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Abstract

L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle 

contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel 

organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 

channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and 

perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional 

channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures 

of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both 

microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These 

vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, 

channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity 

can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to 

fine-tune Ca2+ signals.
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1. Introduction

The L-type CaV1.2 channel is expressed in many cells where it plays an indispensable 

role in multiple physiological processes [1]. These include regulation of gene expression, 

neuronal excitability, hormone secretion, cell motility and muscle contraction [2–9]. 

Changes in CaV1.2 channel expression and function have been associated with 

neurodegenerative disorders, cardiac arrhythmias, hypertension and vascular complications 

in diabetes [9–16]. However, how a cell controls the number and spatial organization of 

functional membrane-associated CaV1.2 channels as well as their activity remain open 

questions under intense investigation.

The magnitude of the CaV1.2-mediated current in any given cell is the result of the channel 

open probability, single-channel current and the number of functional channels at the plasma 

membrane. The biophysical properties of CaV1.2 and the mechanisms regulating channel 

activity have been extensively studied using electrophysiological and optical approaches [9, 

17–19]. These studies have revealed that CaV1.2 forms clusters of various sizes throughout 

the plasma membrane in different cells, including neurons, and cardiac and smooth muscle 

cells [15, 20–24]. Clustering of CaV1.2 may contribute to regional variations in channel 

activity within the plasma membrane [19, 20, 22, 25, 26]. Moreover, CaV1.2 clustering 

is required for transient functional coupling between channels that results in concerted 

opening and closing of adjacent CaV1.2 channels (e.g. cooperative gating) [20, 21, 27–29]. 

This cooperative gating of CaV1.2 generates zones of high Ca2+ influx that amplify the 

Ca2+ signal and has been suggested to play a fundamental role in cardiac EC-coupling, 

and persistent calcium currents in neurons [19, 21, 29, 30]. In addition to the influence 

of associated signaling proteins (e.g. protein kinase A, protein kinase C, calcineurin, 

calmodulin) [19, 28, 31], regulation of intracellular and perimembrane transport of CaV1.2 

along tracks of microtubules and actin filament cytoskeleton may further modulate the 

clustering and cooperative gating of CaV1.2. Indeed, microtubules and the microtubule­

associated BAR domain proteins have been implicated in directing CaV1.2 to the surface 

membrane [32–34]. The actin crosslinking protein α-actinin was also demonstrated to 

stabilize and promote CaV1.2 localization at the plasma membrane [35, 36]. However, the 

extent to which trafficking of CaV1.2 via cytoskeletal networks influences channel clustering 

and functional behavior is unclear.

Interest in examining the dynamic movement of many ion channels has been heightened in 

recent years [37–44], but studies on CaV1.2 are surprisingly lagging. Here, we used live-cell 

Total Internal Reflection Fluorescence Microscopy (TIRFM) and spinning-disk confocal 

imaging to directly examine the function and trafficking of CaV1.2 channels expressed 

in tsA-201 cells, a model system often used to study CaV1.2 regulation and function. 

We found that CaV1.2 exhibits distinctive intracellular trafficking patterns in disparate 

vesicular structures including punctate vesicles, larger ovoid vesicles and elongated tubules. 

We determine that actin filaments and microtubules are both required for the dynamic 

trafficking of these CaV1.2-containing vesicles. These CaV1.2 vesicular structures exhibited 

either a “kiss-and-run” or “kiss-and-linger” type of interaction with the plasma membrane. 

Moreover, CaV1.2-containing vesicles undergo constitutive homotypic fusion and fission 

events with each other at/near the plasma membrane and throughout the intracellular 
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compartment requiring trafficking via both actin filaments and microtubules. This directed 

trafficking maintains a pool of vesicles containing channels just underneath the surface 

membrane that along with fusion events facilitates CaV1.2 clustering, channel activity and 

functional cooperative gating between channels. These observations may have important 

implications for Ca2+ homeostasis in a number of physiological processes.

2. Materials and methods

2.1. Cell culture and transfection of tsA-201 cells

tsA-201 cells were obtained from Sigma-Aldrich (St. Louis, MO, USA). These SV40­

transformed human embryonic kidney derived cells are a well-established cell-line model 

to examine the activity, trafficking and regulation of ion channels, including CaV1.2, as 

they are easy to transfect and do not express functional endogenous CaV1.2 channels as 

determined by optical and electrical recordings of untransfected cells [21, 27, 29, 45]. Also 

note that the biophysical, pharmacological, molecular and cellular properties of CaV1.2 

transfected in tsA-201 cells are similar to those observed for CaV1.2 in native cardiac and 

smooth muscle [19, 22, 26, 28, 45, 46]. tsA-201 cells were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM; Gibco-Life Technologies, Grand Island, NY) supplemented with 

1× pyruvate, 1× glutamax, 8% fetal bovine serum (FBS) and 5 mM glucose (without phenol 

red) at 37 °C in a 5% CO2 incubator, and passed every 4–5 days. Cells were transfected 

at 60–70% confluence with 0.6 μg of DNA plasmids for the rabbit pore-forming CaV1.2 

subunit (α1c; kindly provided by Dr. William A. Catterall, University of Washington, Seattle, 

WA) tagged with monomeric tag-RFP (tRFP) or monomeric GFPA206K in the carboxy 

terminus, along with 0.6 μg of the accessory subunits α2δ and β3 (kindly provided by 

Dr. Diane Lipscombe from Brown University, Providence, RI) with JetPRIME transfection 

reagent (Polyplus Transfection SA, NY) for approximately 6 h. In some experiments, the 

general endoplasmic reticulum marker Sec61β-GFP (kind gift from Dr. Eammon J. Dickson, 

University of California Davis) or the Golgi marker glycosyltransferases-GFP (Golgi-GFP 

BacMam 2.0, Thermo Fisher) was co-transfected with the channel in tsA-201 cells. For 

CaV1.2 sparklet experiments, cells were also co-transfected with the protein kinase C α 
(PKCα) isoforms as previously described [26]. Cells were seeded on 25 mm no. 1 coverslips 

(Thermo Fisher Scientific, Waltham, MA) for experiments in either a Warner Instruments 

QR Imaging Chamber or custom-made chambers with laminar flow. For some experiments, 

transfected cells were pre-treated with nocodozole (10 μM), cytochalasin D (cyt-D; 10 

μM) or both compounds simultaneously for 6 h before experiments. All experiments were 

performed at room temperature.

2.2. Spinning-disk confocal and TIRF live-cell imaging

High resolution 4D recordings of tsA-201 cells expressing fluorescently tagged CaV1.2 

and accessory subunits were performed using an Andor Revolution spinning-disk confocal 

system coupled to an Olympus iX-81 inverted microscope equipped with an Olympus UApo 

N 100× oil immersion TIRF lens (NA, 1.49), an Andor iXon EMCCD Ultra camera, and 

488 nm and 561 nm lasers with appropriate excitation and emission filters. The system was 

controlled with the Andor IQ software. Confocal z steps (0.5 μm) encompassing the volume 

of the cell over time were acquired for 3D reconstruction. The acquisition rate, exposure 
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time, number of z steps, and laser power were kept constant for all images recorded. For 

imaging of two fluorophores in the same sample, cells were imaged sequentially using an 

appropriate dual bandpass filter to eliminate any overlapping emission. Transfected cells 

were imaged using a physiological saline solution (PSS) containing (in mM): 134 NaCl, 6 

KCl, 1 MgCl2, 2 CaCl2, 7 D-glucose, 10 HEPES pH to 7.4 with NaOH.

