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Abstract

All soluble proteins populate conformational ensembles that together constitute the native state. 

Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the 

states on the energy landscape are determined by statistical thermodynamics; however, they are 

optimized to perform their biological functions. In this review we briefly describe advances in free 

energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic 

resonance, small angle x-ray scattering, single-molecule spectroscopy, cryo-electron microscopy) 

and computational (replica-exchange molecular dynamics, metadynamics, Markov state models) 

approaches have made great progress in recent years. These address the challenging 

characterization of the highly flexible and heterogeneous protein ensembles. We focus on 

structural aspects of protein conformational distributions, from collective motions of single- and 

multi-domain proteins, intrinsically disordered proteins, to multi-protein complexes. Importantly, 

we highlight recent studies that illustrate functional adjustment of protein conformational 

ensembles in the crowded cellular environment. We center on the role of the ensemble in 

recognition of small- and macro-molecules (protein and RNA/DNA), and emphasize emerging 

concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental 

physicochemical principles and protein behavior and the cellular network and its regulation.
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1. Introduction

In the cell, the conformational ensembles of all soluble proteins are in equilibrium around 

their native states.1 The breath of the distributions of the ensembles varies across proteins; 

some with lower and some with higher structural variability as measured by root-mean-

square deviation (RMSD) and other parameters2. Substates with larger RMSDs are separated 

by free energy barriers, which define the conformational exchange rates. Here our thesis is 

that the distributions of the states on the energy landscape are determined by statistical 

thermodynamics; however, they are also modulated by function which is optimized by 

evolution. Importantly, the two are intimately interconnected; more and more evidence 

indicates that the energy landscape dictates the conformational ensemble needed for the 

protein’s biological function.3

X-ray crystallography has been the primary experimental method to identify the most 

populated average states in the ensemble under the crystallization conditions. Stable, folded 

proteins in crystal structures have well defined three-dimensional structures. As early as in 

the 1970s, dynamic protein conformations have been noticed from theoretical,4–5 

experimental6–7 and molecular dynamics simulations studies.8 It is now generally accepted 

that crystal proteins may still have different conformations in a single unit cell,9 and there 

are multiple, populated substates that are not captured in the crystal state.10 Conformational 

fluctuations of proteins in solution,11 as revealed mostly by nuclear magnetic resonance 

(NMR) experiments and computations, make even stable proteins exist as conformational 

ensembles with highly populated substates whose populations follow thermodynamic 

distributions.12–16 In natively disordered proteins some populations may be more evenly 
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distributed. NMR measurements are averaged over the ensemble; thus protein structures 

solved by NMR spectroscopy reflect the ensemble nature of protein conformations. 

Conformational differences can be small or large, with some conformations more populated 

than others. The more flexible are the proteins the larger the number of their populated 

states, with the disordered state being at the end of this spectrum.17

Characterization of the conformational ensemble and protein dynamics is important for 

deciphering the relationship between protein structure and dynamics and functional 

mechanisms. In this review, we focus on the fundamental nature of protein ensembles from 

their physical origins and chemical properties to their cellular functions and biological 

significance. We review state-of-the-art experimental and computational methods to help 

address the question of how nature harnesses the thermodynamic uncertainty principle as 

reflected in the ensemble properties for biological function.

Over the years we and others (e.g. references18–67) described macromolecular structures in 

terms of their fundamental ensemble properties. These works related to their roles in the cell 

and in organism life, detailed their relevance to enzyme catalysis,3,68–74 DNA regulation,75 

cellular pathways (e.g. reference76 and references therein) and elaborated on how evolution 

has manipulated ensemble properties for function through covalent (e.g. reference77–79) and 

non-covalent80–86 interactions. Such descriptions are appealing in their simplicity and 

coherence; however, their aesthetics are not irrelevant in explaining reality, taking second 

place to cogency. Their strength is in their validity and ability to explain natural phenomena 

and in their predictive power. Allostery does not explain all biological phenomena and 

recognition events are not always allosteric events, as direct recognition of the post-

translation modifications shows. Similarly, pharmacological actions can stem from 

orthosteric or allosteric drugs. A quarter of a century after publication of the landmark free 

energy landscape concept by Frauenfelder, Sligar and Wolynes,1 which described proteins in 

terms of their statistics, the time is ripe to overview their implications to function. 

Nonetheless, as we have suggested early on, those implications required casting the statistics 

in terms of their dynamics.87–88 The conformation of a single molecule changes with time 

and this is reflected in the dynamic conformational distribution of the ensemble. It is the 

dynamic change in the distributions – via population shifts – that portrays and captures the 

linkage to function and life.89 The pivotal concept that all conformations pre-exist and are 

sampled by thermodynamic fluctuations – with function involving not new conformations 

but a shift in their relative concentration – underlies current approaches and interpretations. 

Where will the field take us? What more can it achieve? We believe that we are in a second 

molecular biology revolution where ideas from physics and chemistry are being imported 

into molecular biology.90 These may restructure molecular biology inspiring deeper 

understanding of cellular processes and deciphering the mysteries of life.

In this review we first describe the physical principle governing protein conformational 

behavior and within this framework discuss advances in free energy landscape studies. We 

review the ensembles of classes of protein structural modules ranging from single to 

multiple domains, complexes, and ensembles in the crowed cellular environment. We next 

discuss recent progress in experimental and computational methods to characterize the 
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ensemble, analyze the diverse functional roles of conformational ensembles in the cell and 

through some examples chronicle how nature harnesses thermodynamic fluctuations for life.

2. Thermodynamic principle of protein molecules

Fluctuations of protein structures, like those of any molecular system, are intrinsic 

thermodynamic phenomena. Fluctuations in e.g. energy and volume can be revealed by 

macroscopic properties which give us quantitative perception of their orders of magnitude. 

These aspects are briefly described below along with the free energy landscape which yields 

a common ground.91 All contribute to a physical perspective of the conformational 

ensembles of proteins.

2.1 Intrinsic thermodynamic fluctuation of protein and water

Protein structures must be considered as dynamic objects at the molecular level due to their 

intrinsic thermodynamic fluctuations16,92 as well as those of water.93–94 Any particular state 

i of a system can be defined by the set of quantities Xji, where, for example, X1i=total 

energy (E) of the system in state i, X2i=volume (V), and so on. For any given physical 

variable Xji, the mean square fluctuation is defined by: 〈δX j
2〉 = ∑iPi(X ji − 〈X j〉)2, where Pi is 

the probability distribution of Xi. For example, the mean square fluctuations of energy E (Xj 

= E) and volume V (Xj = V) are respectively:4

ΔE2 = E2 − E 2 = kBmT2Cv (1)

ΔV2 = V2 − V 2 = kBmTV βT (2)

The fluctuation of the entropy S is written as:95

ΔS2 = kBmCp (3)

Here Cv and Cp are the heat capacity of the system at constant volume and at constant 

pressure, and kB, m, T, V and βT is Boltzman constant, mass, volume, temperature, and 

isothermal compressibility of the system, respectively.

For a typical protein of 25k daltons (about 240 amino acids), the mass is ~ 4 × 10−20 g and 

the volume ~ 3 × 10−20 cm3, the heat capacity is ~Cp = 1.3J g−1K−1, βT = 0.2 Pa, kB = 1.38 

× 10−23 J K−1. One could estimate that the root mean square fluctuations of E and V are 

respectively:16 ΔE2 ≈ 38 kcal mol−1, ΔV2 ≈ 80 Å3. The volume fluctuation is 

approximately the volume of three water molecules16, which is considerable. The large 

protein energy fluctuation can be suppressed by protein folding. However, the intrinsic 

protein energy fluctuation coupled with the local energy fluctuations in water with a range of 
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10 to 20 kcal/mol,93–94 is enough to perturb a well folded protein to a vast number of states. 

Proteins with very flexible conformations, such as intrinsically disordered proteins (IDP), 

are expected to have larger heat capacity than well-defined proteins.96–98 Levitsky et al. 

studied the intrinsically disordered small heat shock protein Hsp22.96 During the thermally-

induced unfolding process, the protein revealed a larger heat capacity than a globular protein 

with the same molecular mass. The heat capacity of IDP could be 2 to 4 times larger than 

globular proteins with the same molecular mass.

At thermodynamic equilibrium, structural fluctuations of proteins are not only induced by 

the fluctuations of intra-molecular interactions of proteins, but also by the fluctuations of the 

energy of the surrounding water molecules. Kim and Hirata developed a statistical 

mechanics model to treat the conformational fluctuations of proteins around their native 

states and the correlated water molecules.99 This first principle formulation is based on the 

generalized Langevin equation. It describes the motions of proteins in continuum solvent 

and provides the theory of the 3D-reference interaction site model (3D-RISM/RISM) which 

could evaluate the free energy surface around the thermodynamic equilibrium and its first 

derivative.100 The second derivative of the free energy surface is calculated by the Hessian 

matrix term. They extended the model with the linear response theory so that the effect of 

the conformational fluctuations of proteins and the influence of solvent could be taken into 

account. The new model helps to evaluate the dynamic binding process of molecular 

recognition instead of the previous static models. Based on the same model, a recent work 

focused on the induced structural fluctuations by thermodynamic perturbations such as 

pressure.101 This model was extended to describe the influence of macroscopic perturbation 

(such as pressure), on the fluctuations of proteins and proved useful in explaining variable-

pressure NMR experiments. The model was also used in studies of the fluctuating 

thermodynamics of amyloid peptides.102 The key role of solvent-averaged effective energy 

during the dimerization process implies a hydration water-centric perspective of aggregation.

