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Abstract
Sickle cell disease (SCD) is an inherited disease caused by the production of abnormal

hemoglobin (Hb) S, whose deoxygenation-induced polymerization results in red blood cell

(RBC) sickling and numerous pathophysiological consequences. SCD affects approximate-

ly 300,000 newborns worldwide each year and is associated with acute and chronic com-

plications, including frequent painful vaso-occlusive episodes that often require hospitali-

zation. Chronic intravascular hemolysis in SCD significantly reduces vascular nitric oxide

(NO) bioavailability, consequently decreasing intracellular signaling via cyclic guanosine

monophosphate (cGMP), in turn diminishing vasodilation and contributing to the inflamma-

tory mechanisms that trigger vaso-occlusive processes. Oxidative stress may further

reduce NO bioavailability in SCD and can oxidize the intracellular enzyme target of NO,

soluble guanylate cyclase (sGC), rendering it inactive. Increasing intracellular cGMP-

dependent signaling constitutes an important pharmacological therapeutic approach for

SCD with a view to augmenting vasodilation, and reducing inflammatory mechanisms, as

well as for increasing the production of anti-polymerizing fetal Hb in erythroid cells.

Pharmacological agents under pre-clinical and clinical investigation for SCD include NO-based therapeutics to augment NO

bioavailability, as well as heme-dependent sGC stimulators and heme-independent sGC activators that directly stimulate native

and oxidized sGC, respectively, therefore bypassing the need for vascular NO delivery. Additionally, the phosphodiesterases

(PDEs) that degrade intracellular cyclic nucleotides with specific cellular distributions are attractive drug targets for SCD; PDE9 is

highly expressed in hematopoietic cells, making the use of PDE9 inhibitors, originally developed for use in neurological diseases, a

potential approach that could rapidly amplify intracellular cGMP concentrations in a relatively tissue-specific manner.
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Introduction

Sickle cell disease (SCD) constitutes a group of genetic dis-
orders, caused primarily by a mutation in the hemoglobin
subunit beta gene (HBB; c.20A>T; glutamic acid-valine;
rs334), producing altered sickle hemoglobin, HbS.1

Homozygosity for this mutation results in sickle cell
anemia (SCA; HbSS), while compound heterozygosity for
HbS in association with other hemoglobin variants or tha-
lassemias results in SCD, where disease phenotype demon-
strates similarities to that of SCA.1,2 It has been estimated
that approximately 300,000 children are born with SCD in

the world every year, of which the great majority are
in Africa.3

The pathophysiology of SCD is caused by the polymer-
ization of deoxygenated HbS, which can disrupt the flexi-
bility and architecture of the red blood cell (RBC), causing it
to become sickle shaped. The rate and extent of HbS poly-
merization depend on the HbS concentration in the eryth-
rocytes, pH, temperature, and local oxygen tension.4,5

Alterations in the physical properties of the RBCs of SCD
individuals can trigger the premature destruction of eryth-
rocytes, leading to chronic hemolytic anemia, and induce a

Impact statement
Sickle cell disease (SCD) is one of the most

common inherited diseases and is associ-

ated with a reduced life expectancy and

acute and chronic complications, including

frequent painful vaso-occlusive episodes

that often require hospitalization. At pre-

sent, treatment of SCD is limited to hema-

topoietic stem cell transplant, transfusion,

and limited options for pharmacotherapy,

based principally on hydroxyurea therapy.

This review highlights the importance of

intracellular cGMP-dependent signaling

pathways in SCD pathophysiology; modu-

lation of these pathways with soluble gua-

nylate cyclase (sGC) stimulators or phos-

phodiesterase (PDE) inhibitors could

potentially provide vasorelaxation and anti-

inflammatory effects, as well as elevate

levels of anti-sickling fetal hemoglobin.

ISSN 1535-3702 Experimental Biology and Medicine 2019; 244: 132–146

Copyright ! 2019 by the Society for Experimental Biology and Medicine

mailto:conran@unicamp.br


number of inflammatory pathways that culminate in the
hemolytic and vaso-occlusive processes that characterize
the pathophysiology of the disease.1,6 SCD displays a
range of severity, but in general it is associated with high
morbidity and a decreased life expectancy, with a wide
range of acute and chronic complications, including acute
painful vaso-occlusive episodes (VOEs) that often require
hospitalization, stroke, acute chest syndrome (ACS), pul-
monary hypertension, autosplenectomy, retinopathy,
nephropathy, and leg ulcers.7–9

Present therapeutic options for SCD include cell-based
therapies (hematopoietic stem cell transplantation and
transfusion) and pharmacotherapy based largely on
hydroxyurea therapy. At least 40 substances are currently
in various stages of pre-clinical and clinical studies for the
prevention or treatment of VOE in SCD, all of which have
been developed based on the complex pathophysiology
of the disease.6,10 We summarize herein evidence for
dysregulation of nitric oxide (NO)-cyclic guanosine mono-
phosphate (cGMP) signaling in SCD and describe cGMP-
modulating pharmacotherapeutics under investigation
with a view to use in SCD.