TIRF imaging was performed using several TIRF microscope systems depending on 

the experiment. To image dynamic movement of tRFP labeled CaV1.2 at or near the 

membrane of tsA-201 cells and for Total Internal Reflection – Fluorescence Recovery after 

Photobleaching (TIR-FRAP) experiments, we used a Leica DMI6000 B TIRF microscope 

equipped with a Leica oil-immersion HC PL Apo 160× (NA, 1.43) TIRF objective, an 

Andor iXon3 EMCCD camera and a 532 nm laser and appropriate excitation and emission 

filters. Images were collected using the same penetration depth and laser power at a frame 

rate of 5 Hz for 1000 frames using the Leica Application Suite software. The incident 

angle used for these experiments afforded an evanescent wave with an expected decay 

length constant of ~100 nm. For these experiments, coverslips were mounted on glass 

depression slides (neoLab, Heidelberg, Germany) with PSS buffer and sealed with Twinsil 

(Picodent, Wipperfürth, Germany). The bleaching protocol was as previously described [39], 

and consisted of 50 exposure sequences with the 532 nm laser set at 4% of its maximal 

power, followed by 50 exposure sequences with laser power set at 100%, and culminating 

with a post-bleaching recording with laser power back at 4% power. Analysis of concentric 

bands was performed using a custom ImageJ plugin as previously described [38, 39]. The 

plugin generates 10 concentric bands equally spaced based on the freeform ROI marking the 

boundary of the cell.

Ca2+ sparklet experiments (see below) were performed using a through-the-lens TILL 

Photonics TIRF system built around an Olympus iX-70 inverted microscope equipped with 

an ApoN 60× oil immersion (NA, 1.49) TIRF objective, 2 laser lines (491 nm and 563 nm) 

with corresponding excitation and emission filters, and an Andor iXon EMCCD camera. The 

system was controlled with TiLLvisION software. For stepwise photobleaching experiments 

and to visualize the dynamic movement of CaV1.2-GFP, we used an Olympus cellTIRF 

system coupled to an Olympus iX-81 inverted microscope equipped with an Olympus 

UApo N 100× oil immersion TIRF lens (NA, 1.49), 2 laser lines (488 nm and 561 nm) 

with corresponding excitation and emission filters, and a Photometrics Prime 95B sCMOS 

camera.

2.3. Quantification of compartment size

Analysis was performed using ImageJ (NIH). The size of CaV1.2-containing structures 

was determined by fitting the fluorescence intensity profile of the crosssection of CaV1.2 

compartments with a Gaussian function. The full-width at half maximum (FWHM) for each 

curve represents the diameter of the vesicle. The radius (R) of the vesicle was thus given 

by FWHM/2. These data were confirmed using fluorescence beads of known diameter (100 

nm). The width of the tubular structures was measured in similar fashion [47]. The length of 

the tubules was determined by measuring their total visible length.
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2.4. Movement tracking with Imaris

Imaris software (Bitplane, Switzerland) was used to track the movement of vesicles and 

for construction of trajectory map [48]. CaV1.2-containing structures were detected in 4D 

images after thresholding. The “Spots Module” of Imaris was used to automatically detect 

CaV1.2-containing structures with a maximum spot diameter of 1.4 μm. Detected spots were 

then filtered based on “Quality” with “Background Subtraction” parameters (described as 

the intensity at the center of the spot in the Gaussian-filtered channel at which the spot was 

detected, minus the intensity of the original channel that has been Gaussian-filtered by 8/9 of 

the spot radius). Visual inspection was performed to confirm correct detection of structures. 

The maximum permissible gap length for re-detection of the same structure temporarily lost 

was set to 3 frames. The selected structures were then tracked automatically over time based 

on a built-in algorithm of autoregressive motion in Imaris, which generated trajectories 

for CaV1.2-containing structures, along with several additional parameters including length 

of the trajectory, displacement, speed and duration of the event being tracked. Trajectory 

outputs were then visually inspected and edited as necessary to correct for tracking errors.

2.5. Mean squared displacement analysis

The nature of the motility of CaV1.2-containing structures was assessed by calculating 

mean square displacement (MSD) curves plotted over time. MSD for each trajectory was 

calculated using the MSD analyzer from Imaris Open [49]. Trajectories with at least 8 

time points, each of which was an average of at least 5 intervals, were arranged into three 

different groups using a custom sorting algorithm written in Matlab (Mathworks, Natick, 

MA) with the following three equations:

Directed motion + Diffusion: < r2 ≥  v2t2 + 6Dt

Anomalous diffusion: < r2 ≥ 6Ttα;  α < 1

confined diffusion: < r2 ≥ rmax2 1 − exp −Tct/rmax2

where v is the velocity of active motion, D is the diffusion coefficient, Τ is the transport 

coefficient, α is the anomalous diffusion exponent, rmax is the radius to which diffusion 

is constrained, and Τc is the transport coefficient for confined diffusion. All values were 

constrained between 0 and 1. Trajectories were further sorted according to the following 

rules: If the best fit to a given trajectory was diffusion plus flow, but the velocity of that 

trajectory was slower than 0.01 μm/s, it was considered pure diffusion, unless the diffusion 

coefficient was slower than 0.001 μm/s in which case it was counted as a stationary particle. 

If the best fit was sorted as anomalous diffusion, but the diffusion coefficient was larger than 

0.9, it was considered diffusion, and if the transport coefficient was < 0.001 μm/s, it was 

counted as a stationary particle. Finally, in the case of confined diffusion, if the maximum 

radius of the compartment was smaller than 0.5 or the transport coefficient was smaller than 

0.001 μm/s, it was considered stationary. It is important to note that in unique instances 
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where tracks with pure diffusion were interrupted by a period of directed motion, our sorting 

algorithm labeled these tracks as anomalous diffusion if the time of the MSD was larger 

than a quarter of the track time. Under treatment conditions, we couldn’t always restrict 

the MSD to less than a quarter of the track time. Therefore, some of the particles labeled 

as exhibiting anomalous diffusion may have small intermittent periods of directed motion, 

which we confirmed by looking individually at some of these tracks.

2.6. Stepwise photobleaching

tsA-201 cells transfected with CaV1.2-RFP or CaV1.2-GFP were fixed in 4% 

paraformaldehyde (10 min) and imaged using the Olympus cellTIRF system described 

above using a 100×/1.49 NA objective. Cells were illuminated with 561 or 488 nm laser 

light at 5% power and 200 ms exposure and image stacks of > 2000 images were acquired. 

The ImageJ plugin Time Analyzer V3 was used to select regions of interest (ROI) with 

20-pixel diameter. The intensity profile within each ROI was plotted over the entire image 

stack, after which bleaching steps were manually counted. In some experiments (Fig. 7), 

TIR-FRAP [38, 39, 50] was performed before cells were fixed. Stepwise photobleaching 

experiments were then performed as described above.

