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Abstract

In this work, hafnium oxide (HfO2) thin films are deposited on p-type Si substrates by remote plasma atomic layer
deposition on p-type Si at 250 °C, followed by a rapid thermal annealing in nitrogen. Effect of post-annealing temperature
on the crystallization of HfO2 films and HfO2/Si interfaces is investigated. The crystallization of the HfO2 films and HfO2/Si
interface is studied by field emission transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction,
and atomic force microscopy. The experimental results show that during annealing, the oxygen diffuse from HfO2 to Si
interface. For annealing temperature below 400 °C, the HfO2 film and interfacial layer are amorphous, and the latter
consists of HfO2 and silicon dioxide (SiO2). At annealing temperature of 450-550 °C, the HfO2 film become multiphase
polycrystalline, and a crystalline SiO2 is found at the interface. Finally, at annealing temperature beyond 550 °C, the HfO2

film is dominated by single-phase polycrystalline, and the interfacial layer is completely transformed to crystalline SiO2.
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Introduction
Hafnium oxide (HfO2) thin film is an interesting material
for a variety of applications. It can be used in multilayer
optical coating [1], protective coating [2], gate dielectric
[3], passivating layer [4–6], and so on due to its excellent
properties, such as high density, high refractive index,
wide band gap, and relatively high thermal stability. Many
methods have been used to prepare HfO2 thin film, such
as electron beam evaporation [7], chemical solution de-
position [8], reactive sputtering [9], metal organic chem-
ical vapor deposition [10], molecular beam epitaxy [11],
and atomic layer deposition (ALD). ALD is a promising
method for obtaining thin films with both high-precision
thickness control and high accuracy uniformity.
Post-annealing is found to have significant influences on
ALD HfO2 films [12–15]. According to the research,
HfO2 thin films can crystalize for an annealing
temperature higher than 500 °C [16–18]. The crystalline
structure of HfO2 strongly affects optical and electrical

properties. For example, the structural change of HfO2

from amorphous to monoclinic crystalline phase could lead
to changes of refractive index from 1.7 to 2.09, optical gap
from 5.75 to 6.13 eV, and dielectric constant from 24.5 to
14.49 [19, 20]. For ALD HfO2 deposited on silicon sub-
strates, an oxide layer is usually observed at HfO2/Si inter-
face [21, 22]. The presence of this interfacial layer is
reported to decrease the dielectric constant [22]. In
addition, Kopani et al. [23] presented the structural proper-
ties of 5-nm HfO2 films after nitric acid oxidation of
n-doped Si substrates. They found that high annealing
temperature increases the growth rate of crystalline nuclei.
However, their crystallization properties particularly HfO2/
substrate interface have scantly been studied. Therefore, the
annealing temperature affecting the crystallization proper-
ties of HfO2 thin films prepared by ALD was worth for fur-
ther investigation.
In this work, the HfO2 thin films were fabricated by a

remote plasma atomic layer deposition (RP-ALD) on
p-type silicon substrates. Post-annealing was performed
by a rapid thermal annealing (RTA) system at different
temperatures. The structural changes and crystallization
properties of HfO2 thin films by RTA were characterized
by atomic force microscopy (AFM), grazing incident X-ray
diffraction (GIXRD), X-ray photoelectron spectroscopy
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(XPS), and high-resolution transmission electron micros-
copy (HR-TEM). The temperature-dependent HfO2/Si
interface structural evolution and its mechanism are also
investigated.

Method
Doubled-sided polished (100) oriented p-type 2-inch
250-μm Czochralski Si wafers with a resistivity of 30Ω cm
were used. Prior to the deposition, Si wafers were cleaned
by a standard Radio Corporation of America method
followed by dipping in diluted hydrofluoric acid solution
(5%) for 2min to remove possible stray oxides without
final water rinse. After cleaning, all of the wafers were
dried with pure nitrogen (N2) gas and mounted onto the
substrate holder. Approximately 15 nm HfO2 (168 ALD
cycles) thin films were deposited on Si wafers by RP-ALD
(Picosun R-200, Finland) using tetrakis (ethylmethyla-
mino) hafnium (TEMAH) and oxygen (O2) in alternating
pulse with N2 purge of the reaction chamber between
pulses. The TEMAH and O2 plasma were pulsed into the
reactor in the following sequence: TEMAH pulse 1.6 s; N2