Pathophysiology of SCD

Alterations in RBC physiology, caused by HbS polymeriza-
tion, result in a vicious circle of constant intravascular
hemolytic and vaso-occlusive processes, in association
with a chronic inflammatory state.6 Sickle RBCs are less
deformable and, therefore, rupture more easily in the cir-
culation; it has been estimated that up to 10% of the total
RBC blood volume may be destroyed every day in an indi-
vidual with SCD and that approximately 30% of this hemo-
lysis may occur intravascularly.1,11 Hemolysis may have a
huge impact on both NO biology and inflammatory pro-
cesses in the vasculature. Upon intravascular RBC lysis,
large amounts of cell-free hemoglobin (Hb) are released
into the circulation.12 When not compartmentalized inside
the RBC, Hb is extremely reactive and can rapidly release
heme. Free heme has potent inflammatory effects, and is
able to activate toll-like-receptor-(TLR) mediated cell sig-
naling,13 induces macrophage inflammasome formation,14

activates complement, and stimulates neutrophil extracel-
lular trap release, amongst other effects.15,16 In mice with
SCD, heme infusion has been shown to induce TLR4-
mediated endothelial activation and microvascular stasis,
and trigger ACS.17 The proinflammatory effects of heme
released during hemolysis, in in vivo situations, have
though been questioned, since highly hydrophobic heme
is rapidly bound to and neutralized by macromolecules,
such as hemopexin or albumin, or lipids18; however, hemo-
pexin levels are significantly depleted in SCD19,20 and it is
possible that heme may modulate inflammation in more
complex models of sequential priming and activation
processes.18

Vaso-occlusive processes are a defining characteristic of
SCD, where they occur principally in the microcirculation,
reducing tissue oxygenation and inducing tissue damage.
Inflammatory cell activation leads to the production and
secretion of molecules such as cytokines and chemokines,

growth factors, eicosanoids, and peptides that propagate
the inflammatory state and further activate other cells in
the vasculature. Numerous cytokines, produced from mul-
tiple cell types, are elevated in steady-state SCD, including
the leukocyte-derived cytokine, tumor necrosis factor
(TNF)-a, which may be generated as an early consequence
of ischemia-reperfusion21 and has potent effects on both
leukocytes and endothelial cells. Vaso-occlusion is a multi-
cellular process that occurs as a consequence of these
altered inflammatory and molecular pathways; in vitro
studies and studies of the microvasculature of SCD mice
models indicate that vaso-occlusion is initiated by the adhe-
sion of activated leukocytes,22,23 RBCs,24,25 and platelets to
the endothelium26 in a mechanism that is propagated by
inflammatory processes. In turn, diminished blood flow
may decrease local oxygenation and trigger RBC sickling,
resulting in occlusion of the blood vessel. Decreased vascu-
lar NO bioavailability, as well as oxidative stress, endothe-
lial dysfunction, and the expression of adhesive molecules
on blood cells and on the endothelium1,6 all drive the vaso-
occlusive process, and therefore represent potential thera-
peutic targets in SCD.

Evidence for the downregulation of
NO-cGMP-dependent signaling in
SCD pathophysiology

NO is a free radical signaling gas produced by the NO
synthases (NOS) during the conversion of arginine to cit-
rulline.27 Endothelial-derived NO, produced by endothelial
NOS (eNOS), plays a pivotal role in vascular homeostasis,28

diffusing across the endothelial cell membrane into the
adjacent smooth muscle and binding to the ferrous (Fe2þ)
heme of soluble guanylate cyclase (sGC). Activated sGC
converts guanosine triphosphate (GTP) into cyclic guano-
sine monophosphate (cGMP), a second messenger that acti-
vates cGMP-dependent protein kinases (PKG) to promote a
cascade of effects, resulting in calcium removal from
smooth muscle cells, in turn relaxing blood vessels and
increasing blood flow via vasodilation.29,30 In addition to
promoting vasodilation, NO also maintains vascular
homeostasis by inhibiting platelet activity, adhesion and
aggregation31–34 and decreasing leukocyte adhesion and
function34–37 in a cGMP-dependent fashion. NO also inhib-
its endothelial adhesion activation and adhesion molecule
expression.38,39

In SCD, and other hemolytic diseases, the bioavailability
of NO is compromised (Figure 1), largely as a consequence
of its reaction with cell-free Hb. Upon intravascular hemo-
lysis, cell-free extracellular oxyHb reacts with NO, rapidly
and irreversibly forming methemoglobin and nitrate.12,40 In
addition, arginase, also released from the RBC during
hemolysis, depletes arginine, reducing substrate availabil-
ity for NO synthesis by eNOS.41 NO can also be consumed
by reactions with reactive oxygen species (ROS), such as the
superoxide radical, which are generated as a result of ische-
mia and reperfusion processes, and HbS autooxidation
amongst other mechanisms.8,42,43 Furthermore, anti-
oxidant defense mechanisms are impaired in SCD, due to
reduced antioxidant enzyme and oxygen radical scavenger
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levels, also contributing to the consumption of NO
by ROS.44