2.7. Electrophysiology

We used the conventional whole-cell patch-clamp technique to control membrane voltage 

and record macroscopic currents with Ba2+ or Ca2+ as the charge carrier using an Axopatch 

200B amplifier and Digidata 1440 digitizer (Molecular Devices) in tsA-201 cells transfected 

with CaV1.2, β3, α2δ and PKCα. Data were sampled at 20 kHz and digitally filtered at 

2 kHz. The pipette solution contained (in mM) 87 Cs-aspartate, 20 CsCl, 1 MgCl2, 5 

MgATP, 10 EGTA, 10 HEPES adjusted to pH 7.2 with CsOH. The extracellular solution 

contained (in mM) 115 NaCl, 5 CsCl2, 20 BaCl2 or 20 CaCl2, 1 MgCl2, 10 D-glucose, 

10 HEPES, adjusted to pH 7.4. Pipettes were pulled from borosilicate capillary glass 

using a micropipette puller (mode P-97, Sutter Instruments), and polished to achieve a 

resistance ranging from ~3–5 MΩ. Once a GΩ seal was made and successful conversion 

to the whole-cell configuration was achieved, cells were depolarized for 500 ms from the 

holding potential of −70 mV to 0 mV or for 300 ms from the holding potential of −70 

mV to voltages ranging from −80 to +70 mV to record the Ba2+ current or Ca2+ current, 

respectively, associated with CaV1.2 activity. Data were analyzed offline using pCLAMP 

10 software. For CaV1.2 sparklet experiments, the extracellular solution was replaced with 

one containing (in mM) 120 NMDG, 5 CsCl, 20 CaCl2, 1 MgCl2, 10 D-glucose, 10 HEPES 

adjusted to pH 7.4 with HCl after establishing of the whole-cell configuration.

2.8. CaV1.2 sparklet recordings

CaV1.2 sparklet images were recorded using the TILL Photonics TIRF system described 

above. Images were acquired at 100 Hz. For these experiments, tsA-201 cells were 

transfected with CaV1.2, β3 and α2δ auxiliary subunits plus PKCα as cooperative gating of 

CaV1.2 is highly dependent on this kinase [26]. To increase the driving force for Ca2+ entry 

necessary to record quantal Ca2+ sparklet events, cells were patch clamped in the whole-cell 

configuration at −70 mV while being perfused with 20 mM external Ca2+ as previously 

described [22, 25, 26, 29, 51]. CaV1.2 sparklets were recorded in cells treated with 1 μM 
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thapsigargin to eliminate any Ca2+ release event from intracellular stores. Submembrane 

Ca2+ events (e.g. CaV1.2 sparklets) were monitored in cells dialyzed through the patch 

pipette with the relatively fast Ca2+ indicator Fluo-5F (200 μM) and an excess of the 

slow, but high affinity non-fluorescent Ca2+ buffer EGTA (10 mM). The objective of this 

combination of indicator and EGTA is to facilitate that the faster Ca2+ indicator binds to 

Ca2+ first, thus producing a fluorescent signal. The duration of this signal will be limited 

as the slower but high affinity Ca2+ chelator EGTA buffers Ca2+ away. This maneuver will 

restrict the fluorescent signal to the Ca2+ entry site [52]. CaV1.2 sparklets were identified 

and analyzed using custom software written in MATLAB as previously described [22, 25, 

26, 29, 51].

2.9. Coupled Markov chain model

The strengths of cooperative gating between single CaV1.2 channels was determined from 

individual CaV1.2 sparklet sites using a binary coupled Markov chain model previously 

described [53] and subsequently implemented by our group using MATLAB [19–21, 

27–29]. The activity of CaV1.2 sparklets was modeled as a first order, discrete Markov 

chain, and the Markovian transition matrix was estimated from sparklets records and their 

corresponding channel opening time courses using the built-in Hidden Markov parameter 

estimation function in MATLAB. The program assigns a dimensionless coupling coefficient 

(κ) that ranges between 0 for fully uncoupled channels to 1 for fully coupled channels.

2.10. FM 1–43 experiments

tsA-201 cells were transfected with CaV1.2-RFP, α2δ and β3 subunits. Dual channel 4D 

recording using spinning-disk confocal microscopy was performed using 488 and 561 

laser lines. Cells were continuously perfused with buffered saline containing (in mM) 134 

NaCl, 6 KCl, 1 MgCl2, 2 CaCl2, 7 Glucose monohydrate, 10 HEPES; pH of 7.4 (with 

NaOH). FM 1–43 (1 μM) dye was perfused after approximately 10 time points of the 4D 

volume recording, which continued over several minutes in the presence of FM 1–43 dye. 

The recorded images were median filtered and displayed as maximum intensity Z stack 

projections over time.

The fluorescence intensity quantification displayed in Fig. 2B was performed using Fiji open 

source software. Time-series images were split into respective 561 and 488 channels. We 

tracked vesicle movement and quantified their fluorescence intensity in the 561 channel. 

Next, the same ROI was analyzed in the corresponding 488 channel. Finally, we normalized 

the measured fluorescence intensity values by making the highest value 100 and the lowest 

value zero. To make the quantification displayed in Fig. 6, 2-channel time series images 

were split to yield individual red and green channel images. An ROI was then drawn 

encompassing the plasma membrane and perimembrane space on a frame at a very early 

stage in FM-dye application where only the plasma membrane was clearly marked by the 

dye. The second ROI was positioned in the intracellular space of the cell. The same ROIs 

were imposed on all other frames in the time series. The fluorescence intensities in the ROIs 

was measured and normalized as above.
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2.11. Quantification of fusion and fission events

Quantification of homotypic fusion and fission events between CaV1.2-containing structures 

was done with the TrackMate plugin in ImageJ. Briefly, stacks of tiff images were opened in 

ImageJ, and the TrackMate plugin was launched. The ‘Laplacian of Gaussian detector’ was 

used for tracking events of interest. The detector spots were filtered accordingly to ‘quality’ 

and ‘signal to noise ratio’. The detection of the structures was visually confirmed, and the 

thresholds and filters were adjusted accordingly. A ‘Linear Assignment Problem’ tracker, 

which allows detection of merging (e.g. fusion) and splitting (e.g. fission) events, was then 

used to track vesicle movement. The number of tracks undergoing fusion and fission events 

was then quantified for each control and treated cell recording.

2.12. Chemicals and statistics

All chemical reagents were from Sigma-Aldrich (St. Louis, MO) unless otherwise stated. 

Data were analyzed using GraphPad Prism software and expressed as mean ± SEM. Data 

were assessed for potential outliers using the GraphPad Prism Outlier Test and for normality 

of distribution using the Shapiro-Wilk or KS normality tests. Statistical significance was 

then determined using appropriate paired or unpaired Student’s t-test, nonparametric tests or 

One-way analysis of variance (ANOVA) for multiple comparisons with appropriate post hoc 

test. P < 0.05 was considered statistically significant (denoted by * in figures).

3. Results

3.1. CaV1.2 undergoes dynamic perimembrane and intracellular transport in vesicular 
structures

Experiments were performed using tsA-201 cells transfected with CaV1.2 fused to 

monomeric tRFP (CaV1.2-RFP) or monomeric GFPA206K (CaV1.2-GFP) along with β3 and 

α2δ auxiliary subunits. Nifedipine-sensitive Ba2+ currents (IBa) were readily recorded from 

these cells (Fig. S1A). The distribution of CaV1.2 proximal to the surface membrane of fixed 

tsA-201 cells was examined using TIRFM [18, 54]. Whereas untransfected cells did not 

show any fluorescence (Fig. S1B), CaV1.2-RFP/ GFP-associated fluorescence in transfected 

cells was diffused throughout the surface membrane with distinct areas of high fluorescence 

intensity in discrete structures (Fig. 1A and Fig. S1C).

