Table 4.
Model | Training Set | Test Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | SN | SP | BCR | Precision | F1 Score | Accuracy | SN | SP | BCR | Precision | F1 Score | |
For maximum sensitivity criterion | ||||||||||||
DAC | 0.70 | 0.58 | 0.73 | 0.65 | 0.35 | 0.44 | 0.70 | 0.59 | 0.73 | 0.65 | 0.37 | 0.45 |
KNNC | 1 | 1 | 1 | 1 | 1 | 1 | 0.72 | 0.34 | 0.82 | 0.53 | 0.34 | 0.34 |
NBC | 0.62 | 0.73 | 0.60 | 0.66 | 0.31 | 0.44 | 0.63 | 0.73 | 0.60 | 0.66 | 0.33 | 0.45 |
SVMC | 0.53 | 0.48 | 0.54 | 0.51 | 0.21 | 0.29 | 0.52 | 0.48 | 0.54 | 0.51 | 0.22 | 0.30 |
DTC | 0.80 | 0.10 | 0.97 | 0.31 | 0.52 | 0.17 | 0.78 | 0.08 | 0.97 | 0.28 | 0.49 | 0.14 |
RFC | 0.78 | 0.88 | 0.75 | 0.81 | 0.47 | 0.61 | 0.68 | 0.66 | 0.69 | 0.67 | 0.36 | 0.47 |
For maximum BCR criterion | ||||||||||||
DAC | 0.70 | 0.58 | 0.73 | 0.65 | 0.35 | 0.44 | 0.70 | 0.59 | 0.73 | 0.65 | 0.37 | 0.45 |
KNNC | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.72 | 0.34 | 0.82 | 0.53 | 0.34 | 0.34 |
NBC | 0.62 | 0.73 | 0.60 | 0.66 | 0.31 | 0.44 | 0.63 | 0.73 | 0.60 | 0.66 | 0.33 | 0.45 |
SVMC | 0.53 | 0.48 | 0.54 | 0.51 | 0.21 | 0.29 | 0.52 | 0.48 | 0.54 | 0.51 | 0.22 | 0.30 |
DTC | 0.80 | 0.10 | 0.97 | 0.31 | 0.52 | 0.17 | 0.78 | 0.08 | 0.97 | 0.28 | 0.49 | 0.14 |
RFC | 0.73 | 0.71 | 0.73 | 0.72 | 0.40 | 0.51 | 0.70 | 0.64 | 0.71 | 0.68 | 0.37 | 0.47 |
SN: sensitivity; SP: specificity; BCR: balanced classification rate; DAC: discriminant analysis classification; KNNC: K-nearest neighbor classification; NBC: naïve Bayes classification; SVMC: support vector machine classification; DTC: decision tree classification; and RFC: random forest classification.