Evidence for altered NO biology, and therefore altered
cGMP-dependent signaling, in SCD pathophysiology has
existed for some time (Figure 1); modulations in plasma
NO metabolite levels were reported, in 1995, in SCD
patients during acute VOEs,45 while inhibition of NO
synthesis in rats infused with sickle RBC induced their
adhesion to the cerebral microvasculature, resulting in
vaso-occlusion.46 Lower levels of NO metabolites were
later shown to correlate with higher pain scores in SCD
patients hospitalized for acute VOEs.47 However, the
primary role of hemolysis in reduced NO bioavailability
in SCD and the potential consequences of this effect was
first highlighted by Reiter et al. in 2002,12 who showed that
NO-dependent increases in forearm blood flow were inhib-
ited proportionately to cell-free Hb concentrations in SCD
individuals, indicating that the decompartmentalization of
Hb into plasma diverts NO from homeostatic vascular
function in these patients. The induction of acute intravas-
cular hemolysis in an animal model was later shown to
produce dose-dependent systemic vasoconstriction and
impair renal function, secondary to the stoichiometric oxi-
dation of endogenous NO by cell-free Hb.48 The vasocon-
striction caused by this acute hemolytic process could be
attenuated by the inhalation of NO gas in this experimen-
tal model.48

Consumption of NO by cell-free Hb and, therefore,
dysregulation of cGMP-dependent signaling could have
further vascular consequences. There is evidence to suggest
that NO can inhibit HbS polymer formation in RBC by
abolishing the excess positive charge of HbS and increasing
its oxygen affinity; therefore, reduced NO could augment
RBC sickling.49 Exposure of mice with SCD to hypoxia
reduces cGMP in the lungs of animals, in association with
elevated xanthine oxidase (an enzyme that generates ROS),
impaired eNOS function, and acute lung injury.50

Interestingly, RBCs possess NOS and inhibition of this
NOS activity by oxidative stress may diminish RBC
deformability.51

There is also substantial evidence that reduced NO bio-
availability may augment cell–cell interactions and vascu-
lar inflammatory processes in SCD. NO inhibits sickle RBC
adhesion to the endothelium,52 and hypoxia and low NO
bioavailability may synergistically augment sickle RBC
adhesion to endothelium via upregulation of endothelial
P-selectin.53 Leukocytes present augmented adhesive prop-
erties in SCD and both pharmacological NO donation and
sGC stimulation are reported to inhibit the adhesion of SCD
neutrophils to ligands found on the vascular wall.54

Furthermore, the induction of acute hemolytic processes
in mice, to yield similar levels of plasma cell-free
Hb/heme to those seen in mice with SCD, results in sub-
stantial systemic and vascular inflammation, leading to

Figure 1. Box figure of mechanisms leading to dysregulated NO-cGMP-dependent signaling and associated clinical complications in SCD. NO: nitric oxide: RBC; red

blood cell: sGC; soluble guanylate cyclase.
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cellular recruitment mechanisms resembling those
observed in the SCDmouse microcirculation.55 This inflam-
mation was found to be associated with the modulation of
plasma NO metabolites and could be inhibited by the
co-administration of NO donor agents in an apparently
sGC-dependent manner.55

Thus, reduced NO in SCD can culminate in an imbalance
between vasodilation and vasoconstriction, leading to endo-
thelial dysfunction, which in the case of SCDmay contribute
to vaso-occlusive processes and ultimately acute and chronic
complications, such as pulmonary hypertension.9

Furthermore, in addition to facilitating vasodilation, NO-
cGMP signaling pathways are important for preventing leu-
kocyte recruitment and the adhesive interactions of both
platelets and endothelial cells in blood vessels (Figure 1);40

therefore, it would seem reasonable to conclude that modu-
lation of levels of NO and/or its intracellular second mes-
senger, cGMP, could represent an effective approach to
reducing vaso-occlusive processes in SCD (Figure 2).

Role of cGMP-dependent signaling in fetal
hemoglobin modulation

High levels of fetal hemoglobin (HbF) in the RBC are
known to ameliorate the pathophysiology of SCD. HbF,
formed by the combination of two a-globin and two
c-globin proteins, is normally synthesized during fetal
life, where switching to the production of adult Hb, HbA
(a2b2), or HbS (a2bS2) in the case of SCD individuals,
occurs during the first year of life.56,57 The levels of HbF
are modulated genetically in SCD and those individuals
with high levels of HbF generally display milder disease57

as HbF cannot form part of the HbS polymer and therefore
reduces Hb polymerization and red cell sickling. HbF
switching to adult Hb is regulated by a complex mecha-
nism of gene regulation, in which the zinc-finger transcrip-
tional factor, BCL11A plays an important role in the
repression of fetal Hb production.58

However, despite the complex transcriptional regulation
of c-globin gene expression, evidence exists that cGMP-
dependent signaling in erythroid cells can modulate this
gene’s expression.59,60 sGC activators or cGMP analogs
were found to increase the expression of the c-globin gene
(HBG) in both erythroleukemic cells and primary erythro-
blasts from healthy subjects and patients with beta-thalas-
semia.59 Moreover, HbF induction by hemin and butyrate
could be abolished by inhibiting sGC or PKG, suggesting
that the sGC-PKG pathway can regulate HBG expression.59

sGC activity can be identified in RBCs and the enzyme
apparently remains responsive to NO and sGC stimulation
even in patients with endothelial dysfunction.61,62 cGMP
levels have been reported as significantly higher in RBC
of patients with SCA than healthy individuals, and RBC
cGMP levels correlated with fetal Hb (HbF) levels in SCA,
but not with reticulocyte count, indicating that augmenta-
tion of cGMP levels by NO in erythroid cells may constitute
a mechanism for induction of HbF.61 Further reports indi-
cate that cross talk between cGMP and cyclic adenosine
monophosphate (cAMP)-dependent pathways may also
contribute to HbF regulation, where these signaling

molecules may share a common induction pathway, with
evidence that cAMP dependent signaling is associated with
downregulation of BCL11A expression, indicating a mech-
anism by which these signaling pathways may repress
b-globin gene expression.63,64