Stepwise photobleaching analysis was used to determine the number of CaV1.2-RFP 

channels in the perimembrane region [55]. This analysis revealed distinct populations with 

stepwise decreases in fluorescence in those areas containing discrete CaV1.2 structures (blue 

squares; structures) compared to the areas of the plasma membrane with a more diffuse 

fluorescence pattern (green squares; DF) (Fig. 1A–D). No stepwise decrease in fluorescence 

was observed in untransfected tsA-201 cells (NT; Fig. 1C). The mean number of bleaching 

steps was 3.5 ± 0.2 in regions with diffused fluorescence versus 10.2 ± 0.3 in regions 

with discrete CaV1.2 structures (Fig. 1C and D). Comparable results were observed in cells 

expressing CaV1.2-GFP (Fig. S1C and S1D), thus corroborating that the CaV1.2 distribution 

pattern is similar irrespective of the fluorescence reporter. These results are consistent with 

previous studies [20–22, 26, 29], and suggest a heterogeneous distribution of CaV1.2 with 

channel clustering tending to occur at discrete sites at/near the surface membrane.
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To examine whether the discrete CaV1.2-RFP- (and CaV1.2-GFP-) associated structures 

observed at/near the surface membrane of tsA-201 cells are mobile, we performed live­

cell TIRFM imaging. Video 1 demonstrates that the discrete CaV1.2-RFP structures move 

dynamically throughout the footprint of this vehicle-treated cells (Fig. 1E). Similar results 

were found in cells transfected with CaV1.2-GFP (Fig. S1E) or with both CaV1.2-RFP and 

CaV1.2-GFP (Fig. S1F). The discrete CaV1.2 structures are mostly circular in shape with 

a smaller percentage displaying a tubular contour (Fig. S2A–B). The radius of the circular 

CaV1.2 structures ranged from 137 nm to 1362 nm with an average of 341 ± 14 nm and a 

median value of 254 nm (Fig. S2C–E). A frequency distribution histogram of the circular 

structures revealed the presence of two distinct populations with the bulk of those observed 

being small punctate structures with a radius ranging from 140 nm to 300 nm, whereas 

larger structures (referred to as ovoids) had radi of > 350 nm (Fig. S2E). The transverse and 

longitudinal mean radii of the tubular compartments were 231 ± 19 nm and 2500 ± 190 nm, 

respectively (Fig. S2F).

We next examined whether the discrete CaV1.2 structures were of vesicular origin and 

present not only throughout the intracellular space but also would physically interacting with 

the plasma membrane. We performed sequential 4D recordings of CaV1.2-RFP in vehicle­

treated cells following perfusion of the fluorescent membrane probe FM 1–43 excited with 

488 nm light [56, 57]. Note that robust staining of the plasma membrane was observed 

shortly after dye perfusion (Video 2 and Fig. 2A). The representative movies in Videos 2 and 

3 show the presence of highly mobile CaV1.2 structures throughout the intracellular space 

of vehicle-treated cells (see also Fig. 2A). This was never observed in untransfected cells 

(Video 4, arrowheads). Movement of these structures was distinctly independent of the ER 

(Video 5 and Fig. S3A–B). Although CaV1.2 structures originate from the Golgi suggesting 

a classic Golgi secretory route, the lack of Golgi marker fluorescence in the structures at the 

periphery of the cell indicate that they are independent of the Golgi body (Video 6 and Fig. 

S3C–D).

Analysis of simultaneous 4D recordings revealed that CaV1.2 structures (red) can approach 

the plasma membrane (Fig. 2Ai–Aiii and B) where they can linger while readily taking up 

the FM 1–43 dye (green; Fig. 2Aiv–Avi and B; Video 7). This results in the formation of 

yellow structures (highlighted by the blue arrow in Fig. 2A). These yellow structures formed 

by the exchange of the FM 1–43 dye from the surface membrane to the CaV1.2 structure 

subsequently moved to the interior of the cell, suggesting endocytosis of CaV1.2 structures 

(Fig. 2Avi–Ax and B). These results support the view that these CaV1.2 structures are 

vesicular in nature and can physically interact with the plasma membrane. Taken together, 

our results suggest that CaV1.2 channels contained within vesicular structures undergo 

dynamic perimembrane and intracellular transport.

3.2. Cytoskeleton-mediated diverse and dynamic intracellular movement of CaV1.2

Consistent with the results above, single particle tracking within our 4D recordings revealed 

dynamically diverse mobility patterns of intracellular CaV1.2 vesicles in vehicle-treated cells 

(Fig. 3Ai and B and Fig. S4A). Mean square displacement (MSD) analysis obtained from 

trajectories of these vesicles in vehicle-treated cells (Fig. 3C) revealed that ~29% of the 

Ghosh et al. Page 9

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed structures exhibit constitutive directional movement (diffusion + flow), ~62% show 

diffusional movement and ~8% were largely stationary and/or displayed confined diffusion 

movement (Fig. 3D).

We next examined whether the movement of CaV1.2 vesicles required intact microtubules 

and/or actin filaments. For this, tsA-201 cells transfected with CaV1.2-RFP were treated 

with either 10 μM nocodazole or 10 μM cytochalasin-D (cyt-D) for 6 h to depolymerize 

microtubules or actin, respectively [58, 59]. We avoided prolonged treatment of > 6 h with 

any of these drugs as it may result in unwanted changes in cell function, apoptosis or 

cells of poor quality for experimental analysis, although more harsh conditions have been 

employed previously [32]. Four dimensional recordings and single particle tracking analysis 

showed that the individual nocodazole (Video 8) and cyt-D (Video 9) treatment significantly 

reduced the intracellular mobility pattern of CaV1.2-RFP vesicles (Fig. 3Aii–Aiii). Exposure 

to either drug decreased all the measured movement parameters (Fig. 3Aiv and Fig. S4B–F). 

Interestingly, displacement, maximum speed and mean speed were more affected by the 

cyt-D compared to the nocodazole treatment. Yet, the combinatorial treatment with both 

drugs appeared to have a synergistic effect on CaV1.2 vesicular movement (Fig. 3A and Fig. 

S4C, D–E; Video 10).

MSD analysis showed that compared to vehicle-treated cells, depolymerization of either 

microtubules or actin filaments significantly decreased directional (e.g. diffusion + flow) 

and diffusional movement while increasing the number of CaV1.2-RFP vesicles undergoing 

stationary or confined diffusion motion (Fig. 3D). Simultaneous treatment of cells with 

nocodazole and cyt-D (10 μM each drug) exacerbated the reduction in vesicle movement 

with the majority of the CaV1.2 positive structures being either stationary or exhibiting 

confined diffusion (Fig. 3D). This spatially restricted motion aligns with the significantly 

prolonged tracking duration of CaV1.2-RFP vesicles observed in Fig. S4G. These results 

suggest that the intracellular mobility of CaV1.2 in tsA-201 cells is diverse, dynamic and 

highly dependent on both microtubules and actin filaments.

