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Abstract

Background: Airflow obstruction is a hallmark of chronic obstructive pulmonary disease (COPD), and is defined as
either the ratio between forced expiratory volume in one second and forced vital capacity (FEV,/FVC) <70% or

< lower limit of normal (LLN). This study aimed to assess the overlap between genome-wide association studies
(GWAS) on airflow obstruction using these two definitions in the same population stratified by smoking.

Methods: GWASes were performed in the LifeLines Cohort Study for both airflow obstruction definitions in
never-smokers (NS =5071) and ever-smokers (ES =4855). The FEV,/FVC < 70% models were adjusted for sex, age,
and height; FEV,/FVC < LLN models were not adjusted. Ever-smokers models were additionally adjusted for
pack-years and current-smoking. The overlap in significantly associated SNPs between the two definitions and
never/ever-smokers was assessed using several p-value thresholds. To quantify the agreement, the Pearson
correlation coefficient was calculated between the p-values and ORs. Replication was performed in the
Vlagtwedde-Vlaardingen study (NS =432, ES = 823). The overlapping SNPs with p < 10~ * were validated in the
Vlagtwedde-Vlaardingen and Rotterdam Study cohorts (NS = 1966, ES = 3134) and analysed for expression
quantitative trait loci (eQTL) in lung tissue (n = 1087).

Results: In the LifeLines cohort, 96% and 93% of the never- and ever-smokers were classified concordantly based
on the two definitions. 26 and 29% of the investigated SNPs were overlapping at p < 0.05 in never- and ever-
smokers, respectively. At p < 10”“ the overlap was 4% and 6% respectively, which could be change findings as
shown by simulation studies. The effect estimates of the SNPs of the two definitions correlated strongly, but the
p-values showed more variation and correlated only moderately. Similar observations were made in the
Vlagtwedde-Vlaardingen study. Two overlapping SNPs in never-smokers (NFYC and FABP7) had the same direction
of effect in the validation cohorts and the NFYC SNP was an eQTL for NFYC-AST. NFYC is a transcription factor that
binds to several known COPD genes, and FABP7 may be involved in abnormal pulmonary development.
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Conclusions: The definition of airflow obstruction and the population under study may be important determinants
of which SNPs are associated with airflow obstruction. The genes FABP7 and NFYC(-AS1) could play a role in airflow

obstruction in never-smokers specifically.

Keywords: Genome-wide association study, Genetics, Airflow obstruction, COPD

Background

Chronic obstructive pulmonary disease (COPD) is a
major cause of morbidity and mortality in the world and
encompasses emphysema, chronic bronchitis, and small
airways disease [1, 2]. The diagnosis of COPD is largely
based on the presence of airflow obstruction, measured
by the spirometric assessment (post-bronchodilator) of
the ratio between forced expiratory volume in one sec-
ond and forced vital capacity (FEV;/FVC). The Global
initiative for chronic Obstructive Lung Disease (GOLD)
recommends to use a fixed cut-off for defining airflow
obstruction, namely an FEV;/FVC ratio below 70% (3],
whereas the American Thoracic Society/European
Respiratory Society (ATS/ERS) guidelines recommend to
define airflow obstruction as FEV;/FVC below the lower
limit of normal (LLN) [4]. The LLN is a reference value
based on sex, age, height and ethnicity and is calculated as
the lower fifth percentile of a healthy reference population
[5]. There is a considerable controversy about which def-
inition should be used in research and clinical practice,
since both may lead to misclassifications [5-8]. This has
important implications, since misclassifications may lead
to inappropriate medication and therapies [9, 10].

It is generally accepted that both genetic susceptibility
and environmental factors contribute to airflow obstruc-
tion. Genetic variants associated with airflow obstruction
have been identified by several genome-wide association
studies (GWAS), but different definitions of airflow
obstruction and populations were used. [11-16] As an
illustration, the case-control study including only
smokers with >2.5 pack-years by Pillai et al. used the
fixed ratio (FEV;/FVC <70%) to define airflow obstruc-
tion, while the population based study including both
ever- and never-smokers by Wilk et al. used the lower
limit of normal (LLN) [15, 16]. Only few regions were
identified in both studies, namely the CHRNAS5/3 and
HHIP regions. We therefore aimed to assess the genetic
overlap between the two definitions of airflow obstruc-
tion in the same individuals. We stratified by smoking
status to assess the overlap between the two airflow
obstruction definitions in never- and ever-smokers sep-
arately. We used the Lifelines Cohort Study as discovery
sample and the Vlagtwedde-Vlaardingen study to repli-
cate our observations. In addition, genetic loci associated
with both airflow obstruction definitions could indicate
robust genetic associations with airflow obstruction,

which could potentially be novel loci. We therefore, as a
secondary aim, validated the top overlapping single-nu-
cleotide polymorphisms (SNPs) between the two airflow
obstruction discovery analyses in an independent SNP
validation sample and assessed if they were acting as ex-
pression quantitative trait loci (eQTLs) in a lung tissue
sample.

