines) scores a completely
incorrect bifurcating tree (all relationships resolved differently; bottom corner) no worse than a polytomy (all relationships unresolved; rightmost corner). Random
trees (coloured line) with more relationships resolved receive better scores, as some relationships will by chance be resolved correctly. Normalizing against the
maximum possible relationship information (SD/MaxI, solid lines) penalizes misinformation over non-information; random trees with more relationships resolved
(which thus contain more misinformation) consequently receive worse scores. (b) Four measures of tree quality. (c – f ) Impact on tree quality when least-supported
groups are collapsed: (c – d) Counting quartets; (e – f ) counting partitions.
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in both trees (d ) and only resolved in the generative tree (r) on

ternary plots using the Ternary R package [28], oriented such

that SD/MaxI decreases vertically and resolution decreases

horizontally (figure 1a). This plotting configuration distinguishes

the relative contributions of resolution and accuracy to overall

similarity (figure 1b).

Data, scripts and analyses used in this study are archived on

GitHub [29,30].
3. Results
Ideally, measures of node support would assign incorrect

nodes low support values. With the CL datasets (55 charac-

ters, 22 tips), resampling methods accomplished this more

effectively than Bremer support (figure 1, c–f ), a metric

that has attracted criticism [31,32]. The groups contra-

dicted/supported (GC) metric outperformed group

frequency (as anticipated by [33]), whereas bootstrap
resampling outperformed the jackknife approach (contra

[34]); subsequent analyses thus employed the bootstrap GC

metric. Differences between methods were not statistically

significant (electronic supplementary material).

With the CL datasets, there is no significant difference (at

p ¼ 0.01) between the MaxI-normalized quartet symmetric

difference of the best trees generated by the Mk model or

implied weights (k [ f2, 3, 5, 10g)—but the best trees generated

by equal weights, implied weights with k¼ 1, and the consensus

of k values are significantly worse than those produced by the

other methods (figure 2a,b; electronic supplementary material).

Collapsing the least-supported groups initially increases

the overall accuracy (as predicted in [2,35]), leading to a

slight increase in the overall informativeness of the tree

(figure 2a,b). Beyond a GC score of ca 215, the gain in accu-

racy no longer offsets the resolution lost; collapsing further

groups thus removes ‘correct’ information and reduces the

similarity between the tree and the reference tree. Indeed,
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the optimal tree is only perfectly resolved in a minority of

cases (CL, 18%; OR: less than 0.2%). Because a Bayesian

approach results in less resolution, its most resolved trees

cannot generally be improved by collapsing groups

(figures 1c,d and 2).

These results hold even if the (problematic) partition

difference metric is employed (figure 1e–f ), though relatively

more groups must be collapsed (those with a GC score of less

than 10) to maximize this metric. The results do not meaning-

fully change when datasets with low consistency indices are

excluded.

Similar results are observed in the OR datasets (figure 2d–i):
at any given level of resolution, the best trees obtained by the

Mk model are similar in accuracy to those obtained under

implied weights (except with very small values of k) but are

more accurate than those obtained using equal weights.

These datasets also demonstrate the impact of dataset size

on tree quality. With larger ratios of characters to taxa (1000

or 350 characters, 75 tips), all methods produced reasonably

accurate, well-resolved trees (figure 2e–f, h–i). With the smal-

lest (100 character) datasets (figure 2d,g), trees were much

more different from the generative tree, and the choice of

method influenced results more strongly: the Bayesian

approach could obtain substantially less resolution, and

implied weights recovered poor trees at low values of k. No

existing method can overcome the inherent limitation of a

low character to taxon ratio.
4. Discussion
When accuracy and resolution are recognized as complemen-

tary aspects of information [12], parsimony and probabilistic

analyses generate equally informative reconstructions of evol-

utionary history in the simulation studies analysed herein.

Parsimony results are most informative when groups with a

bootstrap GC value of less than 215 are collapsed, and are

as accurate as Bayesian results if nodes are collapsed until

trees exhibit an equal resolution. As an important caveat, par-

simony analysis must employ a moderate weighting scheme.
At low values of the concavity constant (k , 2, say), implied

weights begin to exhibit the undesirable properties of clique

analysis, whereas at high values (as k! 1), it converges to

the inferior equally weighted parsimony (electronic sup-

plementary material). Each of these extremes yields results

that are less accurate and less resolved, making them more

different from the generative tree and consequently less infor-

mative about evolutionary history; results encountered only

under such parameters do not merit biological interpretation.

Quite aside from issues with the validity of data simu-

lation protocol [2,3], previous results that favour Bayesian

methods over parsimony [5–8,10], or equal weights over

implied weights [9], have arisen because accuracy has been

considered the sole measure of a method’s performance.