purge 10 s; O2 plasma pulse 10 s, and N2 purge 12 s. After
depositing the HfO2 thin films, the rapid thermal anneal-
ing was performed in N2 ambient for 10min. The anneal-
ing temperatures were varied from 400 to 600 °C to
investigate the effect on crystallization of the HfO2 thin
films and HfO2/Si interface. Table 1 lists the typical condi-
tions of RPALD and post-annealing.
AFM measurements were performed in tapping mode

for investigating the surface morphology of the HfO2 thin
films. The AFM images shown in this work are 2 μm×
2 μm scans with a resolution of 256 points × 256 lines.
The structure of HfO2 films were characterized by grazing
incident X-ray diffraction (GIXRD, Rigaku TTRAXIII,
Japan) measurements with a Cu long-fine-focus X-ray
tube. X-rays with a wavelength of 0.154 nm were produced
at an operating voltage of 50 kV and a current of 300mA.
An incident angle of 0.5° was selected to obtain diffraction

patterns over a 2θ range of 20–60°. X-ray photoelectron
spectroscopy (XPS, Thermo Fisher K-alpha) was also per-
formed using monochromatic Al Kα X-ray radiation (hν
= 1486.6 eV). For the XPS analysis, a 100-μm diameter
spot was used, and photoelectrons were collected at a
take-off angle of 45°. The cross sections of the HfO2 thin
films were prepared by a focused ion beam lift-out tech-
nique in a Hitachi NX2OOO system. The cross-sectional
images of the HfO2 thin films were examined by a field
emission high-resolution transmission electron micros-
copy (HR-TEM, JEM-2100F, USA).

Results and Discussion
Figure 1 shows the AFM images for the HfO2 films
annealed at different temperatures. The root-mean-square
(RMS) and average surface roughness (Ra) values are
shown for indicating the surface roughness. The RMS
value is 0.44 nm for the as-deposited film. It slightly in-
creases to 0.47 nm when the annealing temperature rises
to 500 °C. Further increasing the annealing temperature to
600 °C leads to a significant enhancement in surface
roughness with a RMS increasing to 0.69 nm. Same ten-
dency is observed in Ra values. The increase in surface
roughness for the annealed films might infer a structural
change.
Figure 2 shows the temperature-dependent GIXRD

spectra of various HfO2 thin films. The as-deposited HfO2

films is amorphous and remains amorphous after anneal-
ing at 400 and 450 °C. At an annealing temperature higher
than 500 °C, diffraction peaks appear, indicating the for-
mation of crystalline HfO2. The peaks at 1/d = 0.319 and
0.354 Å−1 correspond to the − 111 and 111 planes to the
monoclinic phase (ICDD PDF#34-0104, space group P21/
c), respectively. The peak at 1/d = 0.340 Å−1 corresponds
to the (111) plane of the orthorhombic phase (ICDD
PDF#21-0904, space group Pbcm). Other peaks near 1/d
= 0.380~0.395 are the 200, 020, and 002 planes of the
monoclinic and the 020 plane of the orthorhombic phases.
The results also reveal that the monoclinic phase decrease
and the orthorhombic phases increase with the annealing
temperature. The orthorhombic HfO2 dominates the crys-
talline structure at higher annealing temperatures. How-
ever, the diffraction peaks of orthorhombic HfO2 were
observed at a lower 1/d (a smaller d-spacing) as compared
to that in the ICDD PDF#21-0904. In addition, the shift of
1/d = 0.340 Å−1 towards a higher value indicates that the
d-spacing decreases with the annealing temperature.
The concentrations of Hf and O within the HfO2 films

were measured using depth profiled XPS. Figure 3 shows
the O/Hf composition ratio of the as-deposited and
post-annealed HfO2 films. The O/Hf ratio decreases
from 1.60 to 1.29 with the annealing temperature. Due
to the use of N2 during the annealing, the HfO2 becomes
oxygen deficient with the temperature. The oxygen