Materials and methods

Study populations

To study the overlap between the two airflow obstruc-
tion definitions, all subjects with available genotypic data
were included from the Dutch LifeLines Cohort Study
(discovery sample) and the Vlagtwedde-Vlaardingen
study (replication sample) [17-19]. In addition, subjects
from the Vlagtwedde-Vlaardingen study and the three
independent cohorts of the Rotterdam Study (RS I to
III) were selected to validate the top overlapping
SNPs from LifeLines (SNP validation sample), thereby
increasing the SNP validation sample size [20]. All
subjects provided written informed consent and the
studies were approved by local medical ethics com-
mittees. Smoking status was based on self-reported
smoking history and pack-years smoked. In the
stratified analyses never-smokers having smoked 0
pack-years and ever-smokers having smoked >5
pack-years were included, thereby excluding subjects
with >0 and <5 pack-years. Subjects were defined as
having airflow obstruction based on having a
pre-bronchodilator FEV;/FVC ratio (%) <70% or<
LLN (based on Global Lung Initiative 2012
(GLI-2012)) [21]. All subjects completed pulmonary
function testing according to ATS or ERS criteria [22].
Additional details are provided in Additional file 1.

Genotyping

The IlluminaCytoSNP-12 arrays were used to genotype
blood samples in LifeLines and the Vlagtwedde-Vlaar-
dingen study. SNPs with a genotype call-rate = 95%,
minor allele frequency>1% and Hardy-Weinberg
p-value >10"* were included. Non-Caucasian samples
and first-degree relatives were excluded based on
self-reporting, outlier (Identity By State) and principal
component analysis. After quality control, 227,981 geno-
typed SNPs were included in the discovery analyses
(LifeLines) and 242,926 genotyped SNPs were included
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in the replication analyses (Vlagtwedde-Vlaardingen).
Only genotyped SNPs were included in the analyses to
prevent introducing bias, since it is known that imput-
ation can reduce the effect size estimation, especially if
healthy controls are used as reference [23]. Blood
samples in the Rotterdam study were genotyped with
the 610K and 660K Illumina arrays and similar QC
criteria as in the other cohorts were applied.

Statistical analysis

Four separate GWASes were performed assessing the
genetic associations between the two definitions of
airflow obstruction, stratified by smoking status, for both
the LifeLines (discovery) and Vlagtwedde-Vlaardingen
(replication) studies. Logistic regression (additive genetic
model) was performed using PLINK (v1.07) [24]. The
“FEV,1/FVC < 70%” model was adjusted for sex, age and
height. The “FEV;/FVC < LLN” model was not adjusted
for these variables, since they are included in the LLN
calculation. In ever-smokers, the models were addition-
ally adjusted for pack-years and current-smoking. We
used different p-value thresholds to assess the number
of overlapping SNPs between the two definitions. In
addition, to quantify the agreement of the results
between the two definitions and between never-and
ever-smokers, we calculated the Pearson correlation
coefficient between the p-values and between the ORs.

Power simulations

Or study has a relative small sample size (n = 5070) and
therefore relative low power. We assessed the effect of
low power on the overlap between the two definitions by
increasing our never-smoking discovery sample (Life-
Lines) 2 (n =10,140) and 4 (n =20,280) times. In
addition, to assess if our results were spurious, we used
our never-smoking discovery sample and randomly allo-
cated 10 times the airflow obstruction cases but keeping
the same distribution as in our original dataset (FEV,/
FVC <70%: n =548, FEV,;/FVC < LLN: n =401, overlap-
ping cases: n =371 (64%)). For both simulation studies,
we repeated the GWAS analyses on both airflow
obstruction definitions in the created datasets and com-
pared the number of overlapping SNPs.