NO donor and sGC activation properties of hydroxyurea

Hydroxyurea, also known as hydroxycarbamide, is the
only drug approved by both the FDA and EMA for the
prevention of recurrent painful vaso-occlusive crises in
pediatric and adult patients suffering from symptomatic
SCD. Pharmaceutical grade L-glutamine, an amino acid
with antioxidant properties, was recently approved by the
FDA for use in SCD, but hydroxyurea remains the mainstay
for SCD pharmacotherapy, at this time. Hydroxyurea ther-
apy significantly elevates HbF and reduces the incidence of
acute VOEs, hospital admissions, ACS, and the need for
blood transfusions in patients with SCD.65–69

Hydroxyurea is generally well tolerated by patients, how-
ever, there are some concerns regarding the effects of the
drug on spermatogenesis70 and a recent Cochrane Review
concluded that evidence of the long-term benefits of
hydroxyurea for the prevention of the chronic complica-
tions of the disease is insufficient at present.71

Hydroxyurea is a cytostatic agent that is also found
endogenously at varying concentrations in the plasma
and tissues of humans and animals, possibly acting as a
natural defense agent against infections.72–74 This molecule
has NO donor and sGC activating properties and can be
metabolized and oxidized by free Hb and heme, resulting
in NO production from the –NHOH portion of hydroxy-
urea (Figure 2).75–78 Hydroxyurea also induces NO produc-
tion by enhancing eNOS phosphorylation and activity in
endothelial cells79 and may react with peroxidases to rap-
idly form NO in the presence of hydrogen peroxide
(H2O2).

80,81 Additionally, evidence suggests that hydroxy-
urea can interact directly with the Fe2þ-heme of sGC, pro-
moting the iron nitrosylation of sGC, and consequently
activating cGMP production.82

Hydroxyurea induces cGMP elevation and gamma-
globin gene expression in K562 erythroleukemic cells and
human erythroid progenitor cells in a mechanism that can
be abolished by the inhibition of sGC.60 It has also been
suggested that these cGMP-dependent molecular mecha-
nisms may also be involved in the cytostatic effects of
hydroxyurea in erythroid progenitor cells.82 Furthermore,
hydroxyurea administration increases plasma NO metabo-
lites and cGMP levels in SCA patients (in steady state and
experiencing VOE), in a temporal manner.77,83 Elevated
RBC cGMP in hydroxyurea-treated SCA patients has been
shown to correlate with individual HbF levels,61 although
cAMP production is also reportedly required for full induc-
tion of HbF by hydroxyurea in human CD34(þ) erythroid
cell cultures (Table 1).63

Hydroxyurea also exerts acute and immediate
anti-inflammatory effects via an NO-sGC dependent
mechanism in animal models.55 The induction of acute
inflammatory responses to hemolysis can be abolished by
a single administration of hydroxyurea in a reaction that is
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dependent upon NO generation and sGC activity.55 As
such, in addition to evidence that hydroxyurea may medi-
ate its HbF-elevating effects via an NO-sGC dependent
mechanism, data provide perspectives for the use of

hydroxyurea as an acute treatment for SCD and other
hemolytic diseases by mechanisms that are independent
of HbF induction, and probably occur via generation of
intravascular NO and sGC activation.

Figure 2. Role of cGMP-dependent signaling and potential for cGMP-modulation therapies in SCD. Nitric oxide (NO) is generated from the conversion of L-arginine to

L-citrulline by nitric oxide synthases (NOS), particularly endothelial NOS (eNOS). Once diffused across the endothelium, NO binds to the heme moiety of soluble

guanylate cyclase (sGC) in smooth muscle cells and other cell types, promoting the conversion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate

(cGMP), which in turn activates cGMP-dependent protein kinases (PKG). The cascade of reactions triggered by this pathway plays a pivotal role in vascular

homeostasis. Calcium removal from smooth muscle cells promotes relaxation of blood vessels and increases the blood flow. Besides promoting vasodilation, the

cGMP-signaling pathway inhibits platelet activation and aggregation, endothelial activation, and adhesion molecule expression, decreasing adhesive interactions

between platelets, erythrocytes, leukocytes and the endothelium. Additionally, sGC activation upregulates the expression of the gene encoding c-globin (HBG) in

erythroid cells, increasing fetal hemoglobin (HbF) levels in the erythrocytes and preventing HbS polymerization and hemolysis in sickle cell diseases (SCD). Since NO

bioavailability is decreased in SCD due to hemolysis, NO inhalation, nitrite administration, or hydroxyurea are therapies that directly restore intravascular NO levels in

varying efficacies, while supplementation with L-arginine provides the substrate for NO synthesis. sGC stimulators (heme-dependent) and activators (heme-inde-

pendent) are a class of drugs that modulate sGC activity independently of NO. sGC activators increase the activity of sGC only in its oxidized Fe3þheme or heme-free