3.3. Constitutive perimembrane turnover of CaV1.2 channels

To further determine whether CaV1.2 channels are present in dynamic vesicular structures 

that constitutively approach the plasma membrane, Total Internal Reflection – Fluorescence 

Recovery after Photobleaching (TIR-FRAP) [38, 39, 50] was performed on CaV1.2-RFP 

expressing tsA-201 cells. This TIRFM configuration selectively bleaches CaV1.2-associated 

fluorescence in the perimembrane region to facilitate visualization of CaV1.2 movement 

to this area. Dynamic movement of CaV1.2 vesicular structures was observed during pre­

bleaching recordings, as before (Video 11). Following the bleaching step, CaV1.2 vesicular 

structures constitutively repopulated the perimembrane region in vehicle-treated cells (Video 

11). Analysis of fluorescence intensity when recovery was stable at 250-second post-bleach 

yielded a maximal recovery of 57 ± 5% of the pre-bleach fluorescence level (Fig. 4A–

B). The observed level of CaV1.2 recovery is comparable to that previously observed for 

several TRP channels [38, 39] and neuronal ATP-gated P2X3 receptors within the same 

time period [60]. To examine whether microtubules and actin are necessary for trafficking 

of CaV1.2, TIR-FRAP was performed in cells treated with nocodazole, cyt-D or both 
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compounds. Depolymerization of microtubules, actin filaments or both cytoskeletal elements 

simultaneously limited the perimembrane recovery of CaV1.2 to 29 ± 4%, 21 ± 2% and 

19 ± 2% of the prebleach value, respectively (Fig. 4A–E). These results suggest that both 

microtubules and actin filaments are important determinants of CaV1.2 mobility to the 

perimembrane region.

To assess the modes of CaV1.2 channel recovery, exponential time constants of the post­

bleach fluorescence recovery were computed for 10 concentric and equally spaced bands 

encompassing the cell footprint from the periphery (band 1) to the center (band 10) (Fig. 

S5A) [38, 39]. In this analysis, homogenous fluorescence recovery over the total footprint 

of the cell would indicate that both vesicular transports to the plasma membrane and lateral 

diffusion of channels from non-bleached areas of the plasma membrane contributes to the 

final post-bleach recovery. In contrast, fluorescence recovery that occurs at a faster rate from 

the sides followed by movement towards the center of the footprint of the cell would suggest 

an increased contribution of lateral diffusion and impaired CaV1.2 vesicular trafficking. In 

this latter case, CaV1.2-associated fluorescence will recover faster in the peripheral zone of 

the footprint compared to the central zone.

In vehicle-treated cells, all the bands had variable but comparable time constants of 

fluorescence recovery with neither center nor periphery lagging behind the other in post­

bleach fluorescence recovery (Fig. S5B). The subtle, shallow negative gradient of the best-fit 

line suggests that vesicular movement of CaV1.2-RFP channels from inside the cells towards 

the plasma membrane dominates the recovery of CaV1.2 fluorescence in vehicle-treated 

cells. In cells treated with either nocodazole or cyt-D (Fig. S5C–D), a shallow yet, positive 

gradient of the best-fit line of the time constants of fluorescence recovery was observed, thus 

suggesting an increased contribution of lateral diffusion of channels in the plasma membrane 

from outside the bleached area to the fluorescence recovery profile. However, cells treated 

simultaneously with both drugs showed a steeply positive best-fit line of the time constants 

of fluorescence recovery (Fig. S5E). This result suggests that fluorescence recovery after 

disruption of both microtubules and actin filaments is driven by lateral diffusion of channels. 

Altogether, and in agreement with our 4D data, these results indicate that both microtubules 

and actin filaments contribute to constitutive trafficking of CaV1.2 to and from the plasma 

membrane.

3.4. Cytoskeleton-dependent distinct perimembrane behavior of CaV1.2 vesicles

Detailed analysis of live-cell TIRFM images of CaV1.2-RFP vesicles revealed distinctive 

mobility patterns in the perimembrane region in vehicle-treated cells (Fig. 5A and B; Video 

12). Many structures exhibited classic “kiss-and-run” behavior, where the CaV1.2 vesicular 

structure approaches the cell surface and promptly runs away disappearing from the TIRF 

illumination field within seconds (Fig. 5Ai–Bi; green arrow in Video 12). Other structures 

displayed “kiss-and-linger” behavior in which the CaV1.2 vesicular structure approached the 

plasma membrane and stayed there for longer periods of time (Fig. 5Aii–Bii; cyan arrow 

in Video 12). Intriguingly, CaV1.2 vesicular structures also demonstrated characteristic 

homotypic fusion and fission events between themselves. Fig. 5Aiii–Biii show an example 

of two structures fusing with one another (see also Video 13), whereas Fig. 5Aiv and Biv 
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display an example of a large CaV1.2 vesicle splitting in two (see also Video 14). We 

also noticed examples in which numerous CaV1.2 vesicular structures fused and split from 

larger ovoid structures (Video 15). Similar results were observed in tsA-201 cells transfected 

with CaV1.2-GFP (Fig. S6). Depolymerization of microtubules and actin filaments with 

nocodazole and cyt-D, respectively, significantly reduced the frequency of these fusion and 

fission events, and simultaneous treatment with both drugs almost completely prevented 

their occurrence (Fig. 5C and D). These results suggest distinctive mobility patterns for 

CaV1.2 vesicular structures, which can form unique and dynamic junctions or “hotspots” for 

CaV1.2 channel interactions with one another via cytoskeleton-dependent fusion and fission 

events.

3.5. Trafficking of CaV1.2 vesicular structure to and from the plasma membrane 
contributes to CaV1.2 clustering

We examined whether the CaV1.2 vesicular structures undergoing fusion and fission events 

are physically interacting with the plasma membrane using simultaneous 4D recordings 

of vehicle-treated CaV1.2-RFP expressing cells with subsequent perfusion of FM 1–43 

dye (as above). The large ovoid structures containing CaV1.2 that are characteristic of 

fusion and fission junctions/hotspots also took up the FM 1–43 dye (Fig. S7) suggesting 

that these bigger compartments are also in direct communication with the plasma 

membrane. Interestingly, in the example shown in Fig. S7, the ovoid compartment exhibited 

complete endocytosis and appeared to divide into smaller distinct endosomes (Video 16). 

Simultaneous drug-induced depolymerization of microtubules and actin filaments inhibited 

the dynamic motion of the CaV1.2 vesicular structures and prevented their uptake of FM 

1–43 dye (Fig. 6A–D). Quantification of FM 1–43 dye fluorescence at the perimeter (i.e. 

plasma membrane region) and inside of the cell revealed the efficient uptake of the FM 

1–43 dye by the recycling CaV1.2 vesicular structure in vehicle-treated cells (Fig. 6A–D). 

Conversely, incorporation of FM 1–43 into CaV1.2-containing vesicles was blocked by 

simultaneous depolymerization of microtubules and actin filaments as evidenced by lack of 

intracellular CaV1.2 vesicle containing the dye (Fig. 6A–D; Video 17).