Future simulation studies should evaluate methods based

on normalized tree similarity metrics that reflect the total

information contained within two trees—a quantity that

reflects both resolution and accuracy. In the analyses exam-

ined herein, neither Bayesian nor parsimony analyses

generate consistently superior results. Of course, other factors

may influence a researcher’s choice of methods: Bayesian

models, for instance, can readily integrate non-morphological

data [36,37] and allow probabilistic hypothesis testing using

Bayes Factors [38]. Such considerations notwithstanding,

researchers may wish to explicitly compare the results of

both Bayesian and implied weights analyses when conduct-

ing phylogenetic analysis; observations common to both

approaches and receiving strong node support values are

particularly likely to be well supported by underlying data.
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Ramı́rez MJ, Szumik CA. 2003 Improvements to
resampling measures of group support. Cladistics 19,
324 – 332. (doi:10.1016/S0748-3007(03)00060-4)

34. Kopuchian C, Ramı́rez MJ. 2010 Behaviour of
resampling methods under different weighting
schemes, measures and variable resampling
strengths. Cladistics 26, 86 – 97. (doi:10.1111/j.
1096-0031.2009.00269.x)

35. Goloboff PA, Szumik CA. 2015 Identifying unstable
taxa: efficient implementation of triplet-based
measures of stability, and comparison with
Phyutility and RogueNaRok. Mol. Phylo. Evol. 88,
93 – 104. (doi:10.1016/j.ympev.2015.04.003)

36. Lee MSY, Soubrier J, Edgecombe GD. 2013 Rates of
phenotypic and genomic evolution during the
Cambrian explosion. Curr. Biol. 23, 1889 – 1895.
(doi:10.1016/j.cub.2013.07.055)

37. Zhang C, Stadler T, Klopfstein S, Heath TA, Ronquist
F. 2016 Total-evidence dating under the fossilized
birth – death process. Syst. Biol. 65, 228 – 249.
(doi:10.1093/sysbio/syv080)

38. Kass RE, Raftery AE. 1995 Bayes factors. J. Am. Stat.
Assoc. 90, 773 – 795. (doi:10.1080/01621459.1995.
10476572)

http://dx.doi.org/10.1098/rspb.2017.0986
http://dx.doi.org/10.1098/rspb.2017.0986
http://dx.doi.org/10.1109/TIT.1953.1188569
http://dx.doi.org/10.1080/106351501753462876
http://dx.doi.org/10.1080/106351501753462876
http://dx.doi.org/10.1007/BF02101694
http://dx.doi.org/10.1111/j.1096-0031.2008.00217.x
http://dx.doi.org/10.1111/j.1096-0031.1993.tb00209.x
http://dx.doi.org/10.1111/j.1096-0031.1993.tb00209.x
http://dx.doi.org/10.1111/j.1096-0031.1994.tb00174.x
http://dx.doi.org/10.1111/j.1096-0031.1994.tb00174.x
http://dx.doi.org/10.1093/bioinformatics/17.8.754
http://dx.doi.org/10.1093/bioinformatics/17.8.754
http://dx.doi.org/10.2307/sysbio/34.2.193
http://dx.doi.org/10.2307/sysbio/34.2.193
http://dx.doi.org/10.1093/sysbio/35.3.325
http://dx.doi.org/10.1093/sysbio/35.3.325
http://dx.doi.org/10.1016/0196-8858(86)90038-2
http://dx.doi.org/10.1016/0196-8858(86)90038-2
http://dx.doi.org/10.1093/sysbio/42.2.126
http://dx.doi.org/10.2307/2413347
http://dx.doi.org/10.2307/2413347
http://dx.doi.org/10.1016/0025-5564(81)90043-2
http://dx.doi.org/10.1093/bioinformatics/btu157
http://dx.doi.org/10.1093/bioinformatics/btu157
http://dx.doi.org/10.5281/zenodo.2536318
http://dx.doi.org/10.5281/zenodo.1068997
http://dx.doi.org/10.5281/zenodo.1068997
http://dx.doi.org/10.5281/zenodo.2536874
http://dx.doi.org/10.5281/zenodo.2536874
http://dx.doi.org/10.5281/zenodo.2536935
http://dx.doi.org/10.5281/zenodo.2536935
http://dx.doi.org/10.1080/106351500750049815
http://dx.doi.org/10.1080/106351501753328866
http://dx.doi.org/10.1016/S0748-3007(03)00060-4
http://dx.doi.org/10.1111/j.1096-0031.2009.00269.x
http://dx.doi.org/10.1111/j.1096-0031.2009.00269.x
http://dx.doi.org/10.1016/j.ympev.2015.04.003
http://dx.doi.org/10.1016/j.cub.2013.07.055
http://dx.doi.org/10.1093/sysbio/syv080
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572

	Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets
	Introduction
	Material and methods
	Results
	Discussion
	Data accessibility
	Competing interests
	Funding
	Acknowledgements
	References