The protein compressibility βT and heat capacity Cv or Cp are directly related to the 

conformational fluctuations of proteins. The volume fluctuations of a protein are intimately 

related to pressure. Over the past years, pressure perturbation has been increasingly used to 

study protein dynamics in combination with NMR spectroscopy103 and X-ray 

crystallography.104 High-pressure techniques have a broad range of applications in 

thermodynamics and kinetics of macromolecules, such as proteins and protein complexes.
105–112 High-pressure techniques are widely used not only in protein dynamics and 

folding113 but also in amyloid aggregation,114–115 crowding effects,116 and more. The 

effects of hydration and cavities on compressibility-structure-function relationships were 

recently reviewed by Gekko.117 High pressure induced conformational changes (like 

unfolding) are distinct from those induced by urea.118–119

There are two mechanisms for a protein in solution to attain a lower volume in response to 

pressure: ‘elastic response’ by general compression within the sub-ensemble of the 

conformers and a shift of the conformational equilibrium from a high-volume to a low-

volume ensemble. In a typical case, the partial molar volume change is about −20 to −100 

mL/mol, which means the free energy change is on the order of −0.5 to −2 kcal/mol per 1 

kbar which may be sufficient to shift state B as the dominant species under elevated pressure 
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in place of state A. A protein molecule in solution exists in a dynamic equilibrium mixture 

of sub-ensembles of conformers differing in partial molar volumes.

The second mechanism is external cavities change under pressure. In conformations with 

lower volume the cavities are filled with solvent.120–121 The lower the volume, the more 

rigid the conformation would be. Changes in volume and SAS (solvent accessible surface 

area) are positively correlated. Chalikian and Filfil122 developed a volumetric model to 

determine the contributions of changes in volume (in internal protein cavities) to protein 

folding and binding events. During formation of protein-ligand complexes or enzymatic 

catalysis, external cavities change. In principle, large changes in compressibility parallel 

enzyme activity. However, in practice, the volumetric and fluctuation change of specific 

proteins are complex. T4 lysozyme and its mutants have shown this mechanism of volume 

change.123–127 Beside water molecules, the cavities may be filled or partially filled with side 

chains of proteins which would reduce the volume under high-pressure.124 Correspondingly, 

ligand binding to cavities would compete with side chains instead of solvent. A protein 

could rearrange its core to fill a cavity with protein atoms or hydrated cavity to respond to 

pressure.125

2.2 Thermodynamic fluctuations and the energy landscape theory

The statistical energy landscape theory was developed to study protein folding.1,128–131 

Mapping the folding landscape to a single coordinate, such as the fraction of native contacts, 

the energy landscape can be visualized as a funnel,132 elegantly resolving Levinthal’s 

paradox.11 Compared to random amino-acid sequences, the energy landscapes of natural 

proteins are smoother, in line with the funnel description. In small proteins, domains, and 

disordered states, protein folding is often a two-state process132 separated by an energy 

barrier. Consequently, the functional energy landscape has multiple minima, bridged by 

complex transition states.133 These can be observed with different experimental methods 

(Fig. 1), reviewed in section 4.

The energy landscape concept was extended to protein-ligand binding and 

function87–89,134–141 and statistical approaches were developed to describe the protein 

binding energy landscape.142–158 The energy landscape concept provided statistical 

information about the conformational ensemble and their thermodynamic fluctuations. The 

landscape can be probed by statistical mechanics methods, including atomic level 

simulations. Even the simplest 2D lattice model was shown to be helpful in understanding 

the energy landscape of protein folding and the ensemble of transition states.159 Although 

such model does not necessarily generate a funnel-like folding landscape, insights can be 

obtained. Even with a funnel shape, the protein folding and interaction energy landscape is 

necessarily rugged since a vast number of conformational states and substates exist along the 

folding/binding pathway as well as thermodynamic fluctuations around native state. The 

statistical treatment of the protein folding/interaction energy landscape usually uses the 

thermodynamic functions of the thermal average energy 〈E〉, the ruggedness ΔE2, the 

density of states or equivalently the entropy S, and the glass transition temperature TG.128 

The energy landscape ruggedness is directly measured by thermodynamic fluctuations in 

equation 1. On the folding/binding pathways, the ruggedness/fluctuation affect kinetics, and 
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the bottom ruggedness/fluctuations decide the conformational ensemble of the protein and 

its complexes. Therefore, on the energy landscape, the protein native state is not a single 

structure but a collection of conformations fluctuating at the bottom of the funnel with 

comparable energy and small energy barriers.160–161 The width and ruggedness of the 

unique global energy minimum determine the conformational entropy of the native state.133 

The shallower the global energy minimum, the larger the protein fluctuation is likely to be. 

As indicated in Fig. 2, intrinsically disordered proteins generally have lower energy barriers. 

The energy landscape of IDP folding and binding is a key to their structure-dynamics-

function relationship. Chu and coworkers developed a structure-based method to quantify 

the topography of the energy landscape to describe the thermodynamics and kinetics of 

flexible biomolecular recognition.158 By performing replica-exchange molecular dynamic 

(REMD) simulations of 15 homodimers, the global intrinsic energy landscape has been 

quantified by the density of states. The folding and binding kinetics can have different 

scenarios such as ‘coupled binding-folding’ or ‘folding prior to binding’. The recognition 

mechanism depends on the topography of the intrinsic energy landscape.

The local glass transition temperature TG is proportional to the fluctuation energy, and 

therefore the protein folding frustration TF/TG is inversely proportional to the fluctuation 

energy. Here, TG and TF denote respectively the glass transition temperature and the folding 

temperature of proteins. Since TF/TG must be greater than 1 for fast folding, rugged energy 

landscape is more frustrated. A smooth energy landscape has lower fluctuation energy. 

TF/TG as a measure of frustration is borrowed from statistical mechanics of spin glasses.128 

As compared to crystal, the energy landscapes of proteins in solvent are similar to those of 

glass and supercooled liquid.163 Polymorphs of glass164 are similar to protein 

conformational substates.165 Unlike the glass, protein motion is intrinsically coupled to the 

solvent. Exploiting the concept of glasses and supercooled liquids,166 protein motions could 

be classified by the α fluctuation (primary) and βh fluctuation (secondary).167–168 The 

slower α relaxation motions are inversely controlled by the solvent viscosity169–170 and the 

faster βh fluctuations are largely due to the hydration shell of the proteins.171 Indeed, recent 

NMR studies revealed that the small globular protein GB1 has a hierarchical distribution of 

protein-solvent motions over a temperature range of 105 to 280 K.172 A recent Mössbauer 

effect and quasi-elastic neutron scattering study of the dynamics and the free-energy 

landscape of proteins also observed β fluctuations in the hydration shell.173

The minimum frustration principle implies that nature has optimized protein folding,129,174 

thus the effect of point mutations on the energy landscape is analogous to thermal 

perturbations.175 However, the ruggedness and frustration are indispensable components of 

the protein energy landscape, partially due to the intrinsic thermodynamic fluctuations of 

proteins. Nature has taken advantage of the ruggedness of the energy landscape to optimize 

proteins for their functions. Proteins can fold on rugged energy landscapes through 

conformational diffusion.176 Even though below we review recent work related to the topic, 

here we highlight few studies to illustrate the functional significance of the ruggedness. For 

example, the energy landscape roughness slows down dissociation kinetics and can 

contribute to streptavidin-biotin interaction dynamic strength.176 In the study of large-

amplitude fluctuations of allosteric proteins, Li and coworkers developed a multiscale 

molecular dynamics approach and applied it to 71 allosteric proteins.143 They used the 
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atomic interaction-based coarse-grained (AICG) model to predict the native basin mean 

fluctuations and the orientation of conformational changes. Their work confirmed that hinge 

regions are located near regions of high frustration, which enables allosteric proteins to 

exhibit rare and large-amplitude fluctuations nearly up to the opposite state basin.143 Energy 

landscape studies using various other models also illustrated the importance of pre-existing 

fluctuations and coupling in allosteric transitions.177–179 The free energy landscape revealed 

that allostery can be derived from the large entropy which decreases the free energy barrier 

of allosteric states.177

Electrostatic interactions have strong effects on the protein energy landscape. One can 

design surface charge-charge interactions to speed up protein folding by reducing the 

frustration of the folding landscape and increasing the native-like contacts in the transition-

state ensembles.180 However, nature can use electrostatic interactions in different ways. 

Wolynes and coworkers have developed a coarse-grained (CG), associative memory, water-

mediated, structure, and energy model (AWSEM)181 to investigate protein energy 

landscapes.144,182 Electrostatic interactions in protein folding and binding were investigated 

with this model.146 The energy landscapes of thirteen monomeric proteins and four dimers 

have been calculated. Surprisingly, adding electrostatic interactions does not improve the 

prediction of protein structures but the folding stability may depend on electrostatic strength. 

In binding, the electrostatic interactions may enhance the stability by providing direct 

charge-charge interaction. In other binding cases, such as the protein FIS-DNA complex, 

electrostatics caused frustration instead of enhancement. Energy funnels of complexes, such 

as protein-protein associations, are much more complicated.

The protein energy landscapes described above are based on the statistics of ensemble 

averages. To understand single molecule behavior of dynamic protein energy landscape, 

Chien and coworkers developed a theoretical method to describe the dynamics of enzyme 

with embedded active sites and stochastic surrounding.183 Considering the coupling of 

electronic structure and protein motion during photon emission of the photon-activated 

fluorescent protein KFP1, the dynamics of an active center cannot be described as a 

Markovian process. Instead, the generalized Born-Markov approximation was used to split 

the complex environment into a direct sum of subreservoirs. Using stochastic matrix to 

describe the transitions between basins on the energy landscape, this approach revealed that 

slow conformational fluctuations caused by the environment could regulate the stochastic 

evolution of the protein active center.183 The non-Markovian dynamics was observed in the 

single-molecule enzymology study on a flavoenzyme by Lu and Xie, in which enzymatic 

turnover was not independent of its previous turnovers because of slow fluctuations of the 

protein conformation.184

3. Structural (and sequence) modules in protein conformational 

ensembles

Because the majority of proteins are multi-domain, two thirds in prokaryotes and eighty 

percent in eukaryotes,185 considerable attention has focused on linkers’ properties and roles.
29,186 Here we distinguish between those with hinge motion (with short linkers) and those 
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with long flexible linkers, enabling large domain fluctuations. In addition to large scale 

domain motions in multi-domain proteins, single domain proteins also have significant local 

conformational dynamics from side chains, loops, and synchronized backbone motions.