Trafficking of vesicular CaV1.2 could result in the congregation of CaV1.2 channels in 

close proximity to one another, ultimately promoting CaV1.2 clustering and the increased 

probability of their physical interaction; a prerequisite for cooperative gating of CaV1.2 

channels [19, 21, 22, 27, 29]. To examine this possibility, we performed TIR-FRAP in 

vehicle- and nocodazole + cyt-D-treated cells expressing CaV1.2-RFP. Recovery of the 

CaV1.2-associated fluorescence near the membrane was allowed to proceed for 350 s after 

which single-particle photobleaching analysis was performed, as before (Fig. S8A). This 

approach revealed that areas containing CaV1.2 vesicular structures displayed an average 

of 9 ± 1 discrete photobleaching steps (Fig. 7A–B). Conversely, a significant reduction in 

CaV1.2-RFP-associated photobleaching steps (2 ± 1) was observed in cells treated with 

nocodazole + cyt-D (Fig. 7A–B and Fig. S8A). These results suggest that CaV1.2 channels 

preferentially cluster in structures that are fed by cytoskeleton-dependent trafficking of 

CaV1.2 vesicles in areas at/near the plasma membrane.
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3.6. Trafficking of CaV1.2 vesicles contributes to channel activity and cooperative gating 
of CaV1.2

To test whether dynamic formation and transport of structures containing CaV1.2 contributes 

to channel activity and cooperative gating, we electrically and optically recorded CaV1.2 

activity (e.g. CaV1.2 sparklets) in voltage-clamped tsA-201 cells. In blinded experiments, 

we found that whole-cell ICa elicited by a depolarizing step from−70 mV to 0 mV, were 

significantly smaller in cells co-treated with nocodazole + cyt-D compared to vehicle-treated 

cells (Fig. 7C). Note that cell capacitance and the voltage dependence of activation of 

CaV1.2 were similar in vehicle-treated cells and cells treated with nocodazole + cyt-D (Fig. 

S8B–C). The residual current in nocodazole + cyt-D-treated cells is likely the result of 

CaV1.2 residing already at the plasma membrane at the time of treatment. We also recorded 

and measured the elementary Ca2+ influx events through individual CaV1.2 channels using 

TIRF microscopy [18, 19, 22]. This is necessary as CaV1.2 activity occurs through distinct 

foci of heterogeneous activity along the plasma membrane that cannot be easily detected 

with conventional whole-cell patch-clamp techniques [26, 28]. In blinded experiments, 

robust CaV1.2 sparklet activity (e.g. nPs; Video 18) was observed in the majority of 

vehicle-treated cells, which had ~7 CaV1.2 sparklet sites per cell with a quantal unit of 

Ca2+ influx of 38 ± 0.5 nM (Fig. 7D–G and Fig. S8D). Our observations also suggested 

that a preponderance of the events resulted from cooperative gating of CaV1.2 channels in 

these cells (Fig. 7H). Quantification of these events with a coupled Markov chain model 

to assess the strength of cooperative channel gating (coupling coefficient κ; [53]) found 

that a majority of CaV1.2 sparklets undergo this gating behavior in vehicle-treated cells 

(Fig. 7H). These observations are in strong agreement with previous results of CaV1.2 

sparklets in tsA-201 cells [19, 21, 26, 28, 29, 45]. Co-treatment of CaV1.2-RFP expressing 

cells with nocodazole and cyt-D significantly reduced CaV1.2 sparklet properties, including 

cooperative gating behavior and coupling strength (Fig. 7D–H). Together, these results 

suggest that dynamic trafficking of CaV1.2 vesicles may contribute to CaV1.2 clustering, 

channel activity and cooperative gating behavior.

4. Discussion

In this study, we present evidence that the L-type CaV1.2 channel is trafficked in dynamic 

vesicles of circular and tubular shape. Notably, these vesicles show distinct patterns of 

movement and interaction amongst themselves and at the plasma membrane (Fig. S9). These 

trafficking patterns include homotypic fusion and fission events that are dependent on an 

intact cytoskeleton. The sites of vesicular homotypic fusion at/near the plasma membrane 

harbor the highest density of clustered CaV1.2 that appear to sustain L-type calcium channel 

activity and CaV1.2 sparklet events while facilitating cooperative gating of CaV1.2 channels. 

Thus, mobile CaV1.2 vesicles undergoing homotypic fusion and fission events may be part 

of a mechanism that allows tight, dynamic regulation of CaV1.2 function to control Ca2+ 

influx. Such mechanism may have broad implications for modulation of CaV1.2-mediated 

Ca2+ signals in both excitable and non-excitable cells.

Our first major observation is the dynamic movement of CaV1.2 vesicles at/near the 

membrane. Similar observations were reported in neuronal and pancreatic cell lines 
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expressing CaV1.2 [61, 62], suggesting that this dynamic movement may be a general 

feature of CaV1.2 channels. Our study revealed that this dynamic movement is mediated 

via vesicular and tubular compartments. The formation of tubular compartments has 

been attributed to the function of dynamin GTPase – a universal membrane tubulation 

protein [63]. These larger tubular compartments could transport more CaV1.2 cargo when 

compared to vesicular structures [64]. Interestingly, at least four distinctive interaction 

patterns associated with the dynamic movement of CaV1.2 vesicles were identified. (Fig. 

S9). These are 1) “kiss-and-run”, in which CaV1.2 vesicles seem to interact transiently with 

the plasma membrane without fully fusing. 2) CaV1.2 vesicles undergoing “kiss-and-linger/ 

stay” display transient, yet prolonged dwell-time interactions at/near the plasma membrane. 

“Kiss-and-run/linger” type of behavior are wellknown alternate modes of communication 

between protein-containing vesicles, the plasma membrane, and the extracellular space [65, 

66]. 3) “Merge-and-linger followed by break-and-run” are mostly observed when rapid 

homotypic fusion and fission events commence at ovoid compartments at/near the plasma 

membrane. 4) The ovoid structures may themselves get endocytosed and in the process, may 

undergo fission into smaller vesicles. A key implication of these observations is that multiple 

mechanisms may be at work to fine-tune the delivery of CaV1.2 to the plasma membrane.

How do CaV1.2 vesicles interact with the plasma membrane to de-liver functional channels? 

Classic examples of vesicles fully fusing and collapsing with the plasma membrane show 

a distinctive and rapid dissipation of the compartment-associated fluorescence [39, 56, 67]. 

This type of exocytic event, however, was never observed for CaV1.2-containing vesicles, 

which instead maintained their vesicular nature and never appeared to completely merge 

with the plasma membrane. Thus, the behavior of CaV1.2-containing vesicles is similar to 

“kiss-and-run/linger” events previously described [38, 65, 68]. In such a scenario, CaV1.2 

could be maintained in a pool of vesicular structures just underneath the plasma membrane 

for constitutive delivery of channels or alternatively for rapid insertion in response to a 

stimulus. Indeed, Green et al. showed that in Neuro2a cells expressing CaV1.2 labeled with 

YFP, CaV1.2-containing vesicles moved rapidly but transiently to the plasma membrane in 

response to a depolarizing stimulus [61]. CaV1.2 channels may diffuse out of the lingering 

vesicular structure to the plasma membrane [65, 69] or could remain within the vesicular 

compartment. Our observation that internalization of CaV1.2 vesicles can still be tracked 

after their interaction with the plasma membrane suggests that a significant number of 

CaV1.2-RFP channels are retained within the vesicle. This is supported by the stepwise 

photobleaching experiments showing a reduced number of bleaching steps in areas of 

diffused fluorescence compared to areas containing lingering compartments (Fig. 1 and Fig. 

S1). It is tempting to speculate that the fusion pore formed at the junction of the kissing/

lingering compartment and the plasma membrane could provide access of vesicular CaV1.2 

to the extracellular space. These channels, which together with plasma membrane-resident 

CaV1.2, could then respond to different stimuli (e.g. membrane depolarization, G protein 

coupled receptor signaling, etc.) to promote Ca2+ influx [38, 41, 61]. This could represent a 

mechanism for CaV1.2-mediated diversification of Ca2+ signals.

