Skip to main content
. 2019 Mar 1;10:209. doi: 10.3389/fpls.2019.00209

Table 2.

Neural Network Architecture consisting of 17 stages, each of which contains a convolutional layer followed by a number of optional layers including max pooling.

Stage number Kernel size Stride Maxpool Non-linearity Batch normalization Dropout (p = 0.5) Resulting feature maps Resulting resolution
Input 35 500 × 250
1 7 × 7 2 × 2 Leaky ReLU Yes Spatial 70 250 × 125
2 3 × 3 1 × 1 Leaky ReLU Yes No 70 250 × 125
3 3 × 3 1 × 1 Leaky ReLU Yes No 70 250 × 125
4 3 × 3 1 × 1 2 × 2 Leaky ReLU Yes No 120 125 × 62
5 3 × 3 1 × 1 Leaky ReLU Yes No 120 125 × 62
6 3 × 3 1 × 1 Leaky ReLU Yes No 120 125 × 62
7 3 × 3 1 × 1 2 × 2 Leaky ReLU Yes No 150 62 × 31
8 3 × 3 1 × 1 Leaky ReLU Yes No 150 62 × 31
9 3 × 3 1 × 1 Leaky ReLU Yes No 150 62 × 31
10 3 × 3 1 × 1 1 × 4 Leaky ReLU Yes No 150 62 × 7
11 3 × 3 1 × 1 Leaky ReLU Yes No 150 62 × 7
12 3 × 3 1 × 1 Leaky ReLU Yes No 150 62 × 7
13 3 × 3 1 × 1 1 × 4 Leaky ReLU Yes No 150 62 × 1
14 1 × 1 1 × 1 Leaky ReLU No Yes 100 62 × 1
15 1 × 1 1 × 1 Leaky ReLU No Yes 50 62 × 1
16 1 × 1 1 × 1 Leaky ReLU No Yes 20 62 × 1
17 1 × 1 1 × 1 Sigmoid No No 1 62 × 1

SpatialDropout was employed in stage 1.