3.1 Single domain proteins

Proteins are often treated as rigid molecules in their crystal conformation. But the 

conformation observed in the crystal is not necessarily the most populated one in solution,
87,187–189 and the crystal structure is likely affected by crystallization conditions.189 It 

further does not capture the ensemble exploited for function. The crystal structure presents a 

fairly homogeneous population often of one conformer, whereas other conformers are not 

accounted for. Three structural elements underlie the conformational ensemble of single 

domain proteins: side-chain rotamers, loop movements, and collective movements of 

connected parts. The hierarchical stability and combination of the conformational diversities 

of these structural elements can lead to complex energy landscapes, even for a small protein 

like gpW.190

A study combining MD simulations and temperature-dependent X-ray diffraction data of 

proteins observed that proteins can be classified as surface-molten solids since the interior of 

native proteins is solid-like, while their surface is liquid-like.191 However, when analyzing 

over longer time scales, side-chains within protein cores also have liquid-like behavior. 

Bowman and Geissler used Markov state models to describe the thermodynamics and 

kinetics of proteins.192 Examination of the side-chain degrees of freedom revealed that 

almost every residue visits at least two rotameric states over hundreds of microseconds time 

frame, with rotamer transition rates spanning a wide range of time scales (from nanoseconds 

to tens of microseconds). They also reported substantial backbone dynamics on time scales 

longer than are typically addressed by experimental measures of protein flexibility, such as 

NMR order parameters.192 The liquid-like behavior of side chains within protein cores may 

explain the limited entropy loss in ubiquitin folding. For ubiquitin, the total change in 

entropy is TΔStotal = 1.4 kcal/mol per residue at 300 K with only 20% from the loss of side-

chains entropy.193 While sidechain motion may be affected by local packing density, 

however, the sidechain dynamics also correlate with allosteric motion.194 The conservation 

of side-chain dynamics within a protein family supports the proposition that the side-chain 

motions correlate with protein functions.194–195 Side-chain rotamers influence salt bridge 

formation, which in turn modulate the overall protein conformation. In a study of eleven 

proteins with NMR structures, each containing at least 40 conformers,196 the stabilizing/

destabilizing effects of salt bridges were extensively analyzed. Electrostatic interactions of a 

total of 1249 ion pairs have shown that most ion pairs can change from stabilizing to 

destabilizing the structure depending on the side-chain distances between the ion pairing 

residues. It has also been shown that salt bridges may exist in some conformers in the 

ensemble but not in others due to side-chain movements.196

Loop fluctuations provide large scale local conformational change. Loops’ dynamics can 

have two roles: (1) allow multiple ligands binding via direct recognition; and (2) correlated 

loop fluctuations help in transmitting signals across proteins and their assemblies. For 

example, based on loop conformations near the binding site, the EphA4 ligand binding 
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domain (LBD) structures can be classified into open and closed states, indicating highly 

dynamic receptor conformations. Protein conformational dynamics can be characterized by 

MD simulations and NMR experiments.197 The heterogeneous ensemble and loop dynamics 

explain how EphA4 is able to bind multiple A- and B- ephrin ligands and small molecules. 

The observation197 that the heterogeneous free EphA4 conformations (including both open 

and closed loop conformations) already exist before binding to the ephrin ligands provide 

experimental support for the role of the ensemble in function.

The collective movements of proteins correspond to low frequency vibrational motions. A 

comprehensive study of the vibrational properties of natively folded as well as random coil 

structures of more than 60 polypeptides indicated that compared with random coil structures, 

both alpha-helices and beta-hairpins are vibrationally more flexible in terms of collective 

motions.198 Ubiquitin is one of the best studied proteins with extensive coupled motions of 

backbone and side-chains.199–204 Even though ubiquitin is a relatively rigid molecule, it still 

has a highly diverse dynamic ensemble. Residual dipolar couplings (RDCs) revealed that the 

structural ensemble of ubiquitin in solution covers the complete structural heterogeneity 

observed in as many as 46 ubiquitin crystal structures. Interestingly, a large part of the 

solution dynamics is concentrated in one concerted mode, which accounts for most of 

ubiquitin’s molecular recognition heterogeneity and ensures a low entropic complex 

formation cost.200 NMR dipolar coupling experiments revealed that backbone motion in 

ubiquitin corresponds closely to the amplitude, nature, and distribution of motion found in a 

400 ns molecular-dynamics trajectory of ubiquitin.202 Micro-heterogeneity within 

ubiquitin’s conformational states was revealed by high resolution trapped ion mobility 

spectrometry, which indicates that within a conformational family the relative state-to-state 

abundance can be altered by solvent memory, energetic, and kinetic effects.203 Characterized 

collective motions in ubiquitin span four β-strands separated by up to 15 Å, and the 

correlations link molecular recognition sites.201 Interestingly, the collective motions can 

extend into the surrounding solvent on a 10 Å length scale.204 However, direct coupling of 

internal and global motion of a ubiquitin-like RhoGTPase binding domain of plexin-B1 was 

not observed in a MD simulation study.205

Post translation modifications can modify protein motions and functions. Using nuclear 

magnetic resonance relaxation, Kern and coworkers characterized the motions of a single 

domain signaling protein, NtrC in three functional states, the inactive unphosphorylated 

state, the phosphorylated active state and an unphosphorylated state of a mutant which is 

partially active. They found a strong correlation between phosphorylation-driven activation 

of NtrC and microsecond time-scale backbone dynamics.206 The structural states of NtrC, 

and its backbone interconversion between active and inactive states are consistent with 

biochemical data.207 By combining multiple computational enhanced sampling methods 

with new NMR data, Kern and coworkers further explored the free energy landscape of NtrC 

and found that functional states are defined purely in kinetic and not structural terms. They 

also showed that the transition between inactive and active states occurs through multiple 

pathways, with both entropic and enthalpic (nonnative transient hydrogen bonds) 

contributions decreasing the transition barrier.208
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3.2 Multi-domain proteins with hinge motions or linkers

Large-scale flexibility within a multidomain protein often plays an important role in its 

function. Hinge-bending involves movement of relatively rigid parts of a protein about 

flexible joints. In hinge bending motions, structural units move with respect to each other. 

While the packed arrangement within the protein subunit is conserved, the packing at their 

interface is disrupted. The parts move as relatively rigid bodies, swiveling on their hinge. 

The motion observed can be roughly perpendicular to the interface.209 Various 

computational methods have been developed to analyze the hinge motion. 210–213 Many 

multi-domain proteins are connected by linkers with different secondary structures and 

lengths (typically ~5–25 amino acids).29,214–217 Multi-domain proteins with linkers usually 

populate an ensemble with large conformational heterogeneity,214 with the highly flexible 

linkers having low transition barriers between the states. For example, the modular xylanase 

Cex has an N-terminal catalytic domain and a C-terminal cellulose-binding domain, joined 

by a glycosylated proline-threonine (PT) linker. The PT linker is a random coil without any 

predominant structure, and there are no noncovalent interactions between the two domains 

of Cex or between either of the domains and the linker.218

Hinge sites with multiple conformations are often the binding sites for multiple-ligands,219 

and mutations at the hinge regions could allosterically affect the binding-site dynamics or 

induce alternative binding modes by modifying the ensemble of accessible 

conformations220. Ligand binding sites which closely neighboring catalytic sites may enjoy 

moderate flexibility which accommodates ligand binding.221 For example, the interface 

between the N- and C-terminal domains of bacteriophage T4 lysozyme (T4L) is the hinge 

region that is accessible to the substrate with the help of the equilibrium dynamics of domain 

motions. Correlation analysis of fluorescence indicates that T4L populates multiple 

intermediate states.222 A combination of simulations and experiments revealed details of the 

conformational ensemble of the T4L.223–224 Analysis of topologically-related structures has 

also indicated that the hinge-bending motions are at similar locations. Depending on the 

distributions of the conformers and their conformational variability, they provide a gradient 

of binding site conformations of different shapes and volumes. These can potentially 

favorably interact with ensembles of ligands of variable sizes.219,225 The Lys63-linked 

ubiquitin chain with multiple conformational states for specific target recognition provides 

an example. Analysis of inter-subunit paramagnetic NMR data showed that free K63-Ub2 

exists as a dynamic ensemble comprising multiple closed and open quaternary states. One of 

the preexisting quaternary states can be selected and stabilized by a target protein. 

Quaternary dynamics enables K63-Ub2 to be specifically recognized in a variety of 

signaling pathways.226

Biological signal integration through the inter-domain linkage often does not display simple 

additive responses to activating inputs; instead, the linker provides synergistic activation 

effects.217 Linkers encode multiple states in the ensemble, where each state may relate to 

allosteric response. Different sequences in the linker control the linker conformation and 

dynamics, and linker conformational changes can propagate to the whole protein and 

influence the transition pathway. This mechanism can be also illustrated by multi-scale 

ensemble modeling of p53 proteins with intrinsically disordered linker regions.227 All-atom 
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molecular dynamics simulations of the explicitly solvated p53 linker region aimed to find 

long-range contacts within the linker. The linker conformational ensemble was then fed into 

a CG model to extract an optimal set of contact potentials by reproducing the contact 

probability map from the all atom MD simulations. Finally, CG MD simulation of the 

tetrameric p53 fragments including the core domains, the linker, and the tetramerization 

domain was performed to obtain an ensemble of the p53 tetramer. The calculated SAXS 

profile agrees well with the experiment. However, long-range contacts in the p53 linker 

region were required to reproduce the experimental SAXS profile, indicating allosteric 

communication.227 The propagation of conformational change at certain locations228–230 

can lead to large amplitude fluctuations of the linked domains.231 The low barrier heights 

between subsequent functionally-relevant states allow fast time scale response. Stabilizing 

such linkers may abolish function. Using SAXS and microsecond atomistic MD simulations, 