Validation of overlapping SNPs

Only the top overlapping SNPs between the two airflow
obstruction definitions in the discovery sample
(LifeLines) were evaluated in the SNP validation sample,
the Vlagtwedde-Vlaardingen study and RS I to III. A fix-
ed-effects meta-analysis of the effect estimates weighted
by the inverse of the standard errors from all four valid-
ation cohorts was performed using METAL (v2011) [25].
We considered replication if the meta-analysis p-value
was below the Bonferroni corrected p-value defined as
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0.05/number of overlapping SNPs and, in addition, had
the same direction of effect in all cohorts. In
addition, SNP*ever-smoking interactions were esti-
mated and we assessed if the overlapping SNPs were
associated with gene expression levels in lung tissue
within a 4 Mb window around the SNP (2 Mb on ei-
ther side of the SNP), using data from the lung eQTL
consortium [26]. In total, 1087 subjects were included
in the linear regression model, adjusted for disease
status, age, sex, smoking, and cohort specific principal
components. SNPs with a p-value below the
Bonferroni corrected threshold (p =0.05/number of
probesets) were considered significant eQTLs. See
Additional file 1 and GEO accession numbers
GSE23546 and GPL10379 for additional information.

Results

Population characteristics

The LifeLines cohort (discovery sample) included
5070 never-smokers and 4855 ever-smokers with
complete data on all covariates (see Table 1). Of the
never-smokers in LifeLines, 96% had a concordant
airflow obstruction classification for the two defini-
tions: 89% did not have airflow obstruction and 7%
did have airflow obstruction. The remaining 4% had a
discordant classification (see Additional file 1: Table S1A).
Figure 1a shows that of all never-smoking subjects with
airflow obstruction based on at least one airflow ob-
struction definition (n =578), 36% had a discordant
airflow obstruction classification. Of the ever-smokers,
93% was classified concordantly: 77% did not have
airflow obstruction and 17% did have airflow obstruc-
tion. The remaining 7% had a discordant classification
(see Additional file 1: Table S1B). Of all ever-smoking
subjects with airflow obstruction based on at least
one definition (n =1138), 30% had a discordant air-
flow obstruction classification (see Fig. la). Subjects
with an FEV;/FVC <70% and >LLN were aged be-
tween 41 and 85, and subjects with an FEV;/FVC >
70% and < LLN were aged between 22 and 43. These
and other characteristics of the airflow obstruction
groups separately for never- and ever-smokers in
LifeLines are shown in Additional file 1: Table S2.

The Vlagtwedde-Vlaardingen study (replication sample)
included 432 never-smokers and 823 ever-smokers (see
Table 1). Of the Vlagtwedde-Vlaardingen study, 94% and
90% of the never- and ever-smokers were classified
concordantly based on the two definitions (see Additional
file 1: Table S1 C-D).

The SNP validation sample used for the SNP valid-
ation meta-analysis included 1966 never-smokers and
3134 ever-smokers from the Vlagtwedde-Vlaardingen
study and RS I to III (see Table 1).
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Table 1 Characteristics of never- and ever-smokers included in the current study

Never-smokers

Ever-smokers

LifeLines  Vla-Vla® RS I RS I RS I LifeLines  Vla-Vla® RS I RS I RSl
N with no missing data 5070 432 408 379 747 4855 823 640 583 1088
Males, N (%) 1942 (38) 103 (23) 81 (20) 124 (33) 308 (41) 2312 (48) 590 (72) 375 (59) 343 (59) 531 (49)
Age (yrs), median 46 (18-89) 54 (36-79) 78 (72-94) 71 (65-98) 62 (51-93) 49 (22-85) 53 (35-79) 79 (72-95) 71 (65-93) 62 (52-93)
(min-max)
Height (cm), mean (SD) 174 (9) 166 (9) 163 (9) 166 (9) 171 (9) 175 (9) 173 (8) 168 (9) 171 (9) 172 (9)
Current-smokers, N (%) - - - - - 2171 (45) 478 (58) 99 (16) 108 (19) 298 (27)
Pack-years (yrs), mean (SD) - - - - - 17.(11) 27 (21) 29 (21) 29 (21) 27 (20)
Pulmonary function, mean (SD)
FEV,%predicted (%), 98 (13) 91 (13) 101 (18) 102 (16) 101 (16) 94 (14) 85 (15) 98 (23) 96 (21) 99 (19)
mean (SD)*
FEV1/FVC (%), 78 (7) 76 (7) 77 (7) 79 (6) 78 (6) 75 (8) 72 (10) 74 (9) 74 (9 75 (8)
mean (SD)°
FEV,/FVC <70%, N (%) 548 (11) 77 (18) 51 (13) 27 (7) 75 (10) 1107 (23) 287 (35) 163 (26) 151 (26) 235 (22)
FEV1/FVC < LLN, N (%) 401 (8) 49 (11) 9(2) 9(2) 25(3) 833 (17)  212(26)  63(10) 62 (11) 122(11)
Both FEV,/FVC <70% 371 (7) 49 (11) 9(2) 9(2) 25 (3) 802 (17) 207 (25) 63 (10) 62 (11) 122 (11)
and < LLN, N (%)
Moderate/severe COPD, 106 (2) 26 (6) 21 (5) 92 16 (2) 310 (6) 145 (18) 90 (14) 90 (15) 104 (10)

