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Horse locomotion is remarkably economical. Here, we measure external

mechanical work of the galloping horse and relate it to published measure-

ments of metabolic cost. Seven Thoroughbred horses were galloped (ridden)

over force plates, under a racing surface. Twenty-six full strides of force data

were recorded and used to calculate the external mechanical work of gallop-

ing. The mean sum of decrements of mechanical energy was 2876 J (+280 J)

per stride and increments were 2163 J (+538 J) per stride as horses were

accelerating. Combination with published values for internal work and

metabolic costs for galloping yields an apparent muscular efficiency of

37–46% for galloping, which would be reduced by energy storage in leg ten-

dons. Knowledge about external work of galloping provides further insight

into the mechanics of galloping from both an evolutionary and performance

standpoint.
1. Introduction
Like many cursors, the horse (Equus caballus) has evolved to locomote econ-

omically over long distances. The horse has a very low metabolic cost of

transport [1,2] (the amount of energy consumed to cover a given distance,

COT) and has been selectively bred for increased speed and endurance.

Adaptive specializations for running in the horse include a distal limb that

is slim and light, with an extended single digit and no musculature below

the carpus and tarsus. The reduced mass of the distal fore- and hindlimbs

reduces the energy required to swing the limbs between stances [3]. Further,

long, elastic distal tendons allow elastic energy storage and return [4,5], con-

tributing to economical locomotion [6,7]. Conversely, the proximal portions

of the limbs are made up of large, bulky muscles which allow rapid limb

swinging and propulsion with the further aid of a large tendon within

the biceps muscle of the forelimb that acts as a catapult to give rapid limb

protraction [8].

External work in the galloping horse has been modelled [9] and measured,

through kinematics [1] and inertial sensors [10] and the published values are

high, 10 500 J (515 kg at 12 m s21) [1] and 8000 J (480 kg at 12 m s21) [10] per

stride, and exceed the metabolic cost of galloping. This mismatch has been

attributed to energy-storing springs, along with effects of skin movement,

movement of the centre of mass (COM) within the reference frame of the sub-

ject, digitizing errors and sensor placement. Here, we set out to make a more

direct measure of external mechanical work using force plates as ergometers,

as outlined elsewhere [11,12].
2. Material and methods
Data were collected from seven Thoroughbred racehorses at the British Racing

School (BRS), Newmarket, UK. All subjects were weighed on the in-house scales
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(477+25 kg) (though weights for calculations were taken as the

integral of the vertical force across a stride) and limb lengths

were taken to the top of the scapula (1.63+ 0.04 m) using a stan-

dard tape measure. The same professional jockey ( jockey þ
equipment ¼ 70.1 kg) rode all horses for all trials.

Ten 0.6 � 0.9 m Hall-effect force plates (AMTI custom build,

Watertown, MA, USA) were placed in a custom steel frame in the

racing track at the BRS on a base layer of chalk to yield a 6 �
0.9 m array. Plates were covered with a membrane and protective

metal/resin top-plates. Approximately 0.1 m depth of oiled sand

was then layered over the plates to obscure them and provide a

surface over which the horses could gallop safely. The sand was

smoothed between runs. The sand compacts at low force and is

then relatively firm so while a small amount of work would be

performed at foot-on, this was mostly vertical—the footprints

showed no evidence of horizontal foot displacement (slipping)

through stance. On the left-hand side of the track were two AOS

high-speed cameras (X-Pri, AOS Technologies AG, Switzerland)

set to 1280 � 560 pixels, filming at 500 Hz.

Each horse was acclimatized to the set-up. Three-dimensional

limb force data were collected at 500 Hz from the 10 plates. Each

horse performed four to six galloping trials.

Footfall timings were taken from the high-speed video using

VirtualDub (version 1.9.11), and initial velocity conditions were

taken from the video using custom digitization software [13]. Raw

force data were analysed in a custom-script written in MATLAB

(Mathworks, Natick, MA, USA). Forces, for strides in which four

complete footfalls were captured, were summed across plates

with respect to time in the vertical and cranio-caudal directions.