Strieter and coworkers compared the structural properties of ubiquitin dimers connected by 

native and non-native linkages. They found that SAXS profiles for the two types of dimers 

are similar. The MD results also reveal similar conformational ensembles for the native and 

non-native ubiquitin dimers. It is noted that due to the low resolution nature of SAXS data 

which prevents a precise determination of relative orientation of the two monomers, the MD 

generated conformations differ somewhat from those fitted with the experimental structural 

library.232

The sequence of the linkers and of residues in contact between linkers and adjoining 

domains may encode successive or parallel states through which signals travel.29 While 

there is experimental and computational evidence that validate the allosteric behavior of 

linkers, the concept that the sequences encode a series of states is more difficult to validate 

experimentally.233 Recently, Kukic et al determined the individual roles of linker residues in 

the interdomain motions of calmodulin using NMR chemical shifts as replica-averaged 

structural restraints in molecular dynamics simulations.234 They identified 10 residues in the 

interdomain linker region that change their conformations upon substrate binding, including 

five flexible residues (Met76, Lys77, Thr79, Asp80 and Ser81) and five rigid residues 

(Arg74, Lys75, Asp78, Glu82 and Glu83). The results indicated that the linker sequence is 

not randomly distributed; the resulting conformational ensemble of the linker must be 

optimized for calmodulin binding.234

Ribosomal protein L12 is a two-domain protein with a 20-residue long linker separating the 

N- and C-terminal domains (Fig. 3). Interestingly, the N-terminal domains of L12 form 

dimers. The L12 dimer has a flexible three-lobe topology. The ensemble of L12 

conformations reveals that the two C-terminal domains sample a large volume and extend 

further away from the ribosomal anchor than expected for a random-chain linker, indicating 

that the flexible linker has residual order. It was suggested that anti-correlation of the 

distances between each C-terminal domain and the anchor promotes the function of L12 to 

recruit translation factors and control their activity on the ribosome.235

Linkers sometimes serve to constrain conformational change, as in the case of procaspase 3, 

the primary executioner in apoptosis.236 The native conformational ensemble of inactive 

procaspase 3 is constrained by its intersubunit linker (IL). Cleavage of the linker activates 

procaspase 3. However, releasing the strain of the short IL is not enough to sufficiently 
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increase the population of the active conformer in the native ensemble. The combination of 

optimal length, IL flexibility, and specific contacts between the IL and interface are needed 

to stabilize the active state. Interestingly, increasing the IL length by introducing 3–5 

alanines can lead to constitutively active procaspases.236

3.3 Disordered proteins

Many proteins either contain at least one intrinsically disordered region (IDR) (such as 

intrinsically disordered domains and linkers in multidomain proteins)234,237 or are 

completely disordered (such as IDPs which are highly flexible and dynamic).238–239 Here 

we focus on proteins with large disordered portions. ‘Disordered’ or ‘intrinsically 

unstructured’ proteins lack a stable, well-defined structure under physiological conditions, 

existing in a continuum of conformations from the less to the more structured states.240–243 

Intrinsically disordered linkers connecting folded domains and intrinsically disordered 

domains usually encode the degrees of conformational flexibility essential for protein 

function,17,29,244–250,239,247,249–253 including regulation of transcription and translation, 

cellular signaling, phosphorylation, regulation of large multi-molecular self-assemblies and 

small molecule storage.249 Even though they appear to challenge the paradigm of structural 

biology, that function requires distinct 3D structure, this is not the case, since function 

involves a specific selected state, which may have marginal stability and low barriers, thus 

short residence time which may evade detection. The active state of a specific function is a 

unique state, which is not the case for the inactive states; its stability (population) may 

increase through a shift of the ensemble, e.g. via binding.

Disordered proteins account for a large fraction of all cellular proteins.248 In many cases, the 

disordered regions constitute only certain parts or domains of the whole protein. The 

regulation of unstructured proteins in the cell can occur at multiple levels of mRNA 

transcription and degradation; protein translation and degradation; and fidelity control of 

transcription and translation, including post-translational modifications in functional/

degradation control.254 Such regulation of intrinsically disordered proteins at nearly every 

stage during transcription and translation may be warranted to ensure precision, speed, 

membrane anchoring, flexibility in biological control.255

Intrinsically disordered proteins are on average twice more likely to be substrates of kinases, 

highlighting the importance of post-translational modifications in fine-tuning function.254 

Post-translational modifications are key modulators of the conformational energy landscape 

regulating IDP’s (as well as stable states) binding. One such example is the p53 protein, 

which has more than a dozen phosphorylation and acetylation sites with different biological 

signals.256 A post-translational modification (PTM) can bias the conformational distribution, 

increasing the population time of a cluster favored for binding a specific partner77. Allosteric 

post-translational modification is a signal switch, which can turn on or off IDP’s binding 

potential with a consequent binding and population shift. Post-translational modifications of 

IDPs may similarly serve as signals to their own degradation, although to date there are 

virtually no experimental structures where the PTMs are allosteric. In the case of p53, 

phosphorylation at Ser20 turns off p53-MDM2 binding, with a consequent increase in p53 

concentration; while phosphorylation at Thr155 targets p53 to degradation by the ubiquitin 
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system (reviewed in256). Here, however, as in many other cases it is a direct recognition 

rather than an allosteric PTM functioning through a population shift. Combinations of PTMs 

can constitute an allosteric code.77 Disordered proteins provide evidence that the function of 

a protein and its properties are not only decided by its static folded three-dimensional 

structure; but by the distribution and redistribution of the conformational ensemble.

Recently, a distance matrix-like approach was used as conformational vector to 

quantitatively measure the heterogeneity of the unbound ensemble of IDPs.2 The structures 

of disordered proteins are not ‘random’. Rather, the disordered state has significant 

metastable structures.240–243,257 The ensemble may encode dominant conformations which 

may be functionally relevant. For example, n16 is a framework protein family associated 

with biogenic mineral stabilization, thought to operate at three key interfaces in nacre: 

protein/β-chitin, protein/protein, and protein/CaCO3. The n16N protein lacks a well-defined 

secondary structure, both in the presence and absence of calcium ions. However, a 

combination of replica exchange molecular dynamics simulations with NMR experiments 

showed that in the equilibrium conformational ensemble of the intrinsically disordered 

peptide the dominant structures present the key residues in locations thought to be critical 

for selective binding to β-chitin surfaces.258 The PaaA2 antitoxin is another example of 

intrinsic disorder with dominant structures. The conformational ensemble of PaaA2 is highly 

compact and in solution the protein exists as two preformed helices, connected by a flexible 

linker where the helices may act as molecular recognition elements for toxin inhibition.259 

IDPs are not only involved in a wide variety of physiological processes, but also involved in 

pathological aggregation processes associated with many human diseases such as 

Alzheimer’ and Parkinson’s.260–263 Therefore, IDPs have also become the focus of studies 

of molecular mechanisms of amyloid aggregation, characterized by conformational 

transitions from intrinsic disorder in the soluble monomeric/oligomeric form to ordered self-

assembled amyloid fibrils of the same proteins.262–263 Due to the relevance of IDPs both in 

physiological and pathological processes, many studies have been conducted to characterize 

their conformational properties.264–265

3.5 Multi-protein complexes

Oligomeric proteins with two or more subunits comprise about one third of the cellular 

proteins,266–267 most of them symmetrical.266 Symmetrical oligomeric complexes are 

evolutionarily selected by functional, genetic, and physicochemical needs. Nearly all 

complexes have different side chain conformations, generating ensembles at the local level. 

Some asymmetric complexes have reciprocal mechanisms in which all subunits cycle 

through the same set of conformations266 and create global conformational ensembles. 

Cooperative functions, such as allosteric regulation and multivalent binding require 

conformational ensemble of multi-protein complexes. Oligomerization and nanocluster 

organization can render specificity in protein interaction.268

For large proteins, the local conformational change is often coupled with large domain 

motion, as in the case of the conformational flexibility of the myosin loops.269 Large 

collective motions often regulate the functional properties of the ensemble of the oligomers,
270 and protein flexibility facilitates quaternary structure assembly and acquiring new 
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functions.271 Flexibility is conducive to formation of heterologous (i.e., asymmetric) 

intersubunit interfaces, thus relating subunit flexibility to homomeric complexes with cyclic 

and asymmetric quaternary structure topologies.271

αB-crystallin is a molecular chaperone able to interact with unfolded proteins, and to inhibit 

further unfolding. αB-crystallin forms large oligomeric complexes, containing up to 40 or 

more subunits, which in vivo consist of heterooligomeric complexes of αB-crystallin and of 

other small heat shock proteins (sHsps).272 As shown in Fig. 4, the human sHsp αB-

crystallin is highly dynamic.273 The polydispersity and quaternary dynamics of αB-

crystallin are intrinsically inter-twined, and the αB-crystallin solution ensemble is governed 

by molecular motions of varying amplitudes and time-scales spanning several orders of 

magnitude. The ensemble of oligomeric and monomeric conformational states is required 

for the αB-crystallin’s chaperone function.274–275 Here too, the local conformational change 

is coupled with the quaternary dynamics of αB-crystallin, which is a direct consequence of 

localized tertiary fluctuations in its C-terminus.276

3.6 Conformational ensemble in cellular environment

In the heterogeneous cellular environment, protein conformations including those of 

symmetric oligomers may differ across time and space. The extracellular protein VlsE can 

be destabilized inside cells.277 The protein energy landscape can be adjusted in space and 

time with the fluctuations in the intracellular environment; for example the rate of folding 

and the thermodynamic stability of yeast phosphoglycerate kinase (PGK) are cell cycle-

dependent.278 The stability and folding kinetics of the PGK in the nucleus and endoplasmic 

reticulum (ER) of eukaryotic cells are different, and the nucleus increases PGK stability and 

folding rate over the cytoplasm and ER.279 Cell signaling can also be shaped by a network 

of multiprotein assemblies. Besides the homo-oligomers, the transiently-associated 

multiprotein complexes are often mediated by scaffolding proteins. Scaffolding proteins 

have an essential function in actively controlling regulation of signaling of multienzyme 

complexes and branching points in cellular pathways.280–281 Scaffolding proteins often 

integrate flexible modules, which are frequently disordered domains/regions.