N (%)°

Discovery sample = LifeLines cohort study, replication samples = Vlagtwedde-Vlaardingen (Vla-Vla) study, and SNP validation sample = Vla-Vla and RS | to IlI

FEV, forced expiratory volume in one second, FVC forced vital capacity
2FEV,%predicted is based on the reference equation by GLI-2012 [21]

BFEV,%IVC (inspiratory vital capacity) for the Vlagtwedde-Vlaardingen study (Vla-Vla)
“COPD GOLD stage 2 and up (FEV;/FVC <70% and FEV;%p < 80% based on pre-bronchodilator measurements)

GWAS results

There was minimal population stratification in all ana-
lyses of LifeLines, indicated by the genomic inflation fac-
tor lambda (\: 1.0002-1.0217, see Additional file 1:
Figure S1). The results based on a p <10™* of all four
analyses in LifeLines are given in See (Additional file 1:
Tables S3-S6), including the Manhattan plots (see
Additional file 1: Figures S2 and S3). For comparison,
the effect estimates of both airflow obstruction definition
are given in these tables. Summary statistics (p values,
betas, and standard errors for all SNPs that were tested) of
the GWAS result of both the Lifelines Cohort Study and
the Vlagtwedde-Vlaardingen study are provided in
Additional file 2.

Overlap between the results

We used several p-value thresholds to assess the overlap
between the GWAS results of both airflow obstruction
definitions separately in never- and ever-smokers of
LifeLines (see Table 2). A threshold of 0.05 resulted in
the observation that 26% and 29% of the SNPs were
overlapping between the two airflow obstruction defini-
tions in never- and ever-smokers, respectively. Three
percent of the SNPs were overlapping between never-
and ever-smokers for both definitions. A smaller p-value
threshold resulted in a lower percentage of overlap e.g. a
threshold of p < 10™* resulted in 4% and 6% overlapping

SNPs between the two airflow obstruction definitions in
never- and ever-smokers, respectively (see Fig. 1b), and
zero overlap between never- and ever-smokers using the
same definition of airflow obstruction. Similar observa-
tions were made in the replication sample the
Vlagtwedde-Vlaardingen study (see Table 2), since at
p <0.05 the overlap between the definitions was 24%
and 25% in never- and ever-smokers, respectively, and
2% of the SNPs were overlapping between never- and
ever-smokers for both definitions.

The correlations between the SNP-specific p-values
and ORs from the two airflow obstruction definitions
were 0.48 (p-value) and 0.78 (OR) in never-smokers,
and 0.51 (p-value) and 0.81 (OR) in ever-smokers (see
Fig. 2). Between never- and ever-smokers the correla-
tions of the SNP-specific p-values were 0.0008 for
FEV,/FVC <70% and 0.002 for FEV,/FVC < LLN, and
for the OR the correlation was -0.02 for both
definitions. Similar observations were made in the
replication sample, the Vlagtwedde-Vlaardingen study.
The correlations between the two definitions were
0.45 (p-value) and 0.76 (OR) in never-smokers, and
041 (p-value) and 0.74 (OR) in ever-smokers.
Between never- and ever-smokers the correlations
were — 0.001 (p-value) and 0.015 (OR) for FEV,/FVC
<70% and - 0.003 (p-value) and 0.004 (OR) for FEV,/
FVC <LLN.
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Never-smokers

Ever-smokers

© FEV//FVC <70%
© FEV4/FVC <LLN
@ FEV4/FVC <70% & <LLN

Never-smokers

Ever-smokers

.

Fig. 1 Venn diagrams showing the overlap between the two definitions of airflow obstruction for the number of subjects classified as having
airflow obstruction (a) and the number of identified SNPs with p < 10~ * (b) in LifeLines (discovery sample)

Power simulations

We found that the percentage of overlap increased when
we expanded our never-smoking identification sample 2
and 4 times (see Additional file 1: Table S7). The overlap
between SNPs with p < 10~ * was 3.6% in the original data-
set, 16.5% in the 2x dataset and 26.6% in the 4x dataset. In
addition, when we randomly allocated cases 10 times in
our identification sample, we found the percentage of
overlap between the two definitions at p <10~ * varied
between 0 to 16%, compared to 4% in the original dataset
(see Additional file 1: Table S8).