Single-stride data were cut using a custom-script written in

MATLAB, using stride time from the high-speed video. Integration

was stopped at foot-off to prevent force plate resonance giving spur-

ious work calculations. In the majority of trials, there were

simultaneous hoof contacts occurring during the stride of interest

that were not on the plates and would therefore confound external

work calculations. As such, the force traces for the four limb con-

tacts were phase shifted, using stride time from the high-speed

video, and over-lapped to account for these hoof contacts, under

the assumption that horses were in consistent gallop and all strides

were equivalent. This procedure is illustrated in the top panel of

figure 1 and in the electronic supplementary material.

External work was calculated by summing, separately,

decrements (negative increments) and (positive) increments of

potential and kinetic energy of the COM using the series of

equations as outlined in the literature [11,12]. Initial velocity con-

ditions were taken as the average velocity across the stride from

the high-speed video data and the mass of the individual was

taken as the average vertical force across the stride.

Horses accelerated in every recorded stride with a submaxi-

mal mean acceleration of approximately 0.45 m s22 (maximum

capacity is around 3 m s22 [14]). This corresponds to an average

net velocity increase over the stride of 0.18 m s21, and a resultant

increase in horizontal kinetic energy of 0.016 J kg21. During gal-

loping, COM kinetic energy should reduce early in the stance

phase of each limb (owing to forward limb configuration) and

such fluctuations would be ameliorated during the period of

hindlimb stance by the hip torques used for acceleration. We

approach the effect of the net acceleration on work calculations

in two ways. One, we de-trend the acceleration by calculating

the mean horizontal acceleration through the stride and subtract-

ing that mean from the data before re-running the analysis and

then calculating positive increments in external work. Two, we

also sum the decrements in mechanical work in the non-

de-trended data. In steady-state galloping, summing positive

increments and summing decrements would yield the same

work values, but with acceleration the calculated work will be

higher for summed increments and may be underestimated

when summing decrements, because fluctuations will be reduced
by the underlying upward trend. Further notes on methods can

be found in the electronic supplementary material.
3. Results
Twenty-six complete strides were used in the analysis with

speeds between 10.2 and 13.1 m s21. In 12 of the 26 trials,

the non-lead forelimb contacted the plates first.

The mean (+s.d.) vertical displacement of the COM was

0.06 m (+0.02 m) and the mean fluctuation in horizontal vel-

ocity was 0.18 m s21 (+0.07 m s21). The mean fluctuation

(amplitude) in mechanical work was 1510 J (+479 J), equival-

ent to 2.7 J kg21, which was reduced to 1007 J in the de-trended

data. The mean sum of positive increments of work was 2163 J

(+538 J), equivalent to 3.9 J kg21 (1537 J in the de-trended

data), and the mean sum of decrements was 2876 J (+280 J),

equivalent to 21.6 J kg21 (21544 J in the de-trended data).

A typical plot of COM energies during one trial (one stride) is

displayed in figure 1. Data for further trials are displayed in the

electronic supplementary material.
4. Discussion
Until now, the available data for external mechanical work in

the galloping horse have been limited to calculations from kin-

ematic data [1,10], resulting in values for mechanical work

similar to the total metabolic energy expenditure [1,15], but

much of the energy is recycled rather than dissipated and per-

formed de novo each stride. Muscle initial efficiency of doing

mechanical work is around 20–63% [16], but this is from break-

down of the existing ATP. The actual (apparent) efficiency of

mechanical work determined from oxygen consumption will

be considerably lower [17], but the difference has not been

measured for horses. Cursorial mammals are adapted for fast

and efficient locomotion [3] and explanations for this, such as

energy storage in tendons [4,6,18] and minimizing energy

losses [9,19] have been described.

Internal work was not calculated in this study, but pub-

lished values of 2000 J per stride at 12 m s21 exist [1]. This

is approximately double the external work seen in this

study when considering the decrements and close to the

de-trended values. This is consistent with humans, where

internal work exceeds external work at higher speeds [20].

The high proportion of total work being internal work

reinforces the evolutionary selection pressure for light distal

limbs and adaptive mechanisms for efficient locomotion.