Table 1 RPALD HfO2 deposition parameters

RPALD- HfO2 thin film

Parameter Value

Substrate temperature (°C) 250

TEMAH pulse time (s) 1.6

O2 plasma pulse time (s) 10

O2 plasma power (W) 2500

Thickness (nm) 15

RTA-post annealing process

Parameter Value

Temperature (°C) 400–600

Time (min) 20

Ambient N2
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deficient HfO2 film also results a smaller d-spacing as
mentioned previously.
Figure 4a, b, c, d, e, and f show the high-resolution

cross-sectional HR-TEM images of as-deposited 400 °C-,
450 °C-, 500 °C-, 550 °C-, and 600 °C-annealed HfO2 thin
films on Si substrates, respectively. It can be seen that
the HfO2 layer and Si substrate are clearly exhibited in
these images. Additionally, a thin layer with the thick-
ness of 1–2 nm between HfO2 and Si substrate could be
the SiO2 film. As shown in Fig. 4a, there is no obvious
lattice arrangement in the as-deposited HfO2 film, indi-
cating that this film is amorphous. After annealing at
400 °C, although most regions of HfO2 film are still
amorphous, we can observe that a fraction of lattice ar-
rangements with the d-spacing values of 2.82 and 3.12 Å
are formed in this film. These two d-spacing values are
indexed to monoclinic HfO2 (111) and monoclinic HfO2

(− 111) planes, respectively, and the 400 °C-annealed film
shows the nanocrystalline structure. With increasing the
annealing temperature from 400 to 600 °C, the crystal
quality of HfO2 film is gradually enhanced. When the
HfO2 film is annealed at 500–550 °C, the main lattice ar-
rangements consisting of monoclinic HfO2 (− 111),
monoclinic HfO2 (200), and orthorhombic HfO2 (111)
can be identified. However, further increasing the an-
nealing temperature to 600 °C, the lattice structure of
orthorhombic HfO2 (111) still exists in the film, and the
other two lattice arrangements gradually disappear. On
the other hand, the d-spacing values of orthorhombic
HfO2 (111) planes for the 500 °C-, 550 °C- and 600 °
C-annealed HfO2 films are determined to be 2.93, 2.90,
and 2.88 Å, respectively. This agrees well with the XRD
result that the orthorhombic HfO2 (111) diffraction peak
shifts towards to the high angle direction with increasing
the annealing temperature from 500 to 600 °C. The re-
sult reveals that the oxygen content of HfO2 film re-
duces gradually as the annealing temperature is
increased. The other interesting phenomenon can be
found in the changes of crystal structure and thickness
of the SiO2 layer. At the as-deposited state, the SiO2

layer is amorphous. Even if the sample is annealed at
400 °C, the thermal energy is not high enough to trans-
form the structure of SiO2 layer from amorphous to
crystalline. Nevertheless, by increasing the annealing
temperature from 450 to 600 °C, the crystalline SiO2

layer (with the cubic SiO2 (220) structure) is formed and
its thickness increases from 1.0 to 1.6 nm. It can be ob-
served that the amorphous SiO2 layer completely trans-
forms to cubic SiO2 structure after annealing the sample
at 600 °C. With an increment of annealing temperature
from 550 to 600 °C, the d-spacing value of cubic SiO2

(220) increases from 2.48 to 2.56 Å. This means that the
oxygen content of SiO2 layer increases by increasing the
annealing temperature. It can be reasonably speculated

(a)

(b)

(c)

(d)

Fig. 1 AFM images of a as-deposited, b 400 °C-annealed, c 500 °C-
annealed, and d 600 °C-annealed HfO2 films
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that the addition of oxygen content in the SiO2 layer is
attributed to the diffusion of oxygen atoms sourced from
the HfO2 film. Moreover, the overall thickness decreases
for the annealing temperature of 550 and 600 °C and
might be related to the increase of the film density
caused by crystallization and hydrogen removal.