Validation of overlapping SNPs

In never-smokers of LifeLines, two SNPs were overlap-
ping between the FEV;/FVC<70% and<LLN
definitions at a threshold of p <10~ * (see Table 3). The
first SNP (rs7519348) is located in an intron of the gene
nuclear transcription factor Y subunit C (NFYC), and
the second SNP (rs6913003) is located in an intron of fatty
acid binding protein 7 (FABP7, see Additional file 1:
Figure S4 and S5 for LocusZoom plots). The minor alleles

of both SNPs were associated with a higher risk of airflow
obstruction and had comparable odds ratios in both
analyses. The SNP in NFYC (rs7519348) was significantly
associated with FEV,;/FVC <LLN in the SNP validation
meta-analysis (p =0.034), but did not pass the multiple
testing correction (0.05/2 =0.025), and was not signifi-
cantly associated with FEV;/FVC <70% in the SNP
validation meta-analysis (p =0.07). The SNP in FABP7
(rs6913003) was not significantly associated with FEV,/
FVC <70% or < LLN in the SNP validation meta-analyses
(p =0.08 in both), although the direction of effect was the
same in all independent cohorts. Both SNPs did not reach
genome-wide significance according to the Bonferroni-
corrected threshold (p <2.19 x 10”7) in the discovery ana-
lysis (LifeLines) or meta-analysis of both the discovery and
SNP validation samples (see Table 3 and Additional file 1:
Table S9). Yet, the odds ratios were comparable
between all analyses (see Additional file 1: Table S10
and Figure S6). These two overlapping SNPs were not
associated with airflow obstruction in ever-smokers
and these associations were significantly different
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Table 2 Table showing the number of SNPs with a p-value below the mentioned threshold for both FEV,/FVC < 70% and < LLN

analysis and the overlap

Threshold Never-smokers Ever-smokers (> 5 py) Overlap never- and ever-smokers
70% LLN Overlap 70% LLN Overlap 70% LLN
Discovery analysis (LifeLines)
<0.05 11,377 11,475 4755 (26%) 12114 12,366 5445 (29%) 625 (2.7%) 616 (2.7%)
<0.01 2232 2197 673 (18%) 2522 2493 824 (20%) 23 (0.5%) 21 (0.4%)
<10 222 233 54 (13%) 246 266 76 (17%) 1(0.2%) 0
<107 31 27 2 (4%) 21 29 3 (6%) 0 0
<107 4 4 0 3 2 1 (25%) 0 0
<107° 1 0 0 0 0 0 0 0
<Bonferroni* 0 0 0 0 0 0 0 0
Replication analysis (Viagtwedde-Viaardingen study)
<0.05 10,702 10,295 4026 (24%) 12,592 12,571 4976 (25%) 487 (2.1%) 488 (2.2%)
<0.01 1857 1807 544 (17%) 2567 2609 754 (17%) 17 (0.4%) 12 (0.3%)
<107 164 174 38 (13%) 223 262 41 (9%) 0 0
<107 18 19 6 (19%) 12 21 0 0 0
<10°° 7 3 2 (25%) 0 0 0 0 0
<107° 1 0 0 0 0 0 0 0
<Bonferroni* 0 0 0 0 0 0 0 0
* <219x107
between ever- and never-smokers as shown in the Discussion

interaction analysis (see Additional file 1: Table S11).

In ever-smokers of LifeLines, three SNPs were overlap-
ping between the two analyses in at p <10~ * (see Table 3).
The first SNP (rs13118083) is annotated to hedgehog
interacting protein (HHIP, 342kb away), but is located
within the long non-coding RNA LOC105377462 accord-
ing to the SNP database by NCBI (https://www.ncbi.nlm.-
nih.gov/SNP/). The second SNP (rs7074210) is located
approximately 62 kb from ST8 Alpha-N-Acetyl-Neurami-
nide Alpha-2,8-Sialyltransferase 6 (ST8SIA6), and the last
SNP (rs4930390) is annotated to Chromosome 11 Open
Reading Frame 80 (CIIo0rf80). The minor alleles of the
first 2 SNPs were associated with a higher risk of airflow
obstruction and the minor allele of rs4930390 with a lower
risk. The effect was significantly different between never-
and ever-smokers for SNP rs4930390 according to both
definitions and for rs7074210 in the FEV;/FVC <70%
analyses (see Additional file 1: Table S11). The three SNPs
were not replicated in the SNP validation sample (see
Table 3 and Additional file 1: Tables S9-S10).