In the cellular environment, the high concentration of macromolecules creates crowding 

effects. Macromolecular crowding decreases the diffusion rate, shifts the equilibrium of 

protein-protein and protein-substrate interactions, and changes the protein conformational 

dynamics. Crowding may bias the conformational change and dynamics of enzyme 

populations and affect catalysis. Experimental studies revealed a correlation between protein 

dynamics and function in the crowded environment. HIV-1 protease is an example of the 

effects of crowding on internal protein dynamics. The conformational ensemble with 

different flap orientation is important for interacting with other molecules.282 The distance 

between a pair of flaps in the HIV-1 protease can vary from 5 Å in the closed form to 22 Å 

in the open form. Molecular dynamics simulations indicated that flap opening is 

significantly suppressed in a highly crowded environment, leading to a more compact 

conformational ensemble283–284. In a coarse grain simulation of the effects of molecular 

crowding on protein conformational dynamics and transport properties of adenylate kinase, 

the system is crowded by a random stationary array of hard spherical objects. Protein 
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dynamics was investigated as a function of the obstacle volume fraction and size.285 With 

three domains, adenylate kinase undergoes large scale hinge motions in the course of its 

enzymatic cycle. The simulations show that the protein prefers a closed conformation for 

high volume fractions. The crowding effect becomes more pronounced as the obstacle radius 

decreases for a given volume fraction since the average void size in the obstacle array is 

smaller for smaller radii.285 Another crowding effect can be seen in α-chymotrypsin. α-

chymotrypsin undergoes a reversible conformational change between inactive and active 

conformations. Interestingly, for α-chymotrypsin activation conformational dynamics is 

more important than sequence differences since active bovine and inactive rat chymotrypsin 

explore different regions of conformational space,286 and there are multiple pathways for 

chymotrypsin activation.287 The hydrodynamic diameter of α-chymotrypsin decreases 

considerably with increasing temperature, indicating that the enzyme is more compact at 

higher temperatures.288 With a correlation between dynamics and activity, macromolecular 

crowding should decrease the structural dynamics and α-chymotrypsin activity; however, for 

α-chymotrypsin, crowding could either increase or decrease the catalytic rate, depending on 

the crowding molecules used.289–291

The above situation reflects uniform crowding effects, whereas synthetic particles with a 

narrow size distribution create random crowding conditions. In the highly coordinated 

cellular environment, proteins and other macromolecules are clustered and organized, and 

crowding is more structured,68 as illustrated by the simulations of large collections of 

proteins.292–293 For example, the folding mechanism of PGK can be modified by 

intracellular compartments. The density of crowders in the nucleus is no greater than in the 

ER or cytoplasm; however, PGK folds fast in nucleus, where it has a more homogeneous 

crowding and chemical environment.279 In structured crowded environments, the 

perturbation of protein thermal stability may be lower; however, it may still be able to 

effectively dynamically modulate function. The crowding effect may stabilize the folded 

state; however, the effect can be counterbalanced by the favorable energetic interactions 

which take place in unfolded conformations.293 Crowding perturbations are lower for 

proteins than for synthetic particles294. Moving closer to a real crowded environment in the 

cell, hen egg white has been used to study the dynamics and stability of several proteins.295 

While the dynamic parameters of the studied protein are clearly affected by the crowded 

medium, the thermal stability of the protein is similar to that in buffer.295 In the structured 

crowded environment, the protein energy landscape may be more similar to that in buffer 

solution. Overall, the dynamics of globular proteins may be more sensitive than the 

dynamics of intrinsically disordered proteins, since crowding causes limited structural 

changes of IDPs.296–297

In the crowded cellular environment, it is of paramount importance to prevent disease-

causing nonspecific interactions. While it is possible to achieve near-absolute specificity,298 

the collective evolution of the amino acid sequences of protein binding interfaces leads to 

the optimization favoring networks in which a few proteins have many partners, while most 

proteins have few partners.299 Computational methods have been developed to design 

protein interface sequences to maintain correct and avoid unwanted interactions by 

optimizing promiscuous protein interfaces.300 Apparently, flexible protein make 

promiscuous protein interfaces possible.
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4. Experimental and computational methods to characterize protein 

ensembles

Proteins in aqueous solution often populate highly flexible, heterogeneous ensembles of 

conformations. Therefore, it becomes challenging to determine their structures using 

standard high-resolution biomolecular structure determination techniques alone such as X-

ray crystallography. Different ensemble approaches have been developed to study the protein 

conformations and dynamics, including both experiment-based and computation-based 

methods. Major experimental methods include but are not limited to nuclear magnetic 

resonance (NMR),301–302 small-angle X-ray scattering (SAXS),303 single-molecule 

spectroscopy,304–306 and cryo-electron microscopy.307–309 These experiments are often 

combined with computational algorithms to map the conformations of proteins, in which 

experimental data are used as structural constraints.310–311 Among the physical-model-based 

computational methods are replica-exchange molecular dynamics simulations,312–313 

metadynamics,314 steered315 and accelerated molecular dynamics316–317 and Markov state 

models.318–319 Due to limited space, we only discuss some of the abovementioned methods 

and their applications.

4.1 NMR/SAXS spectroscopy experiments

NMR spectroscopy has emerged as the most promising tool for the characterization of large-

amplitude conformational dynamics of proteins (including single-domain proteins, multi-

domain proteins and IDPs) at amino acid resolution, and even at atomic resolution.
200,320–321 NMR signals from disordered regions of proteins exhibit the spectroscopic 

features of small molecules, making resonance assignment possible even for very large 

IDPs,322 which can provide both short-range and long-range conformational information.
242,323–324 The NMR parameters providing short-range and long-range structural 

information include chemical shifts (CSs), residual dipolar couplings (RDCs), and 

paramagnetic relaxation enhancements (PREs). The chemical shift of a nucleus depends on 

its local physicochemical environment and is highly sensitive to the presence of secondary 

structure in both folded and disordered proteins.325 RDCs report on the distribution of 

relative orientations sampled by different structured domains324 as well as the 

conformational propensities of disordered regions.326 PREs detect the change in the 

relaxation rate of a nuclear spin induced by the presence of a distant paramagnetic group to 

infer the distance between the two centers, which can be used to monitor long-range contacts 

in protein−protein complexes or in IDPs.327–328 The long-range conformational change is 

especially valuable for allosteric proteins. Recent applications of NMR in studies of protein 

dynamics in allostery have been reviewed.18 SAXS, on the other hand, provides 

complementary information concerning the overall dimension (or radius of gyration) of 

proteins.326,329 Similar to NMR, SAXS is increasingly employed in studies of flexible 

systems such as IDPs and multi-domain proteins with unstructured regions.

Different ensemble fitting (or selection) algorithms have been developed to fit the NMR and 

SAXS data. The Flexible-Meccano330–331 and the Ensemble Optimization Method 

(EOM)310–311 are respectively the first approaches introducing the concept of ensemble 

fitting of the NMR and SAXS data from flexible macromolecules. A number of other 
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ensemble approaches have followed, including ASTEROIDS332 BSS-SAXS,333 

ENSEMBLE,334 and EOM 2.0 (an enhanced version of EOM).335 These ensemble 

approaches, as well as MD simulations, rely on a set of structural constraints determined by 

RDCs and CSs, and distance restraints from PRE and SAXS. In each method, an ensemble 

of conformations is generated and iterated to match the experimental restraints as closely as 

possible. The NMR/SAXS-based ensemble approaches have been summarized in several 

excellent recent reviews.264,321,335 Most excitingly, the recently developed in-cell NMR 

spectroscopy allows the study of protein folding and binding dynamics in living cells at 

atomic resolution.336–337 Recent progress of in-cell NMR spectroscopy has been 

summarized in a recent review.337 These NMR/SAXS-driven ensemble approaches have 

enabled effective characterization of the dynamics and conformational ensembles of proteins 

that were not possible by X-ray crystallography.

Several selected proteins, such as ubiquitin,200 calmodulin335, and flexible multidomain 

splicing factor U2AF65,251 together with the NMR/SAXS parameters and the ensemble 

fitting approaches are given in Table 1. For these works, we can see that NMR and SAXS 

are often combined, sometimes additionally also with MD simulations. For example, the 

available degrees of conformational freedom of U2AF65 are initially sampled using 

statistical coil model based program, flexible-meccano,330–331 and the sampled 

conformational ensemble is then elucidated by the ASTEROIDS ensemble selection 

approach with the NMR and SAXS data as restraints. The spatial distribution of U2AF65 

conformations is found to be highly anisotropic, comprising of significantly populated inter-

domain contacts that are electrostatic in origin. SAXS data with amplified collective motions 

(ACM) were used to elucidate T4L structures and tandem WW domains of the formin-

binding protein 21. The conformations generated by ACM are significantly better at 

reproducing the SAXS data than those from MD simulations due to the larger 

conformational space explored in the ACM sampling.223 However, the MD results still 

provide a large conformational ensemble comparable to the distribution of crystallographic 

conformations of T4 Lysozyme.224 Essential dynamics analyses of the collective 

fluctuations from both simulated trajectories and distribution of crystallographic 

conformations indicated that the main collective fluctuations are the domain motions. For 

the closure mode, the difference in hinge-bending angles between the most-open and most-

closed X-ray structures along this mode is 49 degrees, comparable to a rotation of 45 

degrees in MD simulations.224

4.2 Single-molecule spectroscopy experiments

Single-molecule spectroscopy methods include force-based spectroscopy methods such as 

atomic force microscopy (AFM) and optical tweezers,342 and fluorescence-based 

spectroscopy methods such as single-molecule fluorescence resonance energy transfer 

(smFRET).343 These approaches have become widely employed for quantifying the 

conformational heterogeneity and structural dynamics of biomolecules both in vitro344–345 

and in vivo,346–347 allowing the observation of transient intermediates as well as static and 

dynamic heterogeneity.
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AFM and optical tweezers are used to apply a stretching force between two points of a 

protein, unfolding the protein to an extended state. Two different protocols are commonly 

used in these experiments: constant velocity and constant force modes. Both protocols 

provide similar information, although constant force experiments are slightly more intuitive 

and simpler to interpret. Constant velocity experiments are useful for quickly assessing the 

force scales for folding and unfolding. By measuring the unfolding and folding trajectories 

of individual proteins, insight can be gained into the folding energy landscape, mechanical 

properties and conformational flexibility of globular proteins and IDPs.342,348–349 An earlier 