(apo) state and are particularly efficient for activating sGC under oxidative stress conditions. Additionally, the inhibition of phosphodiesterases (PDEs), a group of

enzymes that regulate cGMP by catalyzing its hydrolysis and degradation, has been investigated as therapy for SCD. Sildenafil is a selective inhibitor of PDE5,

expressed in smooth muscle cells, platelets and corpus cavernosum, whereas IMR-687, BAY 73–6691 and PF04447943 inhibit PDE9, an isoform highly expressed in

hematopoietic cells. HbS: hemoglobin S; VCAM: vascular cell adhesion molecule-1; ICAM: intercellular adhesion molecule-1. (A color version of this figure is available

in the online journal.)
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NO-based therapies in SCD

Having defined a critical role for reduced NO bioavailabil-
ity in SCD, therapeutic strategies that improve NO bio-
availability have been extensively studied (Table 1),40

with a view to enhancing smooth muscle relaxation, vaso-
dilation, and increasing regional blood flow. Use of inhaled
NO was first hailed as a prospective therapy for SCD, with
potential for decreasing arterial NO consumption by oxi-
dizing and nitrosylating cell-free Hb, and therefore restor-
ing endogenous NO availability.12 In a mouse model of
SCD, NO inhalation ameliorated survival and lung injury
following exposure to hypoxia and hypoxia/reperfusion,
respectively.84,85 Inhaled NO gas demonstrated safety and
some therapeutic effects in small studies of SCD patients
suffering from acute vaso-occlusive crisis (VOC), with
improvements seen in pain scores.86,87 However, no effects
of NO inhalation on the oxygen affinity of Hb have been
found113 and, in a larger placebo-controlled study in 150
SCD patients hospitalized with VOC, the use of inhaled
NO, compared with placebo, did not improve time to
crisis resolution, length of hospitalization, visual analog
pain scale scores, cumulative opioid usage, or the rate of
ACS.114 While increased nitrate levels were observed fol-
lowing NO exposure in this study and indicated systemic
effects of NO, levels of blood nitrite, which may exert
important benefits at ischemic sites, were not significantly
increased.114 Furthermore, when used for the treatment of
ACS in SCD, inhaled NO did not ameliorate treatment fail-
ure rate.115

Low levels of L-arginine, the substrate for NO synthesis,
are observed in SCD patients, particularly during VOC,
which could reflect a state of depletion that results in
decreased NO production.47,116 Supplementation with
oral L-arginine has, therefore, been investigated for efficacy
in SCD, as reduced L-Arginine levels appear to be rate-
limiting for NO production during VOC.117 In mouse
models of SCD, dietary arginine supplementation signifi-
cantly increased NO metabolite levels, reduced lipid per-
oxidation and elevated antioxidant levels,88 supporting the
rationale for use of L-arginine in human SCD. L-Argine
therapy has shown benefits for pulmonary hypertension
in SCD, with reduced estimated pulmonary artery systolic
pressure reported after five days of therapy in 10 SCD
patients with pulmonary hypertension.89 While L-arginine
administration appears not to significantly augment NO
metabolite production in SCD patients at steady state,
data suggest that co-administration of L-arginine with
hydroxyurea may amplify the NO response in SCD at
steady state.90 Use of L-arginine for 12 weeks in a small
number of SCD patients in steady-state on hydroxyurea,
however, failed to demonstrate clinically detectable efficacy
and actually induced alterations in redox potential in red
cells,92 with data indicating that the L-arginine adminis-
tered may be diverted to ornithine production due to the
elevated levels of plasma L-arginase. L-arginine may,
though, display greater benefits in SCD patients experienc-
ing acute vaso-occlusive pain; in a double-blinded placebo-
controlled trial, 38 children with SCD that were hospital-
ized for pain were randomized to receive L-arginine or

placebo for five days or until discharge. L-arginine was
found to be safe to use and, importantly, a very significant
reduction in total parenteral opioid use and lower pain
scores at discharge were observed in those that received
L-arginine, compared to placebo, although there was no
significant difference in the hospital length of stay.91

Given the disappointing lack of efficacy of the use of
inhaled NO in SCD, use of nitrite as therapy has been sug-
gested. The nitrite anion (NO2�) is a potent and fast vaso-
dilator at near-physiological concentrations and acts as an
endocrine reservoir of NO; furthermore, it does not induce
tolerance, as observed with the organic nitrates.118

Importantly, nitrite can be reduced to NO by deoxygenated
Hb,119,120 signifying that it can augment vasodilation under
hypoxic conditions.121 Due to the constant processes of
ischemia/reperfusion that occur in the vasculature2 and
the fact that nitrites can be bioactivated in the presence of
RBCs,122 these agents make very attractive candidates for
use in SCD, although the rate of nitrite reduction by HbS in
polymer form may be decreased, when compared to HbA
and non-polymerized HbS.123

In vitro studies and in vivo studies with transgenic SCD
mice have shown that nitrite may also improve RBC
deformability as well as reduce RBC, leukocyte, and plate-
let adhesion, in addition to reducing hemolysis.93 When
administered to a small number of individuals with SCD
and in steady state, sodium nitrite infusions augmented
plasma nitrite concentrations and augmented forearm
blood flow without causing hypotension or clinically sig-
nificant methemoglobinemia.94