Gene expression in lung tissue

The minor allele (G) of rs7519348 (overlapping SNP in
never-smokers) was associated with higher gene expres-
sion of NFYC Antisense RNA 1 (NFYC-ASI) in lung
tissue (Fig. 3). Summary statistics of the eQTL analysis
for all overlapping SNPs at p <10~ * are provided in
Additional file 2.

We investigated the genetic overlap between GWASes
using two airflow obstruction definitions in the same
population (FEV;/FVC<70 or<LLN). We expected a
reasonable overlap in associated SNPs between the two
definitions, since 96% of the never-smokers and 93% of
the ever-smokers were classified the same way in the
discovery sample LifeLines. Surprisingly, only a very small
proportion (4% and 6%) of SNPs was overlapping at p <
107% (see Fig. 1). Even with different significance thresh-
olds the overlap was limited (26% and 29% at p < 0.05) (see
Table 2). The same observation was made in the replica-
tion sample, the Vlagtwedde-Vlaardingen study. In this co-
hort, 94% and 90% of the never- and ever-smokers,
respectively, were classified concordantly, but at p <0.05
only 24% or 25% of the SNPs were overlapping. In
addition, the effect estimates for the two airflow obstruc-
tion definitions correlated strongly in both cohorts but the
p-values showed more variation and correlated only mod-
erately resulting in different top-hits depending on the ob-
struction definition (see Fig. 2). Thus, the chosen strategy
and definition of airflow obstruction had a substantial in-
fluence on the GWAS results. This implies that in a
discovery-replication design with a predetermined selec-
tion p-value, different genetic variants would be
followed-up depending on the definition used. In addition,
there was no correlation between the p-values nor between
the ORs of never- and ever-smokers in both cohorts. None
of the selected SNPs overlapped between never- and
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Fig. 2 Pearson correlation between the p-values (a/c) or OR (B/D) of FEV,/FVC < 70% and < LLN analyses separately for never- (a/b) and
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Ever-smokers
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o

0 1 2 3
OR FEV/FVC<70%

ever-smokers at p< 10~ % and at p <0.05 the overlap was
only 3% in LifeLines (discovery sample) and 2% in
Vlagtwedde-Vlaardingen (replication sample, see Table 2).
The current study therefore also highlights the importance
of stratifying the analysis according to smoking status.

The difference between results from the two definitions
might be explained by the fact that obstructive airway
diseases are heterogeneous diseases with multiple pheno-
types, symptoms and comorbidities. It might thus be
beneficial for future GWA studies to focus more on
specific COPD subtypes rather than on a broad definition

of airflow obstruction or COPD that can be caused
by multiple underlying physiologic and genetic mech-
anisms. In previous GWA studies, in mainly smokers,
on classical COPD phenotypes like emphysema and
chronic bronchitis, the well-known general COPD
genes (HHIP, CHRNA and FAMI13A) were consistently
identified [27-32]. Perhaps, to identify specific genetic
pathways underlying specific COPD phenotypes we
should not study the classical COPD phenotypes, but
rather clinical COPD subtypes based on symptoms,
comorbidities or pathology.



Plaat et al. BMC Pulmonary Medicine (2019) 19:58

Page 8 of 12

Table 3 Results of the overlapping SNPs identified in both genome-wide association studies on FEV,/FVC < 70% and FEV,/FVC <

LLN in never- and ever-smokers

Discovery analysis SNP validation meta-analysis Direction of
SNP Chr Al MAF  Gene Test ~OR SE P OR  SE P E effectin the
independent
cohorts®
Never-smokers (n=5070) (n=1966)
rs7519348 T A 33%  NFYC (intronic) <70% 136 007 492x10° 121 01 0.07 00 ++++0
<LLN 137 007 227x107° 140 0.16 0.03 0.0 -+
rs6913003 6 T 4%  FABP7 (intronic) <70% 190 013 899x1077 148 0.22 0.08 0.0 +4++++
<LLN 183 014 183x10° 172 031 0.08 0.0 -+
Ever-smokers (n =4855) (n=3134)
rs13118083 4 A 45%  HHIP (342 kb 5') <70% 123 005 436x10° 097 0.07 0.60 17.0 +0—-—+
<IN 126 005 227x107° 105 0.08 057 46.7 ++0-+
17074210 0 G 18%  ST8SIA6 (62 kb 5) <70% 135 006 308x10° 105 0.08 0.57 64.7 +—+++
<LLN 133 007 323x10° 099 0.10 0.95 64.5 +—+—+
rs4930390 G 24%  Cllorf80 (intronic)  <70% 076 006 940x10°° 102 0.07 0.74 00 -+0-0
<LLN 073 007 668x10° 101 0.09 091 10.1 —++ - =