AFM study on the folding of a two-domain protein, the calcium-sensing protein calmodulin, 

reported near-equilibrium two-state folding/unfolding transitions of the individual domains.
350 Later, folding of calmodulin within a 6-state network involving two off-pathway 

intermediates was observed in optical tweezers experiments.344 AFM can also be used in an 

ultrafast scanning mode, which can provide the ‘movies’ of the conformational transitions of 

proteins such as that of myosin V motor proteins moving along actin tracks enabled by 

disordered linker regions. The ‘movies’ provide direct evidence of dynamic molecular 

behavior, resulting in a detailed understanding of the motor mechanism.351 A recent optical 

tweezers study has directly shown that molecular shredding machines ClpX and ClpP 

proteases generate mechanical forces to unfold and translocate their protein substrate GFP.
352

Single-molecule FRET allows distances and distance dynamics to be monitored in a range 

from about 2 nm to 10 nm, which has been applied successfully to the study of the 

conformational dynamics of globular proteins353 and IDPs.343 An important strength of 

single-molecule FRET is the separation of folded and unfolded populations of proteins,
354–355 which allows the structural properties of the unfolded state to be quantified even 

under conditions where the majority of the molecules are folded. Therefore, FRET is able to 

reveal hidden complexity in a protein energy landscape.356 For example, in the structural 

distribution and dynamics study of p53, it was found that its N-terminal domain has multiple 

preferred conformations, with some of them interacting with the DNA-binding domain.357 

Single-molecule FRET even enabled studies of structural stability and conformational 

dynamics of proteins in live cells, as demonstrated in recent studies of several proteins such 

as individual SNARE proteins,346 prothymosin α (an IDP), yeast frataxin homolog Yfh1, 

and IgG-binding domain of protein G (GB1).347 Recently, a combined optical tweezers and 

smFRET study reported direct observation of the connection between the conformational 

states and the unwinding versus rezipping activity of UvrD, a DNA repair helicase.358 In 

that study, the unwinding activity and the conformation of the UvrD helicase were measured 

simultaneously. UvrD has two conformational states: open state and closed state (see Fig. 5 

A). In the smFRET experiment, UvrD was labeled with donor and acceptor fluorophores, 

thus high or low FRET efficiency revealed the closed or open states, respectively (Fig. 5 A). 

An example data trace of UvrD conformational states and unwinding activity measured 

simultaneously (Fig. 5 B) show that when a monomer is in the closed conformation (Fig. 5 

B, shaded intervals), the DNA duplex unwinds, whereas the duplex rezips upon switching to 

the open conformation (Fig. 5 B, unshaded intervals). These observations demonstrate that 

the two conformational states and the interconversion between the two states correlate 

strongly with UvrD rezipping and unwinding activities. The average speed versus FRET 
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efficiency plot for many individual FRET-determined time intervals (Fig. 5 C) supports the 

finding that unwinding (positive velocity) and rezipping (negative velocity) correspond to 

high (closed state) and low (open state) FRET states, respectively.

4.3 Replica-exchange molecular dynamics simulations

Replica-exchange molecular dynamics (REMD) simulation312–313 is one of the widely 

employed physical-model-based simulation methods. It is an enhanced sampling method, in 

which several identical copies (replicas) of the system are run in parallel at different 

temperatures and exchanges are periodically attempted using Monte Carlo criteria.
312–313,359–360 This allows enhanced sampling of the conformational ensemble. 361–366 

While computationally expensive, the REMD method is able to explore broad, biologically 

significant conformational space. For example, conformational ensembles of a 16-residue 

human islet amyloid polypeptide (hIAPP—an IDP associated with type 2 diabetes) fragment 

(hIAPP(11–25)) monomer (for which solution NMR data are available367) and dimer have 

been studied by all-atom explicit-solvent REMD simulations with the aim to understand the 

atomic details of α-helical intermediates and the mechanism of α-helix to β-sheet transition 

during the aggregation process.365 The converged 200-ns REMD simulation shows that 

hIAPP(11−25) monomers can transiently sample both α-helical and β-hairpin structures in 

solution at 310 K. Small disordered histone tails (14~38 residues), with similar size as 

hIAPP(11–25), have also been simulated by microsecond-long all-atom explicit-water 

REMD simulations by Potoyan and Papoian. The simulations demonstrated that the 

conformational ensembles of histone tails are composed of states with various degrees of 

residual order and most tails are not fully disordered, but show distinct conformational 

organization, containing α-helical elements and β-hairpins.368 Conformations with a high α-

helical propensity in two regions of the histone tail peptide were also reported in a recent 

millisecond atomistic MD study by Zheng and Cui.369

The conformational space of large sizes of IDPs--K18 (130 aa) and K19 (99 aa), two 

truncated tau constructs from the microtubulin (MT)-binding domain, have been investigated 

recently by us using REMD simulations.370 We take the simulation results of K18 monomer 

as an example. Representative conformations of the top eight most-populated RMSD-based 

clusters (Fig. 6 A, B) reveal the both ordered and disordered nature of the K18 monomer. 

The REMD-predicted and experimentally measured Cα SCSs show a Pearson correlation 

coefficient of 0.614 (Fig. 6 C), consistent with previous NMR data.371 This correlation is 

encouraging for such a large system with 130 amino acids (aa) in explicit water. A recent 

REMD study of a small 20-aa IDP fragment produced Cα SCSs having a correlation 

coefficient of 0.73 with experimental values.364 The calculated Cα CSs from recent REMD 

simulations on α-synuclein multimers have a correlation coefficient of 0.991 with NMR 

values.372 An excellent agreement with NMR Cα CSs was also obtained for K18 with a 

correlation coefficient of 0.989 (Fig. 6 D). These good correlations between the REMD- and 

NMR-derived Cα chemical shifts indicate that the REMD-generated conformational 

ensemble of K18 monomer is consistent with previous NMR data.371

The importance of metastable conformations in intrinsically disordered proteins can be well 

illustrated by the tau protein. Tau proteins possess intrinsic enzymatic activity capable of 
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catalyzing self-acetylation mediated by a pair of catalytic cysteine residues residing within 

the microtubulin (MT)-binding domain.373 Acetylation of tau inhibits its function and 

promotes pathological aggregation.373–375 An interesting question is how the conformational 

ensembles of IDPs are related to function, aggregation, and disease pathogenesis.376 IDPs 

adopt multiple conformations for function;377–378 that is, the multiple conformational 

ensembles collectively determine functions. In order to address these challenging questions, 

Luo et al. characterized the atomic structures of two truncated tau constructs, K18 and K19, 

consisting of, respectively, only the four- and three-repeats of tau protein, providing 

structural insights into tau’s paradox.257 The results of the analysis of the conformational 

ensembles of the tau proteins support the view of structured disorder and conformational 

selection as functional mechanism for IDPs.377 Our REMD-generated data of K18 monomer 

show that cysteine-containing sequences 283DLSNVQSKCGS293 in R2 and 
314DLSKVTSKCGS324 in R3 transiently sample α-helical structure (Fig. 7 A). These two 

regions are highly similar to the catalytic regions in MYST-family acetyltransferase Esa1 

and Tip60.379 Enzymatic activity requires structural stability and conformational dynamics.
69 Cys322 is located in a well-formed helix, which is critical for catalysis. The lysine

−cysteine distance distribution curve in Fig. 7 (B) displays peaks between 5 and 10 Å, 

indicating that the two residues are close enough as in acetyltransferase with a Cα−Cα 
distance of 8.4 Å between Lys262 and Cys304.380 The close contact between lysine and 

cysteine residues can be seen in representative conformations of C5 and C7 (Fig. 7 C). The 

close lysine-cysteine contacts in K18 may facilitate tau’s self-acetylation activity mediated 

by cysteine residues as reported recently.379

4.4 Metadynamics simulations

Similar to the REMD method, metadynamics is also an enhanced sampling method which is 

widely used to explore the conformational space of biomolecules.314,381 The enhancement is 

obtained by adding a history-dependent bias potential (which is a function of a few selected 

collective variables (CVs)) to the Hamiltonian of the system. This potential is constructed as 

a sum of Gaussians deposited along the system trajectory in the CV space, which can force 

the system to explore the conformations that have not yet been sampled. Thus, 

metadynamics can greatly enhance the sampling of rare events by pushing the system away 

from local free-energy minima. Next, the bias potential provides an unbiased estimate of the 

underlying free-energy surface.382 Often a reweighting scheme based on configurational 

populations is needed to recover the Boltzmann statistics.383

Several improved metadynamics variants have been developed in recent years, including 

well-tempered metadynamics,384–385 bias-exchange metadynamics,386 and ensemble-biased 

metadynamics (EBMetaD).387 Well-tempered metadynamics is a particular form of 

metadynamics, in which the energy is used as a collective variable. Bias-exchange 

metadynamics involves a combination of replica exchange312–313 and metadynamics, in 

which a set of CVs are chosen and several metadynamics simulations are performed in 

parallel on different replicas of the system at the same temperature, each replica biasing a 

different CV. This allows complex free-energy landscapes to be explored with high 

efficiency. The ensemble-biased metadynamics biases a MD simulation to sample a 

conformational ensemble that is consistent with one or more probability distributions known 

Wei et al. Page 21

Chem Rev. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a priori, e.g., experimental intramolecular distance distributions obtained by spectroscopic 

techniques such as double electron-electron resonance.387

These methods alone, or in combination with high-resolution experimental techniques such 

as x-ray crystallography and NMR, have been successfully applied to the study of the free 

energy landscape of flexible proteins and protein oligomers,36,388–389 peptide folding,
390–392 ligand and selective ion permeation through cell membrane protein channels.393 A 

recent interesting study on the gating and permeation of poorly ion-selective cyclic 

nucleotide-gated (CNG) channels, using bias-exchange metadynamics with a combination of 

X-ray crystallography and electrophysiology, showed that (1) the selectivity filter can adapt 

to large and small ions with a different geometry (see the snapshots and the free energy 

landscape in Fig. 8) and (2) the pore diameter critically depends on the ion inside the pore. 