Potential for sGC agonist therapy in SCD

While decreased NO signaling may play a major role in
SCD pathophysiology, restoration of NO-dependent signal-
ing more directly with NO inhalation and L-arginine sup-
plementation in patients has shown limited efficacy,
perhaps due to the fact that the mechanisms that limit
NO production and bioavailability are sustained even
during the therapy. Furthermore, the effects of NO
donors such as nitrates in cardiovascular disease, for exam-
ple, are limited by increased oxidative stress and toler-
ance.124 As such, approaches that aim to directly
stimulate the molecular target of NO could provide a
more efficient approach to increasing the downstream
effects of NO signaling in SCD. The NO receptor, sGC, is
the target of two novel classes of drugs that enhance cGMP
production and signaling. These compounds, denominated
as the sGC stimulators and sGC activators, boost the enzy-
matic activity of sGC to generate cGMP, independently of
the presence of NO (Figure 2 and Table 1).125

sGC stimulators

The sGC stimulators (NO-independent heme-dependent
sGC stimulators) were the first drugs to be developed to
specifically modulate sGC activity; this class of drugs acts
on the native conformation of the sGC enzyme in which the
heme moiety is maintained. The sGC stimulators have a
dual mode of action, as they synergize with endogenously
available NO, and are also capable of directly binding and
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stimulating native sGC, to produce cGMP, independently
of NO.125,126 YC-1 was the first heme-dependent sGC stim-
ulator to be characterized and was found to inhibit platelet
aggregation independently of the presence of NO by
stimulation of cGMP synthesis127,128; however, while this
compound presents low substrate specificity and a poor
pharmacokinetic profile, it paved the way for the develop-
ment of more potent and specific sGCmodulators.125 Given
the antiproliferative, antifibrotic, antiinflammatory, proa-
poptotic, and neuroprotective effects of cGMP, sGC stimu-
lators potentially have a wide range of beneficial effects.97

With regard to effects specifically in SCD, the potent sGC
stimulator, BAY 41–2272, has been shown to reduce the
increased adhesive properties of neutrophils from SCD
patients,95 while in mice with SCD, this compound
improves cavernosal relaxation, indicating potential for
this class of drugs for preventing leukocyte recruitment
(and therefore vaso-occlusive processes) and priapism in
SCD.96 BAY 41–2272, however, has low metabolic stability
and oral bioavailability, making it unsuitable for clinical
use.97 Riociguat (BAY 63–2521), a compound with
enhanced pharmacokinetics and oral bioavailability, was
the first sGC stimulator licensed for clinical use and was
approved in 2013 for the treatment of pulmonary hyperten-
sion.129 Use of riociguat in a small case series of SCD
patients with chronic thromboembolic pulmonary hyper-
tension was recently reported; riociguat therapy was
found to be safe overall and well tolerated, and showed
clinical efficacy in some of the patients evaluated.98

Riociguat, however, has a short-half life in humans and
requires thrice-daily dosing.99 Other sGC stimulators in
clinical development, include vericiguat (BAY 102–1189),
which has a longer half-life than riociguat and is in devel-
opment for the treatment of chronic heart failure130 and
olinciguat (IW-1701), which is currently in clinical develop-
ment specifically for use in SCD, and also achalasia.
Olinciguat is an orally available sGC stimulator, with
potential anti-inflammatory and vasodilating properties
that has been shown to elevate c-globin mRNA expression
in erythroleukemic K562 cells.100 In an in vivo study in
C57BL/6 mice, prophylactic treatment with olinciguat
decreased TNFa-stimulated adhesive interactions between
leukocytes and endothelial cells in mice, and this effect was
potentiated when olinciguat was combined with hydroxy-
urea.101 In a Phase 1b placebo-controlled, randomized,
multiple-ascending-dose study in healthy subjects, olinci-
guat given once-daily for up to 14 consecutive days was
well tolerated and no serious adverse events were
observed. Olinciguat displayed rapid absorption, an ade-
quate half-life for once-daily dosing and achieved plasma
cGMP elevation.131 Olinciguat recently received orphan-
drug status from the FDA as a potential treatment for
SCD132 and a phase 2 double-blind, placebo-controlled
multi-site trial (NCT03285178; STRONG-SCD) with a
planned enrolment of 88 SCD patients is underway to eval-
uate the safety and tolerability, pharmacokinetics, and
pharmacodynamics of three dose levels of olinciguat in
steady-state individuals with SCD (aged 16–70 years),
when administered for 12 weeks. Study completion is esti-
mated for the first half of 2019. Crucially, based on their

pharmacological mode of action, heme-dependent sGC
stimulators may hold potential for use in combination ther-
apy to amplify the NO-donating effects of hydroxyurea.

sGC activators

In contrast to the sGC stimulators, the sGC activators (NO-
independent heme-independent sGC activators) increase
the activity of sGC only in its oxidized Fe3þ or heme-free
inactive (apo-) state.133,134 sGC activators, therefore, trigger
sGC activity independently of NO, but their efficacy
appears to be additive to the effects of endogenous
NO.124,135 Since the sGC enzyme must be oxidized for
these agents to have effect, they are particularly valuable
for use in conditions of oxidative stress, making them
extremely attractive for investigation in SCD, a disease
characterized by oxidative stress.136

Cinaciguat (BAY 58–2667) is a potent sGC activator that
has been shown to promote vasodilation and attenuate pul-
monary hypertension, endothelial dysfunction, platelet
aggregation and thrombosis in experimental models.134,137

Cinaciguat, however, has a short half-life and despite suc-
cess in preclinical studies did not show significant efficacy
in clinical studies of patients with acute decompensated
heart failure, and in fact was associated with hypotension
in some patients.138 Another NO- and heme-independent
sGC activator, ataciguat (HMR1766), improves vasomotor
function and reduces platelet activation in rats with con-
gestive heart failure,139 but data regarding its clinical effi-
cacy in clinical trials for aortic valve stenosis
(NCT02049203), and neuropathic pain (NCT00799656)
have not been published.