SNPs were selected based on having a p-value < 107 in both the discovery analyses on the fixed ratio of 70% and LLN. The logistic regression model of FEV,/FVC
< 70% was adjusted for sex, age and height, the LLN model was not adjusted. Ever-smoking models were additionally adjusted for pack-years and current-
smoking. Discovery sample = LifeLines cohort study, and SNP validation sample = Vlagtwedde-Vlaardingen and RS I to lll. AT = minor allele (effect allele),

MAF = minor allele frequency, OR = Odds Ratio, SE = standard error and P = p-value, I> = heterogeneity measure

@ Order: LifeLines, Vlagtwedde-Vlaardingen, and Rotterdam Study | to lIl. + represents an OR > 1, — represents an OR < 1, and 0 represents is an OR between 0.95

and 1.05 (no effect)

The CHRNAS5/3 and HHIP regions were overlapping
between six previous GWA studies on airflow obstruc-
tion, using different airflow obstruction definitions and
populations [11-16]. In the current study, two of the
identified SNPs in ever-smokers were located in the
CHRNAS and HHIP regions as well, pointing towards a
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Fig. 3 Results of eQTL analysis in lung tissue for rs7519348, an
overlapping SNP in never-smokers. The unadjusted mean log2
microarray intensity and 95% Cl are plotted, obtained from a
meta-analysis of three cohorts included in the lung eQTL dataset

robust genetic association of these regions with airflow
obstruction and COPD (see Additional file 1: Table S6).
Likewise, most of previously identified regions associated
with airflow obstruction or COPD were nominal signifi-
cant (p < 0.05) in the current study (see Additional file 1:
Table S12). Out of the 22 loci identified by the study of
Hobbs et al, SNPs in 18 loci were associated with at least
one of the airflow definitions at a nominal significance
(10 SNPs in never-smokers and 12 SNPs in ever
smokers) [14]. In never-smokers, 6 of the 10 SNPs were
significantly associated with both definitions and in
ever-smokers 7 of the 12 SNPs were significantly associ-
ated with both definitions. Some SNPs were significant
in both never- and ever-smokers (e.g. HHIP, PID1 and
THSD4), while others were either only significant in
never-smokers (e.g. FAMI13A, DSP and RIN3) or in
ever-smokers (e.g. CHRNAS5, TET2 and ADGRGS6). In
addition, many of the loci previously associated with
lung function outcomes (FEV;, FVC, and FEV,/FVC)
were also nominal significant (p <0.05) in the current
study (see Additional file 1: Table S13). Specifically, of
the loci reported by Wain et al., 23 out of 28 loci for
FEV, 10 out of 17 loci for FVC and 38 out of 51 loci for
FEV,/FVC were associated with at least one of the
airflow definitions at a nominal significance [33]. Lastly,
we also checked if the top overlapping SNPs were asso-
ciated with lung function outcomes in our previous
GWA studies on FEV;, FEV;/FVC and FEF,5_5 [34, 35].
A SNP annotated to HHIP was associated with FEV;/
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FVC and FEF,5_75 in both never- and ever-smokers
(results were replicated) and the CHRNAS5/3 region was
only associated with FEV;/FVC in ever-smokers. The
NFYC and FABP7 regions were associated with FEV,/
FVC (p =440x10"* and p =187x10"% in
never-smokers, and the FABP7 SNP was also associated
with FEF,5_75 levels (p =0.026). Interestingly, the NFYC
region was also overlapping between the current study
and the study by Pillai et al. We identified multiple SNPs
annotated to NFYC, whereas Pillai et al. identified a SNP
(rs3767943) in the gene KCNQ4, which is located on the
right side (3") of NFYC [15]. The NFYC region might
therefore be an interesting region to further study the
underlying mechanisms of its association with airflow
obstruction.

