Skip to main content
. 2019 Feb 2;8(2):172. doi: 10.3390/jcm8020172

Table 4.

Comparison of model performance for maximum sensitivity criterion and maximum BCR criterion.

Model Training Set Test Set
Accuracy SN SP BCR Precision F1 Score Accuracy SN SP BCR Precision F1 Score
For maximum sensitivity criterion
DAC 0.70 0.58 0.73 0.65 0.35 0.44 0.70 0.59 0.73 0.65 0.37 0.45
KNNC 1 1 1 1 1 1 0.72 0.34 0.82 0.53 0.34 0.34
NBC 0.62 0.73 0.60 0.66 0.31 0.44 0.63 0.73 0.60 0.66 0.33 0.45
SVMC 0.53 0.48 0.54 0.51 0.21 0.29 0.52 0.48 0.54 0.51 0.22 0.30
DTC 0.80 0.10 0.97 0.31 0.52 0.17 0.78 0.08 0.97 0.28 0.49 0.14
RFC 0.78 0.88 0.75 0.81 0.47 0.61 0.68 0.66 0.69 0.67 0.36 0.47
For maximum BCR criterion
DAC 0.70 0.58 0.73 0.65 0.35 0.44 0.70 0.59 0.73 0.65 0.37 0.45
KNNC 1.00 1.00 1.00 1.00 1.00 1.00 0.72 0.34 0.82 0.53 0.34 0.34
NBC 0.62 0.73 0.60 0.66 0.31 0.44 0.63 0.73 0.60 0.66 0.33 0.45
SVMC 0.53 0.48 0.54 0.51 0.21 0.29 0.52 0.48 0.54 0.51 0.22 0.30
DTC 0.80 0.10 0.97 0.31 0.52 0.17 0.78 0.08 0.97 0.28 0.49 0.14
RFC 0.73 0.71 0.73 0.72 0.40 0.51 0.70 0.64 0.71 0.68 0.37 0.47

SN: sensitivity; SP: specificity; BCR: balanced classification rate; DAC: discriminant analysis classification; KNNC: K-nearest neighbor classification; NBC: naïve Bayes classification; SVMC: support vector machine classification; DTC: decision tree classification; and RFC: random forest classification.