BAY60–2770 is another sGC activator with cardioprotec-
tive effects.140 Preliminary data indicate that this sGC acti-
vator can abrogate the adhesive properties of neutrophils
from SCD individuals and significantly decrease leukocyte
recruitment and vaso-occlusive-like processes, in a mouse
model of inflammatory SCD vaso-occlusion.103

Interestingly, BAY 60-2770 is also able to provide renal pro-
tection in a mouse model of albuminuria,141 a property that
could be important for protecting against the nephropathy
that can occur in individuals with SCD.142 Like cinaciguat,
BAY60-2770 is a heme-mimicking protein, and can stably
insert into the sGC enzyme during protein biosynthesis and
maturation.143 Insertion of BAY60-2770 displaces heme in
sGC, independently of its redox state, possibly altering the
pharmacodynamic profile of the drug and may explain
why sGC activators can induce hypotension when long
infusion times are used.143

With regard to the potential use of sGC activators in
SCD, the chronic oral administration of the sGC activator,
BAY 54–6544, was found to decrease cardiac remodeling in
mice with SCD more efficiently than the sGC stimulator,
BAY 41–8543, without altering systemic blood pressure.102

Furthermore, the BAY 54–6544 sGC activator improved ex
vivo endothelium-dependent and -independent relaxation
of the pulmonary artery of SCD mice, while the sGC stim-
ulator was unable to augment vasorelaxation.102

Data suggest that sGC is oxidized in the pulmonary
arteries of SCD mice, hindering NO-induced responses144;
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sGC activation may therefore represent a potential therapy
that bypasses the need for NO-induced responses to
improve vasorelaxation in SCD and potentially provide
therapy for pulmonary arterial hypertension and cardiac
remodeling in these patients. While clinical findings for
cinaciguat were disappointing for treating acute decom-
pensated heart failure, the compound did exert some clin-
ical benefits, such as a rapid and sustained reduction in
pulmonary capillary wedge pressure.138 Therefore, investi-
gations continue to identify sGC activators with improved
pharmacokinetics that do not significantly alter systemic
blood pressure, particularly for those pathologies in
which oxidative stress is associated.

Phosphodiesterase inhibitor therapy in SCD

Phosphodiesterases (PDEs) are a class of enzymes that
hydrolyze cGMP and cAMP, in turn diminishing intracel-
lular cGMP and/or cAMP activity.145 The PDE enzymes are
divided into 11 families, each containing different isoforms.
As each PDE has a different and specific tissue/cellular
distribution and expression, they make ideal targets for
drug development due to the potential for fewer adverse
effects and greater specificity; furthermore, the low intra-
cellular concentrations of PDEs make them good substrates
for competitive inhibitors and their inhibition provides a
very rapid manner of effectively amplifying intracellular
cGMP levels.146

PDE5 specifically hydrolyzes cGMP and is an important
regulator of vascular smooth muscle contraction, especially
in the penis and in the lung, where it is reportedly up-
regulated in conditions of pulmonary hypertension.147,148

Sildenafil is a selective PDE5 inhibitor that improves pul-
monary hemodynamics and functional capacity in pulmo-
nary hypertension149 and preliminary investigations
indicated that this compound could be beneficial in SCD
pulmonary hypertension (Table 1).150 However, a clinical
trial (NCT00492531) conducted to evaluate the effects of
sildenafil in subjects with SCD with high tricuspid regur-
gitant velocity (TRV) and decreased exercise capacity had
to be terminated early due to an increased rate of hospital-
izations for severe pain episodes in patients on sildenafil
therapy compared with placebo,107 and no favorable effects
on the evaluated parameters were observed. In contrast,
sildenafil has shown benefits for preventing and resolving
recurrent ischemic episodes of priapism in SCD.104–106

The PDE9A (PDE9) enzyme has the highest affinity of all
the PDEs for cGMP.151 In contrast to PDE5, the expression of
PDE9A is largely restricted to the brain,151 although it is also
very highly expressed in hematopoietic cells, with even
higher expression in the neutrophils and reticulocytes of
patients with SCD.108 PDE9 inhibitors have been largely
developed for use in Alzheimer’s disease; however, there
is evidence that PDE9 inhibition could be of benefit in
SCD. BAY73-6691 is a potent and selective PDE9 inhibitor
(PDE9i)152 that has been demonstrated to decrease the in
vitro adhesive properties of SCD neutrophils.95,108