Particularly intriguing was the observation that CaV1.2 vesicles may undergo cytoskeleton­

dependent (i.e. microtubules and actin) homotypic fusion and fission events into ovoid 

compartments. In agreement with previous observations in neurons [24], these types of 
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events may not only dynamically regulate CaV1.2 turnover at/near the plasma membrane, 

but also promote channel clustering. This possibility is supported by TIR-FRAP - stepwise 

photobleaching experiments demonstrating that CaV1.2-containing vesicles that linger at/

near the plasma membrane have far more CaV1.2 than other areas of the plasma membrane 

devoid of these lingering ovoid structures (Fig. 7A). From a functional perspective, this 

clustering may afford the spatial proximity necessary to facilitate the coordinated opening 

and closing (e.g. co-operative gating) of adjacent CaV1.2 channels, a hypothesis further 

supported by our findings in recent studies [20, 21, 27, 29]. Indeed, in vehicle-treated 

cells, a significant number of CaV1.2 sparklet events predominantly exhibited cooperative 

gating. This was in contrast to observations of events in cells treated with nocodazole and 

cyt-D where the movement and homotypic fusion of CaV1.2-containing vesicles was halted 

completely by the drug treatment. Moreover, concomitant depolymerization of microtubules 

and actin filaments resulted in significantly reduced channel activity and prevention of 

CaV1.2 co-operative gating (Fig. 7). The dynamic homotypic fusion and fission events of 

CaV1.2-containing vesicles may also help explain the transient coupling of CaV1.2 channels 

previously observed in optical and electrical recordings of CaV1.2 expressing cells [20, 21, 

27, 29], as opposed to the fully concerted gating observed for other ion channels [70, 71]. 

Thus, homotypic fusion and fission of lingering CaV1.2 vesicles could be a key mechanism 

facilitating dynamic CaV1.2 clustering and co-operative gating that could ultimately fine­

tune Ca2+ signals.

Dynamic CaV1.2 trafficking can be regulated by numerous processes. For example, auxiliary 

β and α2δ subunits are well-known to promote surface expression of CaV1.2 channels in 

neurons and vascular smooth muscle cells [72–74]. The scaffold protein A-kinase anchoring 

protein 150 (AKAP150; murine homolog of human AKAP79) has been implicated in 

CaV1.2 trafficking and regulation, but not in channel clustering in mature neurons [23, 

75]. In cardiomyocytes, the adaptor protein bridging integrator 1 (BIN1) seems to play a key 

role in CaV1.2 trafficking and clustering that is essential for normal cardiac function [76]. 

In neurons, the actin-binding protein α-actinin [35, 36] and the synaptic protein Densin-180 

[77] are associated with CaV1.2 trafficking, CaV1.2 surface retention and signaling. In 

vascular smooth muscle, the small GTPase protein Rab25 promotes surface expression 

of CaV1.2 [78]. More recently, the adapter protein Stac was found to regulate trafficking 

of CaV1.1 channels as well as CaV1.2 activity, which may have important implications 

for excitation-contraction coupling in skeletal and cardiac muscle, respectively [42, 79]. 

The phosphorylation state of key residues on the channel also seems to influence CaV1.2 

trafficking, dynamics and clustering, at least in neurons [80]. Whether either or all of 

these proteins and processes are involved in homotypic fusion of CaV1.2 vesicles, channel 

clustering at specific sites at/near the plasma membrane as well as cooperative gating 

is currently unknown but are most certainly important questions for future studies. Our 

findings may shed light on mechanisms of clustering and cooperative gating of other ion 

channels. For example, the L-type Ca2+ channel CaV1.3 [30, 45] as well as the transient 

receptor potential vanilloid 4 (TRPV4) channel [81, 82] have been shown to cluster at the 

plasma membrane and undergo cooperative gating events. It is tempting to speculate that 

homotypic fusion of vesicles containing CaV1.3 or TRPV4 may also contribute to clustering 

of these channel, which in turn may facilitate their cooperative gating.
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Our results also raise a number of intriguing questions. For instance, Does channel activity 

influence trafficking, clustering and cooperative gating? What are the mechanisms mediating 

“kiss-and-run” versus “kiss-and-linger” behavior? Are they the result of more stochastic 

as opposed to highly regulated processes? What are the mechanisms underlying vesicular 

fusion and fission and how may they contribute to channel clustering and cooperative 

gating? Are CaV1.2 channels functional while in the vesicular compartment? The use of 

proteomic approaches applied specifically to CaV1.2-containing vesicles, super-resolution 

imaging in live cell preparations and genetically-modified mice with fluorescently labeled 

CaV1.2 will help address these intriguing questions. In conclusion, our work has uncovered 

an unexpected mechanism for dynamic control of CaV1.2 channels that may be essential 

for fine-tuning Ca2+ influx and cell excitability. Accordingly, homotypic fusion and fission 

of CaV1.2 vesicles may contribute to functional clustering of CaV1.2 channels to sustain 

channel activity and transient cooperative gating. Dysregulation of this mechanism may 

play a role in pathological conditions associated with impaired CaV1.2 function, including 

neurological disorders [83] and cardiovascular complications such as cardiac arrhythmias 

and hypertension [19]. This work sets the foundation for future in-depth examinations 

of the mechanisms underlying dynamic trafficking of CaV1.2 during physiological and 

pathological conditions.
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TIRFM Total Internal Reflection Fluorescence Microscopy

tRFP tag Red Fluorescence Protein

FBS fetal bovine serum

Noco nocodazole

Cyt-D cytochalasin D

TIR-FRAP Total Internal Reflection – Fluorescence Recovery after 

Photobleaching

MSD mean square displacement

FWHM full-width at half maximum
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ROI region of interest

Ca2+ calcium

Ba2+ barium

ANOVA One-way analysis of variance

PKCα protein kinase C α
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Fig. 1. 
Heterogeneous distribution and dynamic perimembrane movement of CaV1.2. A) 

Representative TIRFM image of a fixed tsA-201 cell expressing CaV1.2-RFP. The blue 

and green squares highlight areas with clearly identifiable CaV1.2 structures and area of 

the cell footprint with diffuse fluorescence (DF), respectively. These areas were used for 

analysis. The white dotted line outlines the boundary of the cell footprint. Scale bar = 10 μm. 

B) Representative time course of bleaching steps for CaV1.2-RFP associated fluorescence. 