Based on these results, the authors concluded that the pores of CNG channels are highly 

flexible and that this flexibility underlies the poor selectivity of CNG channels and their 

strong coupling between gating and permeation.

4.5 Markov state models

Enhanced sampling methods such as REMD and metadynamics can provide the structural 

and thermodynamic properties of proteins. However, they do not reproduce kinetic rates and 

conformational dynamics. A Markov state model (MSM), known as a stochastic model, 

provides an approach which can be used to identify the kinetically relevant states and the 

rates of interconversion between these states. MSMs can predict kinetic quantities on long 

timescales (e.g. milliseconds) using a set of much shorter MD simulations.395–396

MSMs are employed to analyze simulation trajectories, determine microstates and calculate 

the transition state probabilities. To build a MSM, conformational space needs to be 

explored first, and subsequently discretized into microstates from which transition 

probabilities can be calculated, and finally refined and validated.397–399 Before constructing 

a MSM, enhanced sampling techniques such as replica exchange,312–313 metadynamics,314 

and coarse graining400 are often used to provide an initial sampling of the configuration 

space, followed by short MD simulations in order to capture the correct underlying 

thermodynamics. Transition probabilities between microstates are calculated from the short 

MD trajectories and the MSM is generated. Improvements on the initial MSM can be made 

through adaptive sampling. The procedure for adaptive sampling contains iteration of three 

steps: running a series of short MD trajectories from previously collected conformations, 

constructing an MSM based on the accumulative data, and seeding new MD trajectories 

based on the sampling criterion.398–399 Coarse-graining models can be further used to lump 

these kinetically relevant microstates into intuitive macrostates.397–398 An example of 

microstate- and macrostate-MSM network can be seen from 3000- and 10-state MSM 

network of agonist-bound GPCR given in Fig. 9 (a more detailed description is given 

below).

Markov state models have been applied to a wide variety of problems, spanning protein 

folding,402 protein-ligand binding process,403 protein conformational change,404–405 the 

dynamics and kinetics of IDPs,369,406–407 and ATP permeation through membrane protein 

channels.408 In the study of the histone tail, based on 75.6 μs long implicit solvent 
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simulations and 29.3 μs long explicit solvent simulations, both the free energy landscape and 

the underlying kinetics have also been analyzed with the MSM and different computational 

techniques, reaching qualitatively similar results.369 Several recent studies have reported the 

application of MSMs to the study of the activation pathways of Src-kinases,409 GPCR,
401,408 protein kinase A,410 and bacterial signaling protein NtrC.411 We take the 

abovementioned agonist-bound GPCR system as an example. The kinetic network 

representation of the 3000-state MSM built from the simulations of agonist bound GPCR is 

given in Fig. 9 A. Such a detailed picture of β2AR kinetics is useful for illustrating 

activation pathways at atomistic resolution. MSMs also provide a way to simplify this 

network by discarding fast conformational dynamics to obtain an intuitive picture of 

receptor dynamics consisting of lumped states. This lumping procedure is used to reduce the 

3000-microstate model to a simplified 10-macrostate model of β2AR dynamics (Fig. 9 B). 

This macro state model of β2AR reveals two highly connected states, which are identified as 

inactive state (R) and the intermediate state (R’), and several states with fewer connections, 

including the active state (R*). Overall, these studies revealed the potential of MSMs to 

identify putative allosteric binding sites or to differentiate between agonists and antagonists 

using conformational information along putative functional pathways. A detailed description 

of the application of MSMs to biological systems has been presented in two recent excellent 

reviews.398–399 We will not go into the details.

5. Protein interactions and reactions under ensemble control

Proteins function through their interaction with other molecules. Intuitively, two strongly 

interacting molecules would have more negative enthalpy change ΔH, which could lead to 

more favorable ΔG. The traditional ‘lock and key’ mechanism states that a protein has to 

have an exact match with its ligand to form a functional complex. Apparently, this 

mechanism overlooked the protein ensemble and entropy contributions. A lock-and key 

match of protein-ligand interaction is hard to achieve. The ‘induced fit’ hypothesis412 

suggests that the bound conformation can be ‘induced’ by the binding partner when the 

conformation in the complexes differs from that in the unbound form. The ‘conformational 

selection and population shift’ model87–89,134 provides a more realistic description of the 

molecular mechanism considering the ensemble nature of protein molecules. Proteins and 

their binding partners are flexible and exist in ensembles with certain conformational 

distributions. During binding, higher energy (lower population) conformers which are most 

complementary to some pre-existing ligand conformations can be selected and the 

equilibrium shifts toward these conformers.87–89,134 The mechanism partially accounts for 

entropic effects. Here we examine the effects of protein conformational ensemble on protein 

interactions.

5.1 Protein-small molecules interactions

Protein dynamics have been shown to be universally important for protein-ligand interaction.
219 A protein binds small molecules through distinct conformations; all of which may differ 

from its prevailing or crystal unbound or its protein-bound states. For example, the mouse 

major urinary protein (MUP-I) functions as carrier of volatile effectors of mouse physiology. 

Crystal structures of MUP-I complexed with two synthetic pheromones, 2-sec-butyl-4,5-
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dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone have shown that the ligands differ in 

their orientations within the MUP-I β-barrel pocket.413 In this case, the ability of MUP-I to 

bind different lipophilic ligands derives from a limited extent of conformational flexibility 

and unoccupied space within the hydrophobic interior of the β-barrel.413

Different protein conformations often correspond to different biological functions. Estrogen 

receptors are classic examples of close couplings of protein conformational change and 

selective transcriptional activities. It has been shown that ligands can interact with similar 

targets in different conformations, and that the biological outcomes like ERβ selective 

agonist depend on the relative affinities of a ligand to ensembles of protein conformations.
414 The conformational ensemble may determine the ability of a drug to compete with a 

native ligand for a receptor target. In the case of estrogen receptor alpha (ERalpha) and 

estrogen receptor beta (ERbeta), the functional outcome of ligand binding can be inferred 

from its ability to simultaneously bind both ERalpha and ERbeta in agonist and antagonist 

conformations.414 G protein-coupled receptors (GPCRs) are also good examples of 

couplings of protein conformational change and functions. GPCRs exhibit multiple inactive 

and active conformations, and the population balance between these conformations is altered 

upon binding of ligands.415 The effect of various ligands binding on the ensemble of 

conformations sampled by human β2-adrenergic receptor (β2AR) also corresponds to 

different pharmacological reaction. The binding of agonist norepinephrine or partial agonist 

salbutamol leads to the selection of a subset of conformations including active and inactive 

state conformations, while inverse agonist carazolol selects only inactive state 

conformations. Therefore, receptor activation depends on both low energy states and the 

range of the conformations sampled by the receptor.416

Many computational methods have been developed to consider the ensemble nature of 

protein conformations and their interactions with ligands, mostly small molecules.
414–415,417–418 Nunes-Alves and Arantes parametrized a linear interaction model for implicit 

solvation with coefficients adapted by ligand and binding site relative polarities in order to 

predict ligand binding free energies. They proposed approximations to average contributions 

of multiple ligand-receptor poses built from a protein conformational ensemble and find that 

exponential averages require proper energy discrimination between plausible binding poses 

and false-positives (i.e., decoys).417 Dong, Abrol, and Goddard used a modified GPCR 

Ensemble of Structures in Membrane BiLayer Environment (GEnSeMBLE) to predict 

ensemble of low-energy 3D structures. Using the predicted binding sites for a series of five 

known antagonists, they predicted binding energies consistent with experimental results 

reported in the literature for Human somatostatin receptor subtype 5 (hSSTR5).418

Many docking methods and tools take into the accounts of protein conformational ensembles 

using either experimental or computational ensemble structures.419–428 A database of 

binding site ensemble can provide a fourth dimension to the otherwise three dimensional 

data.420 For example, Pocketome allows searching for sites of interest, analysis of 

conformational clusters, important residues, binding compatibility matrices and interactive 

visualization of the ensembles.421 In a simulation of Bcl-2 family proteins, Kalenkiewicz, 

Grant, and Yang have demonstrated that structural ensembles derived from either accelerated 

MD or MD in the presence of an organic cosolvent generally give better scores than those 
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assessed from analogous conventional MD.419 Unfortunately we are not able to exhaustively 

list all the docking approaches. Instead, here we provide three examples of ensemble 

docking. One algorithm simultaneously docks a ligand into an ensemble of protein structures 

and automatically selects an optimal protein structure that best fits the ligand by optimizing 

both ligand coordinates and the protein.425 The docking algorithm was validated on 10 

protein ensembles containing 105 crystal structures and 87 ligands and achieved a success 

rate of 93%, significantly better than single rigid-receptor docking (75% on average).425 In 

the Surflex-Dock, protein pocket similarity was used to choose representative structures for 

ensemble-docking. The docking protocol made use of known ligand poses prior to the 

cutoff-date, both to help guide the configurational search and to adjust the rank of predicted 

poses.423 ReFlexIn (Receptor Flexibility by Interpolation) combines receptor flexibility with 

potential grid representation of receptor molecules has been evaluated on the retroviral 

HIV-1 protease system, with good agreement with experimental results.427 Overall, 

ensemble receptor-based protocols display a stronger discriminating power between active 

and inactive molecules as compared to its standard single rigid receptor counterpart.426 

However, the prospective selection of optimum ensembles is a challenging task.428

As compared to globular proteins with flexible binding sites, the interactions of intrinsically 

disordered proteins with small molecules are much harder to track either experimentally or 

computationally. Several intrinsically disordered proteins such as α-synuclein, tau and the 