To calculate apparent efficiency, we took the metabolic

(oxygen) cost of galloping to be 2.5 J kg21 m21 [1,21], equat-

ing to a metabolic cost of transport (for a 550 kg horse) of

1375 J m21. This would result in a cost per stride (stride fre-

quency 2.13 s21, so stride length 5.63 m [22]) of 7740 J (at

12 m s21). Taking the external work (decrements) from this

study of 876 J and adding internal work of 2000 J per stride

at 12 m s21 [1] gives an apparent muscular efficiency of

37%. This would require net efficiency higher than most pub-

lished results for muscle (of smaller animals), which are

around 25% [23]. When we consider the de-trended data,

this gives an apparent efficiency value of 46%. The true

muscle work will be lower because energy is stored and

returned by limb tendons during stance [4] and during

swing [8], hence reducing muscle contributions to internal
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and external work. Using the example trial shown in figure 1,

we can approximate elastic strain energy from the force data,

using resultant force as axial limb force and a published leg

stiffness value of 55 kN m21 [6,7]. Figure 2 shows this strain

energy and the effect on total energy throughout the stride.

This reduces the total positive and negative increments of

work for much of the trial and shows a net positive work

produced by the hindlimbs at the end of the stride.

Factoring in aerodynamic drag, at speeds (v) of 12 m s21,

the contribution of drag to COT is 0.15 J kg21 m21

(1
2 CDr Av2/bodymass: CD ¼ 0.9, r ¼ 1.29 kg m23, A ¼ 1 m2,

550 kg mass), equivalent to around 464 J per stride, which is

a considerable proportion of the mechanical work being per-

formed and will increase the cost of galloping and yield a

muscle efficiency of 43% (52% for de-trended data). While

often considered to be negligible, this is a larger proportion
of total mechanical work than previously considered, and

likely explains the importance of aerodynamic drafting in

winning horse races [24], especially as it is proportional to

v2 and will be much higher at racing speeds (17–20 m s21).

With regard to this study being performed on ridden

horses, 13% of the total mass is the rider who, in racing pos-

ture, will add weight but limited inertia. As the rider can

move horizontally somewhat out of phase with the horse’s

COM [25], horizontal work (by the horse) on the rider is

reduced while their weight is still supported. Calculating

mechanical works for horse mass alone would result in an

11% increase in mass-specific work.

Knowledge of the mechanics of galloping can give insight

into the increase in total work as a result of perturbations

which may impose a power limit to maximum speed. For

example, moving up a 10% incline at 12 m s21 (i.e.
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1.2 m s21 vertical velocity) equates to 706 J kg21 min21

(12 W kg21) potential energy power, equivalent to approxi-

mately 3000 J per stride [26]. Given external work values

from this study, galloping on a 10% incline would increase

total mechanical work by over 100%, which is concomitant

with the increase in metabolic cost [21,27]. Energy supply

may eventually become limiting, which may become appar-

ent from measurements of maximum speed on different

gradients.

Between-trial variability is somewhat high in this dataset,

which can be attributed to the nature of the set-up and excit-

ability of racehorses. While every effort was made to ensure
steady-state locomotion, horizontal kinetic energy increased

in most strides, e.g. in the stride shown in figure 1; however,

this only represents an increase in absolute velocity of

0.2 m s21, which may be as close to steady state as possible

for overground locomotion outside of the laboratory.
5. Conclusion
Large cursorial animals are known to be uniquely economical

with a low COT. Understanding of the costs and efficiency of

high-speed locomotion in large cursorial animals gives

insight into how they have evolved anatomically and physio-

logically to meet the evolutionary selective pressures that

result from ranging to find resources in open grasslands

and the need for high-speed predator evasion. These adap-

tations underpin the metabolic and mechanical factors

affecting and limiting athletic performance in racehorses.

The results show that external work is a small fraction of

the total mechanical work of galloping, less than that of

internal work and similar in magnitude to the aerodynamic

drag costs. Apparent muscle efficiencies are of 37–46% and

exceed net efficiencies, demonstrating the importance of elastic

cycling of energy in limb tendons.
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