C) Scatter plot of the number of bleaching steps obtained from plasma membrane regions 
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with diffuse fluorescence (DF; n = 80 regions from 6 cells), CaV1.2 structures (structures; 

n = 141 regions from 6 cells) and from untransfected cell (NT; n = 100 regions from 6 

cells). Data are shown as mean ± SEM. *P < 0.05. One-way ANOVA with Tukey’s multiple 

comparison tests. Significance was compared between data as specified. D) Frequency 

distribution of bleaching steps between PM (green histogram) and structure (blue histogram) 

regions. Histograms were fit using a single Gaussian curve (black lines). The dotted red 

lines denote the median of the distribution (3 for PM and 10 for structures). E) TIRFM 

images at consecutive intervals depicting the perimembrane movement of CaV1.2 structures 

in vehicle-treated tsA-201 cells transfected with CaV1.2-RFP. Arrowheads point to track of 

different CaV1.2 structures. The lower right corner image illustrates the movement tracks of 

the respective structures highlighted by the arrowheads.
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Fig. 2. 
Interaction of CaV1.2 structures with plasma membrane. A) Representative dual-color 

spinning-disk 3D images of a vehicle-treated tsA-201 cell expressing CaV1.2-RFP before 

(0 min) and after (1 and 9.9 min) application of fluorescent plasma membrane dye FM 1–43 

dye. Lower panels depict enlarged time lapse illustrations of the area highlighted by the blue 

square. The blue arrows point to a CaV1.2 structure that approaches the plasma membrane, 

then uptakes the FM 1–43 dye and moves to the interior of the cell. B) Normalized FM 1–43 

(green) and CaV1.2 (red) fluorescence intensity (AU) of CaV1.2 structure highlighted by the 

blue arrowhead in panel A over time. Data are shown as mean ± SEM (n = 6 cells).
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Fig. 3. 
Dynamic intracellular movement of CaV1.2 vesicles requires actin filaments and 

microtubules. A) Representative trajectories of the intracellular movement of CaV1.2 

vesicles reconstructed from 4D recordings of vehicle-treated, nocodazole (10 μM), 

cytochalasin-D (10 μM) or nocodazole + cytochalasin-D (10 μM each) -treated cells. 

B) Representative 3D image of reconstructed trajectories from three distinct intracellular 

movement tracks (1–3) exhibited by CaV1.2 vesicles. The yellow solid line outlines the 

cell boundary. Trajectory 1 (green line) exemplifies diffusion + flow movement, trajectory 

2 (blue line) represents diffusion, and trajectory 3 (light blue) illustrates confined diffusion. 

C) Graph illustrating average MSD over time of CaV1.2 vesicles in vehicle-treated cells for 

the three movement patterns identified (n = 6 cells, > 80 tracks per movement pattern). Data 

shown as mean ± SEM. D) Bar plots depict percentage of the total number of trajectories 

exhibiting a specific movement pattern in vehicle-treated (n = 15 cells), nocodazole (n = 16 

cells), cytochalasin-D (n = 14 cells) or nocodazole + cytochalasin-D (n = 7 cells) -treated 
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cells. Data are shown as mean ± SEM. *P < 0.05. Kruskal-Wallis test. Significance was 

compared between data as specified.
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Fig. 4. 
Cytoskeleton-dependent constitutive transport of CaV1.2 vesicles to the perimembrane 

region. A) Representative TIRFM images of pre-bleach and post-bleach of CaV1.2-RFP 

fluorescence in vehicle-treated (n = 17 cells), nocodazole (10 μM; n = 13 cells), 

cytochalasin-D (10 μM; n = 15 cells) or nocodazole + cytochalasin-D (n = 8 cells) -treated 

cells. Time course of fluorescence recovery of CaV1.2-RFP following photobleaching 

normalized to the pre-bleach value in (B) vehicle-treated, (C) nocodazole, (D) cytocholasin­

D or (E) nocodazole + cytochalasin-D -treated cells. Data are shown as mean ± SEM.
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Fig. 5. 
Distinct cytoskeleton-dependent perimembrane behavior of CaV1.2 vesicles. A) Exemplary 

TIRFM and enlarged time-lapse images of the area highlighted by the red squares in 

the images on the left side panels showing distinct mobility patterns of CaV1.2-RFP in 

vehicle-treated tsA-201 cells. Arrows in each image point to the tracking of specific vesicles 

and their behavior, including “kiss-and-run” (Ai; red arrow), “kiss-and-stay/linger” (Aii; red 

arrow), “merge-and-linger” (homotypic fusion event; red and green arrows highlight two 

different vesicles, and the yellow arrow points to fusion of vesicles; Aiii) and “break-and­

run” (homotypic fission; yellow arrow highlights a vesicle splitting in two distinct ones 

highlighted by the red and green arrows; Aiv). Scale bar = 10 μm. B) Time course of mean 

fluorescence intensity (AU) of CaV1.2 vesicles highlighted by the red arrows in panel A. 

Bar plots of the frequency of resolvable homotypic fusion (C) and fission (D) events of 

CaV1.2 vesicles in vehicle-treated (n = 17 cells), 10 μM nocodazole (C; n = 13 cells), 10 μM 
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cytocholasin-D (D; n = 10 cells) or 10 μM nocodazole + cytocholasin-D (E; n = 17 cells) 

-treated cells. Data are shown as mean ± SEM. *P < 0.05. Kruskal–Wallis test. Significance 

was compared between data as specified.
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Fig. 6. 
Dynamic interaction of CaV1.2 vesicles with the plasma membrane requires an intact 

cytoskeleton. Representative dual-color spinning-disk 3D images of CaV1.2-RFP before (i) 

and after (ii and iii) application of the FM 1–43 dye in vehicle (A) or 10 μM nocodazole 

+ cytocholasin-D (B) -treated cells. White arrows in panel A point to numerous FM 1–

43 dye-loaded CaV1.2-RFP-containing vesicles, suggesting active communication between 

the CaV1.2-RFP structures and the plasma membrane. Plot depicting the time lapse of 

normalized fluorescence intensity (AU) for the FM 1–43 dye in the perimeter (p) and 
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intracellular (i) side of the cell before and after its application in (C) vehicle or (D) 10 μM 

nocodazole + cytochalasin-D (n = 6 cells per condition) -treated cells. Data are shown as 

mean ± SEM.
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Fig. 7. 
Depolymerization of the cytoskeleton reduces CaV1.2 clustering, channel activity and 

cooperative gating. A) Scatter plot of the number of bleaching steps obtained from 

vehicle (n = 54 spots, from 5 cells) and nocodazole + cytocholasin-D (n = 53 spots, 

from 5 cells) treated cells. Data are shown as mean ± SEM. *P < 0.05. Mann-Whitney 

test. Significance was compared between data as specified. B) Frequency distribution of 

bleaching steps between vehicle or nocodazole + cytocholasin-D -treated cells. Histograms 

were fit using a single Gaussian curve (black lines). The dotted red lines denote the 
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median of the distribution (9 for vehicle-treated cells and 2 for noco + cyt-D-treated 

cells). C) Representative ICa recording from tsA-201 cells expressing CaV1.2-RFP that were 

treated with vehicle or 10 μM nocodazole + cytocholasin-D. ICa were evoked by 300 ms 

depolarization step from a holding potential of −70 mV to 0 mV. Bar plots immediately 

below summarize the mean ± SEM of the ICa current density at 0 mV. D) Representative 

TIRFM images showing Ca2+ sparklets in cells expressing CaV1.2-RFP that were treated 

with either vehicle (upper panel) or 10 μM nocodazole + cytocholasin-D (lower panel). 
Traces at the right of each image show the time course of [Ca2+]i in the respective green 

circles. k represents the coupling coefficient for each trace. Bar plots showing (E) number 

of cells with CaV1.2 sparklets, (F) number of CaV1.2 sparklet sites per cell, (G) CaV1.2 

sparklet activity and (H) coupling coefficient (k) for CaV1.2 sparklets in vehicle (n = 47 

cells) or 10 μM nocodazole + cytocholasin- D (n = 19 cells) -treated cells. Data are shown 

as mean ± SEM. *P < 0.05. Mann Whitney test. Significance was compared between data as 

specified.
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