Aβ peptide are implicated in neurodegenerative diseases like Parkinson’s and Alzheimer’s 

diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered 

proteins by small molecules has been a major challenge.429–431 Targeting the intrinsically 

disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic 

strategy for Parkinson’s disease has been shown to be promising.429 Interaction of small 

molecules with Aβ can significantly alter properties of monomeric Aβ via multiple routes of 

differing specificity,431 and it may be possible to identify small-molecule binding pockets in 

the soluble monomeric form of the Aβ42 peptide.430

The disordered state has a significant metastable structure character240–243,257 and 

functionally relevant conformations may have population times higher than of other 

conformations.240–242 In a study of the impact of small molecule binding on the energy 

landscape of intrinsically disordered protein c-Myc, a transcription factor that is 

overexpressed in a broad range of cancers, a small molecule was found to perturb the 

composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc 

conformations. Comparison of the apo and holo equilibrium ensembles reveals that c-Myc 

binding conformations are already partially formed in the apo ensemble, suggesting a 

conformational selection mechanism.432

5.2 Protein ensemble in enzyme catalysis

Enzymes selectively and efficiently catalyze biochemical reactions. The catalytic power of 

enzymes largely derives from their ability to stabilize transition states, lowering the barrier 

that reactants have to pass to reach productive states. Enzymes are optimized by evolution to 

exploit conformational ensembles to recognize their substrates and stabilize the transition 

states,70,209 and both experimental and theoretical evidence indicates that enzyme 
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conformational transitions are highly organized which increases enzyme specificity and 

efficiency.133,399,433–435 Yang and Bahar have systematically analyzed the type and level of 

coupling between catalysis and conformational mechanics of 98 enzymes with the Gaussian 

network model (GNM) and compared these with experimental data. They found that in more 

than 70% of the examined enzymes, the global hinge centers predicted by the GNM are 

colocalized with the experimentally identified catalytic sites. These hinge region ligand 

binding sites are usually nearby catalytic sites and have a moderate flexibility to 

accommodate the ligand binding.221 For example, combined experimental and 

computational approaches revealed conformational substates along the reaction trajectory of 

adenylate kinase.436 Fluctuations in hinge regions of the adenylate kinase generate the 

conformational ensemble that contains a catalytically competent state.436

In most cases, a single fluctuating enzyme can either follow or be reconciled with ensemble-

averaged Michaelis-Menten steady-state kinetics.437–438 The contribution of conformational 

ensembles in enzymes70,87,438 can be described by including the interconverting conformers 

at each step via ‘catalytic networks438–439. In catalytic networks, each reaction step in 

parallel reactions has multiple enzyme conformers in equilibrium, even though the fs time 

scale for the transition state motions does not necessarily permit thermodynamic equilibrium 

between the transition state and stable enzyme states.440

Conformational ensembles enable enzymes to function through multiple steps. In most 

situations, the multiple enzyme conformers exist as open and closed conformations of the 

binding site or catalytic centers. Phosphoenolpyruvate carboxykinases (PEPCK) is a 

representative enzyme in which the transition state between the open and closed 

conformations occludes the active site from the solvent.441 As in the case of ribonuclease 

AlkB, the open state is highly populated in the AlkB/Zn(II) complex, and the closed state is 

highly populated in the AlkB/Zn(II)/cosubstrate/substrate complex.442 In the AlkB/Zn(II) 

co-substrate complex, the two conformations have approximately equal populations. The 

conformational ensemble and population shift allow the enzyme to bind the co-substrate 

prior to the substrate, and can also limit premature release of substrate.442 Conformational 

sampling for bacterial phosphotriesterase,443 maltose binding protein,444 and choline 

oxidase,445 cytochrome bc1 complex,446 and many other lid-gated enzymes indicated that 

the closed and open conformations are in equilibrium prior to ligand binding, permitting a 

conformational selection pathway at different catalytic steps.447 In the bacterial 

phosphotriesterase, with both closed and open conformations present in the apo state, the 

closed conformation is ideally preorganized to lower the reaction barrier, but it is not 

compatible with product release. In contrast, the open conformation is better organized for 

product release but not for chemical reaction.443

The rate by which the enzyme converts substrates into products is not the speed of the 

chemical step.448 Instead, for efficiency, all steps need to be well executed. The protein 

conformational ensemble not only allows enzymes to catalyze multiple chemical steps, but 

accommodates the conformational reorganization required to stabilize the transition states.
449 For example, the two monomers in homing endonuclease I-AniI dimer have different 

specificities: one for substrate binding, the other for transition state stabilization.450 MD 

simulations and free energy calculations revealed the crucial role of protein flexibility in 
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formation of a stable reaction transition state in α-amylase catalysis.451 The transition state 

region is often energetically flat, with a range of structures which are very close in energy.
70,452 Substates with a large population may lead to transition state ensemble.70,453–454 

Thermodynamically, a barrier could decrease due to an entropy compensation effect.70,455 

Therefore, entropy can have a larger role in the conformational ensemble than in direct 

energy transfer.456 Conformational dynamics may greatly facilitate the positioning of the 

substrate toward barrier crossing or product release through a pre-organization mechanism.
457–459 Coupled motions spanning femtoseconds to milliseconds in DHFR catalysis were 

proposed to promote catalysis.460 NMR studies found that each intermediate in the catalytic 

cycle of DHFR samples low-lying excited states whose conformations resemble the ground-

state structures preceding and following the intermediates. The structural ensemble in DHFR 

is exquisitely optimized for every intermediate in the catalytic cycle.461 Ensemble-averaged 

QM/MM kinetic isotope effects have already been shown in small molecules, like S(N)2 

reaction of cyanide anions with chloroethane in DMSO solution.462 The populations of 

reactant-state (RS) and transition-state (TS) ensembles also influence the kinetic isotope 

effects for reactions catalyzed by enzymes;462 that is, the change in the rate of the reaction 

when one of the atoms in the reactants is substituted with one of its isotopes. Using an 

average over an ensemble of transition state structures, the variational transition-state theory 

with multidimensional tunneling (EA-VTST/MT) successfully incorporates thermally 

fluctuating environments into enzyme kinetics for studying chemical steps of the catalytic 

cycles of the DHFR and several other enzyme systems.433

It is easy to understand that conformational ensemble heterogeneity promotes enzyme 

promiscuity. Evolution may select flat energy landscapes to promote multifunctionality, 

which can be found in the immune system, enzymatic detoxification, signal transduction, 

and the evolution of new functions from an existing pool of folded protein scaffolds.463 It 

has been suggested that detoxification enzymes have been optimized to have a 

conformational ensemble with broad, barrierless transitions between states.464

Enzyme specificity can be controlled through multiple conformational selection steps. To 

allow active site substrate selectivity, transition state stabilization, and product release, 

enzymes have to balance specificity and efficacy. A ‘lock-and-key’ mechanism could 

provide ‘perfect’ selectivity. However, enzymes classified as following a lock-and-key 

mechanism also present a dynamic conformer selection process. Serine protease is 

conventionally regarded as fitting the rigid lock-and-key model. However, nanosecond 

timescale binding loop movement was observed to select an inhibitor conformation.465 The 

flaviviral nonstructural 3 protease (NS3pro), a chymotrypsin-like serine protease also 

presents conformational selection to facilitate substrate binding and product release, 

promoting the formation of the catalytically-competent oxyanion hole.466 Recently, it has 

been found that ATP turnover by individual myosin molecules uses two conformers of the 

myosin active site, one that allows the complete ATPase cycle and one that dissociates ATP 

uncleaved.467

Human cyclophilin A (CypA) catalyzes cis-trans isomerization of the prolyl peptide ω-bond 

in proteins. An earlier QM/MM study468 demonstrated that R55K substitution at the active 

site of CypA leads to a significant decrease in catalysis, indicating that the active site 
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stability likely plays an important role in the chemical step of catalysis. More and more 

studies show that enzyme motions are also necessary for catalysis. Using NMR relaxation 

experiments, the dynamics of the prolyl cis-trans CypA isomerase were studied in the 

enzyme’s substrate-free state and during catalysis. Characteristic enzyme motions detected 

during catalysis were observed in the free enzyme state with frequencies corresponding to 

the catalytic turnover rates. This correlation could suggest that protein motions necessary for 

catalysis are an intrinsic property of the enzyme and might even limit the overall turnover 

rate.469 The direct link between the intrinsic motions and the catalytic turnover rate was 

revealed using ambient-temperature X-ray crystallographic data collection and automated 

electron-density sampling of interconverting substates of the human proline isomerase 

CypA.470 A computational study of CypA also provided evidence of the intricate coupling 

dynamics and substrate turnover.471 Molecular dynamics simulations of CypA show that the 

ensembles of enzyme conformations recognize diverse inhibitors and bind different 

configurations of the peptide substrate.3 Nagaraju et al. found that small nonpeptidomimetic 

inhibitors with varying activity are recognized by enzyme ensembles that are similar to those 

that tightly bind the transition state and cis configurations of the substrate.3 They suggested 

that functionalizing lead compounds to optimize their interactions with the enzyme’s 

conformational ensemble bound to the substrate in the cis or the transition state could lead to 

more potent inhibitors of the cyclophilin A.3

Ensemble-averaged states sometime are not applicable to enzymes with distinct functional 

states. For example, H-Ras exchange factor Son of Sevenless (SOS) is an important hub for 

signal transduction. SOS samples a broad distribution of turnover rates through stochastic 

fluctuations between distinct, long-lived (more than 100 seconds), functional states. It has 

been shown that SOS functional output may be determined by the dynamical spectrum of 

rates sampled by a small number of enzymes, rather than the ensemble average.472 

Similarly, in the energy landscape of the Michaelis complex of lactate dehydrogenase the 

rate enhancement can arise from a stochastic search through available phase space that 

involves a restricted ensemble of more reactive conformational substates as compared to the 

same chemistry in solution.473

5.3 Protein-protein recognition

Protein-protein interactions and other cellular networks have the ability to adjust their 

internal states to incoming stimuli. Cellular heterogeneity is connected with high entropy of 

a network ensemble,474 and protein conformational ensembles are among the important 

features that modulate the protein-protein interaction network.475–477 Using experimentally 

known protein conformational ensembles in modeling protein-protein interactions on the 

proteome scale can boost the percentage of successfully predicted interactions from ~26 to 

66%.478 Inclusion of the orientational entropic effect was also found to improve the 

prediction of protein-protein interactions.479

Above, we have already discussed ensembles of protein oligomers. