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Abstract: The human kinome comprises more than 50 pseudo-kinases with unclear biological function due to the 
absence of apparent catalytic activity, and therefore, with presumably little interest for cancer drug discovery. How-
ever, it is now acknowledged that several of them, such as Pragmin family members, play roles as important as 
those of active kinases in human cancer. How these pseudo-kinases promote tumor formation is largely unknown. 
Recently, independent structural analyses of three Pragmin pseudo-kinases (Pragmin, SGK223, and SGK269/
PEAK1) revealed a split helical dimerization (SHED)-based mechanism of action. Additional sequence-structure 
analysis identified C19orf35 as a new member of the Pragmin family. Based on the results of these molecular stud-
ies, we present a unified model on how Pragmin pseudo-kinases may regulate oncogenic signaling, and suggest 
potential therapeutic strategies to block their tumor activity.
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The Pragmin subfamily of pseudo-kinases com-
prises Pragmin, the human ortholog SGK223 
and the structural homologs SGK269/PEAK1 
as well as a new incomer C19orf35, also named 
PEAK3. Pragmin was originally discovered as a 
signaling protein and effector of the small 
GTPase Rnd2 from a rat expression library to 
induce cell contraction [1]. Later, Pragmin was 
identified as a key component of a nuclear 
Notch transcriptional complex containing the 
Notch intracellular domain, NICD, and the co-
activator Maml-1 to regulate Notch-dependent 
transcription, consistent with additional nucle-
ar functions [2]. SGK269/PEAK1 was isolated 
as a pseudopodium-enriched atypical kinase 1 
from a proteomic study (hence PEAK1) to regu-
late cell adhesion [3]. C19orf35 was identified 
lately as an additional member of the subfamily 
from an in silico sequence-structure analysis 
and has yet unknown function [4]. Consistent 
with signaling functions, Pragmin/SGK223 and 
PEAK1/SGK269 regulate cell growth and adhe-
sion induced by various extracellular cues (EGF, 
VEGF, Notch, TGFbeta, collagen and fibronec-
tin) [2, 3, 5-8]. Mechanistically, they undergo 

tyrosine phosphorylation allowing the recruit-
ment of important effectors, such as Grb2  
and Shc, for intracellular signaling [3, 5, 9]. 
Compelling evidence now support an essential 
role for these pseudo-kinases in human cancer. 
For instance, Pragmin/SGK223 and PEAK1/
SGK269 were found overexpressed in various 
adenocarcinoma cells from the colon, the lung 
and the pancreas [3, 10-13]. Additionally, their 
tumor expression levels were associated with 
the aggressiveness of the disease in patients 
with colorectal cancer [13] (unpublished obser-
vations); and PEAK1/SGK269 was reported as 
also an early biomarker for pancreatic develop-
ment and progression [10]. They exhibit onco-
genic activity as their overexpression enhances 
tumor cell growth and migration in vitro and 
promotes tumorigenesis in vivo, while their 
downregulation reduce these cell neoplastic 
transforming properties [2, 3, 6-11, 14]. Pro- 
teomic studies also identified these pseudo-
kinases as novel substrates of oncogenic tyro-
sine kinases (Src, Lyn, HER2, DDR1) and critical 
components of tumor signaling driven by vari-
ous oncogenes (KRAS, Notch and TGFbeta) [2, 
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6-10, 14-17] (Figure 1). Therefore, targeting 
their tumor activity may be of therapeutic inter-
est in these human adenocarcinomas.

sine. These features suggested that no ATP 
binding can occur and no ATP binding by either 
the crystallized C-terminal of Pragmin in vitro or 

Figure 1. Proposed tumor activity of Pragmin pseudo-kinases. Integrins and 
growth factor receptors induce pseudo-kinase activation by a double-act 
mechanism (see Figure 3) enhancing MAPKs, Jak/Stat3, Notch, ZEB1, YAP/
TAZ and Rho-pathways to induce gene expression and cytoskeleton rear-
rangement necessary for tumor cell growth and migration.

How these pseudo-kinases 
induce malignant cell trans-
formation is largely unclear. 
Due to the presence of a 
kinase domain, Pragmin onco-
genic functions have been 
linked to protein phosphoryla-
tion. For instance, SGK223 
was shown to regulate protein 
tyrosine phosphorylation in 
cancer cells and both Pragmin 
and PEAK1 were found asso-
ciated with protein tyrosine 
kinase activity in vitro [3, 4, 
14]. Furthermore, an intact 
kinase domain was found 
necessary for PEAK1 to 
induce tumor cell growth [10] 
and for SGK223 to activate 
Notch-dependent transcrip-
tion [18]. However, the exact 
role of these kinase domains 
in protein tyrosine phosphory-
lation and malignant cell 
transformation is unclear. 
Indeed, these signaling pro-
teins were scored as pseudo-
kinases due to the absence of 
conserved sequences need-
ed for catalytic reaction in- 
cluding the the Gly-rich loop 
and the so-called DFG [19]. 

Recently, three structural 
analyses brought important 
molecular insight on their 
mechanism of action [4, 20, 
21]. First of all, the three inde-
pendent crystal structures 
confirmed that these proteins 
share a protein-kinase fold. 
They also revealed a rear-
ranged catalytic site with both 
significant sequence varia-
tions compared to catalytical-
ly active protein-kinase and 
also a tightly closed confor-
mation. Indeed, these three 
structures showed a con-
served inhibitory triad (D978, 
Y981 and Q1021 in Pragmin) 
surrounding the catalytic ly- 

Figure 2. The growing family of Pragmin pseudo-kinases. Modular structure 
of Pragmin pseudo-kinases with the associated activated protein kinase 
shown in red. The modular structure of the closest active protein kinase ho-
molog PINK1 is also shown. Predicted additional regulatory mechanisms are 
highlighted by question marks.
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the full-length protein in cellulo, was detected 
[4]. Furthermore, any attempt to resuscitate 
ATP binding by mutating the inhibitory triad 
were unsuccessful [4]. This data confirms the 
kinase inactive nature of these signaling pro-
teins, which raises the mechanism by which 
they may induce protein tyrosine phosphoryla-
tion. By proteomics, it was then discovered that 
Pragmin uses the tyrosine kinase CSK to induce 
protein tyrosine phosphorylation in human cells 
[4], which was primed by a pTyr-SH2 dependent 
mechanism upon Pragmin phosphorylation on 
its major tyrosine phosphorylation site present 
in the EPIYA sequence [22]. Although not exper-
imentally verified, PEAK1 may use a similar 
mechanism through an interaction with a tyro-
sine kinase of the Src family (SFKs) upon phos-
phorylation on Tyr 665 [23] and an equivalent 
scenario might be expected for C19orf35 
(Figure 2).

Interestingly, these three crystal structures 
revealed an original dimerization domain, 
named split helical dimerization (SHED) in 
PEAK1, comprising a long helix N-terminal to 

tion where a pseudo-kinase heterodimerizes 
back-to-back to an active kinase for regulating 
its activity [24]. Here, the homodimerization 
would bring in proximity their natively disor-
dered N-terminal extension (from 100 up to 
900 residues long) and their attached partners 
thanks to various motifs such as the phosphor-
ylated EPIYA segment. Surprisingly, the most 
closely related and active protein-kinase, 
PINK1, is a serine/threonine kinase whose 
recently solved crystal structure highlighted the 
presence of a similar domain in its C-terminus, 
and in similar position relative to the protein-
kinase domain but lacking the long N-terminal 
helix [25]. It is therefore postulated that PINK1 
activity may be regulated by dimerization as 
soon as its N-terminus or a helical partner com-
plete its partial SHED module (Figure 2). In this 
view, we might wonder whether a partner of 
Pragmin or PEAK1, can bring a long helix to 
break down their dimer to regulate their activity 
or cellular localization.

From these structural analyses, we propose a 
conserved “double-act” mechanism by which 

Figure 3. A double-act mechanism for Pragmin pseudo-kinase signaling in 
human cancer. SHED-mediated pseudo-kinase dimerization activates the as-
sociated protein tyrosine kinase upon tyrosine phosphorylation by upstream 
signals to phosphorylate specific cancer substrates. 

the pseudo-kinase domain 
and four additional helices 
from the C-terminal extension 
[4, 20, 21]. The sequence mo- 
tifs conserved in those exten-
sions are found surrounding 
the pseudo-kinase domain  
of C19orf35, accordingly a 
new member of the family [4]. 
Finally, by taking advantage of 
the crystal structures to de- 
sign mutations, it was shown 
that protein tyrosine phos-
phorylation activation and sig-
naling by Pragmin/SGK223 
relies on its conserved dimer-
ization [4, 20]. Remarkably, 
Pragmin dimerization dramat-
ically enhances the CSK ca- 
pacity to induce protein tyro-
sine phosphorylation in hu- 
man cells independently from 
SFKs [4]. It will thus be inter-
esting to test whether this 
dimerization mechanism also 
operates in PEAK1 for SFKs 
activation. This mechanism 
however differs from the pre-
viously described mode of ac- 
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Pragmin pseudo-kinases induces protein phos-
phorylation and signaling [26] (Figure 3). In this 
model, the SHED dimerization domain flanking 
its pseudo-kinase domain is important for Pra- 
gmin-mediated activation of the targeted non-
receptor tyrosine kinase to induce phosphory-
lation of specific oncogenic substrates. In 
agreement, PEAK1 was shown to use Src activ-
ity to promote cell transformation in the pan-
creas [10] and Pragmin may use CSK to en- 
hance cancer properties of gastric or colorect- 
al adenocarcinoma cells [14, 15], where CSK 
was found dramatically upregulated [27, 28]. 
From this model, one can propose these pseu-
do-kinases as novel candidates for the devel-
opment of new therapeutics. For instance, 
Pragmin pseudo-kinases inhibition can rely on 
the targeting of their activated protein tyrosine 
kinase. Accordingly, one might predict the utili-
ty of clinically available Src inhibitors in tumors 
overexpressing PEAK1 and possibly Pragmin 
since they also efficiently target CSK activi- 
ty [29]. Pseudo-kinase inhibition may also 
involve drugs that destabilize their dimeric con-
formation with the guidance of the structure, 
although sufficient evidence for the dimeric 
role of these oncogenic pseudo-kinases are 
still lacking. Finally, since Pragmin tumor activi-
ties are linked to their upregulation in human 
cancer, any drug targeting their expression may 
display anti-oncogenic effect. Consistently, this 
strategy was recently validated with eIF5A-
dependent translation inhibitors to target 
PEAK1-dependent growth properties in pancre-
atic cancer cells [30]. Whether this strategy 
may apply to additional oncogenic pseudo-
kinases is however currently unknown.

Finally, these structural analyses raise a num-
ber of important questions on how Pragmin 
pseudo-kinases exert their tumor activities. For 
instance, an important nuclear role for Pragmin 
was reported in tumor cells [2], which may be 
linked to its adhesive function, possibly to coor-
dinate cell adhesion and transcription for cell 
fate decision. It will thus be important to 
address how these functions are coordinated 
to promote tumor formation and whether our 
described kinase-dependent dimeric mecha-
nism is involved in this process. Another impor-
tant question comes from the strong similari-
ties shared by the SHED domains, which 
predicts a combination of heterodimers within 
the family [21], as recently reported for SGK- 
223/PEAK1 complexes [31]. How these het-
erodimers influence Pragmin pseudo-kinases 

signaling is another important question that 
needs to be addressed in the future. Finally, 
these structural studies predict a novel dimer-
ic-based mechanism of tyrosine kinase activa-
tion. Deciphering such regulatory mechanism 
may bring additional important insight into 
pseudo-kinase and tyrosine kinase regulation.
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