Moreover, BAY73-6691was found to elevate gene expression
of c-globin in erythroleukemic cells in vitro.108 In vivo studies,
in an inflammatory SCD mouse model, later found that

inhibition of PDE9 with BAY73-6691 significantly inhibited
leukocyte recruitment and vaso-occlusive processes in the
cremaster microcirculation when given in a single intrave-
nous administration. Furthermore, this PDE9i presented
synergistic effects when administered intravenously togeth-
er with hydroxyurea, reducing endothelial activation and
augmenting animal survival in a cGMP-dependent
manner.109 Due to its high expression in hematopoietic
cells, PDE9, therefore, represents a tissue-specific target to
rapidly enhance cGMP activity, amplifying the NO-
mediated acute beneficial effects of hydroxyurea in the
leukocytes and endothelium, in turn inhibiting SCD vaso-
occlusive processes.109 Thus, the use of PDE9 inhibitors rep-
resents an extremely attractive approach in SCD, due not
only to their immediate and acute anti-inflammatory effects
in the vasculature and their relative hematopoietic tissue
selectivity, but also their potential for elevating HbF synthe-
sis when used chronically (Table 1).108

PF-04447943 is a selective PDE9i that was developed for
use in Alzheimer’s disease, but has also been investigated
in SCD. Chronic administration of PF-04447943 reduces
leukocyte–platelet aggregates and markers of endothelial
activation in mice with SCD110 and a phase 1 clinical trial
(NCT02114203) has been conducted to assess the safety, tol-
erability, pharmacokinetics, and pharmacodynamics of PF-
04447943 in subjects with SCD. Improvements in the
inflammatory markers, soluble E-selectin and heterocellu-
lar aggregates, were reported in patients on PF-04447943111;
however, although apparent safety was observed, some
adverse events were also registered in patients in the PF-
04447943 arms (vaso-occlusive crisis, biliary colic and
pneumonia in 3 out of 22 patients). Another PDE9i, IMR-
687, developed specifically for the treatment of SCD, dis-
plays a very high specificity for PDE9A, with a low brain
penetration. Treatment of SCD mice with IMR-687 for 30
days inhibited microvascular stasis following hypoxia,
decreased RBC sickling, elevated HbF-positive RBC, and
reduced leukocytosis.112 IMR-687 was granted Rare
Pediatric Disease designation by the FDA and is currently
being evaluated in a randomized, placebo-controlled, mul-
ticenter study phase 2 trial (NCT03401112) to determine the
safety, pharmacokinetics, and preliminary pharmacody-
namics of escalating doses of IMR-687 in patients with SCD.

Potential limitation of cGMP modulation
therapy in SCD

One potential disadvantage of employing cGMP modula-
tion therapy in SCD could be the role that NO and cGMP
signaling may play in pain sensing. NO and cGMP partic-
ipate in inflammatory and neuropathic pain processing.
NO can act as a neurotransmitter, mediating peripheral
and central nociception,153 while neuronal or inducible
NO synthase-derived NO and consequent cGMP-
dependent neuronal signaling play a role in central sensi-
tization, inducing pain hypersensitivity and contributing to
inflammatory and neutropathic pain154 Conversely, there is
some evidence that NO may also have analgesic effects,
mediating the analgesic effects of opioids and other
substances.153
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Given that pain is a major complication of SCD, use of
these therapies could be potentially problematic in this dis-
ease. Indeed, as previously mentioned, use of sildenafil in
patients with SCD was unsuccessful due to an unexpected-
ly higher frequency of pain episodes in those patients in the
sildenafil arm, compared with the placebo arm.107

However, while myalgia and back pain have been associ-
ated with chronic PDE5 inhibitor administration,107 such
side effects have not yet been associated with guanylate
cyclase activator/stimulator therapy for the treatment of
heart failure,124 although reports of musculoskeletal disor-
ders for riociguat, compared with sildenafil and tadalafil,
are higher during their use for pulmonary hypertension.155

As such, pain evaluations will need to be carefully made
when carrying out clinical trials of cGMP modulators in
patients with SCD.

Conclusion

SCD is associated with a reduced life expectancy and life-
time morbidity. Hydroxyurea, the current mainstay of SCD
pharmacotherapy, reduces mortality, transfusion require-
ment, VOE frequency and incidence of ACS via HbF eleva-
tion, and probably, via its immediate anti-inflammatory
effects, all of which may be mediated by the ability of
hydroxyurea to upregulate intracellular cGMP-dependent
signaling. Despite the success of hydroxyurea therapy in
SCD, investigations continue to identify compounds that
can be used in combination with hydroxyurea, or alone,
with a view to further reducing the frequency of painful
VOEs and also for use following the onset of VOC and
hospitalization of patients, as current therapeutic options
for treating VOC are limited to pain medication and hydra-
tion. Pharmacological grade L-glutamine supplementation
was recently approved by the FDA156 and biological drugs
such as crizanlizumab,157 which demonstrated promising
results in a recent clinical trial, show potential for use in
SCD, due to their ability to reduce oxidative stress
and abrogate P-selectin mediated cellular interactions,
respectively. However, classes of drugs that upregulate
cGMP-dependent signaling by providing NO under hyp-
oxic conditions or by bypassing the need for NO delivery
and amplifying intracellular cGMP concentrations may
also constitute a major approach for use in SCD (see Table
1), in combination, or not, with hydroxyurea.
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