A SNP in the intron of NFYC and a SNP in FABP7
were the two overlapping SNPs between the airflow ob-
struction definitions at p <10”* in never-smokers and
showed the same direction of effect in the five independ-
ent cohorts. The minor allele of the SNP in NFYC
(rs7519348) was associated with a higher risk of airflow
obstruction. This gene is a highly conserved transcrip-
tion factor that is predicted by GeneGlobe to bind
promoter regions of 218 genes (see Additional file 1:
Table S14) including genes previously associated with
lung related outcomes, like ADORA2B, AKAPY, CD163,
ELMOD2, HLA-DPBI, ITPR2, KLFIO and SERPINA6
[27, 36—42]. In more detail, HLA-DPBI is a known
COPD gene related to disease severity, SERPINA6 was
associated with emphysema, a deletion in ADORA2B
was shown to be associated with a decrease in lung
fibrosis and pulmonary hypertension, and ELMOD?2 is a
candidate gene for familial idiopathic pulmonary fibrosis
[27, 36, 39, 40]. The identified SNP was not associated
with expression levels of NFYC in lung tissue, but was
an eQTL for a probeset annotated to NFYC-AS1. The
function of this specific antisense-RNA, which are gen-
erally thought to have a regulatory role, is still unknown.

The minor allele of the SNP in FABP7 (rs6913003)
was also associated with a higher risk of airflow ob-
struction in never-smokers. This SNP was not associ-
ated with the expression of FABP7 or other genes in
lung tissue. FABP7 is an intracellular lipid-binding
protein, involved in long-chain fatty acids transport
and cell proliferation [43]. It may be involved in ab-
normal pulmonary development, since lower expres-
sion of FABP7 was found in patients with congenital
cystic adenomatoid malformation [44]. In addition,
higher expression of FABP7 was seen in clear cell
renal cell carcinoma and the authors suggested that
the gene activates the ERK and STAT3 signalling
pathways [45]. STAT3 was implicated to play a role in
pulmonary inflammation and thus FABP7 might
indirectly be involved in airflow obstruction [46].
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We were aware of the risk for spurious findings due to
the low power of our study and thus we validated our
top overlapping SNPs in 4 independent validation
cohorts. We furthermore investigated the effect of low
power on the overlap between the two definitions by in-
creasing our dataset 2 and 4 times. We found that the
percentage of overlap increases when the sample size in-
creases, but still the number of SNPs that do not overlap
remains high, i.e. 73.4% when the sample size increased
4-fold. So even when the study power is greatly in-
creased, different SNPs will be found depending on the
airflow obstruction definition tested. We also performed
a simulation study by 10 times randomly allocating
airflow obstruction cases and based on this simulation,
we have to conclude that the differences and overlap we
found could be chance findings, but that is why we vali-
dated the overlapping SNPs in 4 independent validation
cohorts.

We only assessed a modest number of SNPs (1 =
227,981 SNPs) compared to previous large GWAS studies
(n >1 million SNPs), since we only included genotyped
SNPs to prevent any bias by imputation. The disadvantage
of this approach is that we may have a lower genomic
coverage. Another limitation of the current study is the
use of pre-bronchodilator measurements to define airflow
obstruction, which preferably should be based on
post-bronchodilator measurements. Especially subjects
with asthma could be misclassified as having airflow ob-
struction, but the results of the overlapping SNPs did not
change in a sensitivity analysis excluding asthmatics or
adjusting for asthma (see Additional file 1: Table S15).
Moreover, only a low number of never-smoking subjects
had an FEV;/FVC < LLN in the three Rotterdam Study co-
horts, but nevertheless results were replicated in these
never-smokers. Finally, the “FEV;/FVC < 70%” model was
adjusted for sex, age and height, but the “FEV;/FVC<
LLN” model was not adjusted for these variables, since
they are included in the LLN calculation. If we do however
adjust the “FEV;/FVC < LLN” model for these variables,
the results do not change. The top SNPs are the same and
the correlation between p-values for the LLN models ad-
justed and not adjusted is 0.98. In addition, the reported
correlation in never-smokers between the two definitions
was 0.48 for p-values and 0.78 for OR. If we use the LLN
adjusted model the correlation is 0.48 and 0.79, respect-
ively. This confirms that we used appropriate models to
assess the genetic overlap between the two airflow
definitions.

Conclusions

The definition of airflow obstruction and the population
under study may be important determinants of which
SNPs are associated with airflow obstruction, and thus
on which variants are selected for replication. It is
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therefore important to use the same definition of airflow
obstruction in future studies, especially in consortia. In
addition, future studies should focus more on specific
COPD subtypes and subgroups (e.g. based on smoking
status), since there was no overlap in results between
never- and ever-smokers, pointing towards possible
different underlying mechanisms. Finally, our results
suggest that the genes FABP7 and NFYC(-ASI) could
play a role in the pathogenesis of airflow obstruction in
never-smokers.

Additional files
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(DOCX 1790 kb)
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