Based on the above results, Fig. 5 illustrates the mech-
anisms of the HfO2 films with different annealing tem-
peratures. Considering the annealing temperature is
smaller than 400 °C (Fig. 5a), the film is amorphous
where Hf and O atoms are randomly arranged. The
interfacial layer between HfO2 and c-Si wafer is a mixed

Fig. 2 GIXRD spectra of HfO2 thin films annealed at different temperatures

Fig. 3 Atomic ratio of oxygen to hafnium for HfO2 thin films annealed at different temperatures
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oxide consisting of a-SiO2 and a-HfO2. At an annealing
temperature of 450–550 °C (Fig. 5b), the HfO2 film re-
ceives thermal energy leading to a structural change
from amorphous to polycrystalline with monoclinic and
orthorhombic phases. The crystalline orientation and
d-spacing are indicated according to the HR-TEM and
GIXRD results. A crystalline SiO2 layer is formed. Sev-
eral works reported an ordered silicon oxide layer at the
interface of a-SiO2 and (100) c-Si, but the mechanism
and atomic-scale structure have remained controversial.
Silicon thermal oxidation could be regarded as sequen-
tial inserting operations of oxygen atoms into Si-Si
bonds, and this induces a large accumulation of com-
pressive strains in the oxidized regions and might pos-
sibly cause a structural transformation into ordered
oxide at the SiO2/c-Si interface [24]. It has also been re-
ported that crystalline oxygen-containing phase could be

formed under conditions of high oxygen oversaturation
of Si [25] or low interface defect density [26]. From the
XPS and TEM images in this work, the HfO2 layer is
oxygen deficient. The significant amounts of oxygen dif-
fuse from HfO2 towards silicon substrate, and this might
lead to oversaturation of oxygen at the c-Si interface and
formation of crystalline SiO2. In this temperature range,
the crystalline SiO2 layer thickness would increase but
the a-HfO2 + a-SiO2 mixed layer thickness decreases
with increasing annealing temperature. At an annealing
temperature higher than 550 °C (Fig. 5c), the HfO2 struc-
ture is dominated by polycrystalline orthorhombic (111)
single phase. The interfacial layer is entirely governed by
crystalline SiO2. The d-spacing decreases for orthorhom-
bic HfO2 layer and increases for c-SiO2. Although an-
nealing of HfO2 is necessary for achieving high Si wafer
passivation and dielectric constant, at high temperatures,

Fig. 4 Cross-sectional TEM images of a as-deposited, b 400 °C-annealed, c 450 °C-annealed, d 500 °C-annealed, e 550 °C-annealed, and
f 600 °C-annealed HfO2/Si
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(a)

(b)

(c)
Fig. 5 Diagrams of mechanism of crystallization of HfO2 films and interfacial layer in the temperature ranges a as-deposited to 400 °C, b 450 to
550 °C, and c beyond 550 °C. The d-spacing value and crystalline orientation are also indicated
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the resultant crystallization of the HfO2 and the inter-
facial SiO2 may reduce the film properties. The anneal-
ing temperature of 500 °C is found to obtain the best
dielectric constant of 17.2. Further increasing the an-
nealing temperature leads to a reduction in dielectric
constant, possibly due to the change in the crystalline
phase. Tomida et al. reported that the dielectric constant
of HfO2 decreases when the structure transformed from
polycrystalline to monoclinic single phase [27]. The best
passivation of HfO2/Si can also be obtained at the an-
nealing temperature of 500 °C, as higher temperatures
might lead to a complete c-SiO2 interfacial layer and de-
hydrogenation at the interface.

Conclusion
HfO2 films are prepared using RP-ALD, and effect of an-
nealing temperature on crystalline structure of the HfO2

has been investigated. For as-deposited HfO2 and that
annealed below 400 °C, the HfO2 and the interfacial layer
are amorphous. With increasing annealing temperature,
the d-spacing of orthorhombic reduces while that of the
c-SiO2 interfacial layer increases, indicating the oxygen
diffusion from HfO2 to Si interface. Annealing
temperature higher than 550 °C shows a HfO2 layer with
polycrystalline orthorhombic single-phase, and the inter-
facial layer completely transforms to c-SiO2. Although an-
nealing is required for HfO2 in many applications such as
achieving high passivation of Si wafers and high dielectric
constant, the crystallization could be harmful to the film
properties. The annealing temperature of 500 °C can have
the best Si wafer passivation quality and dielectric
constant.
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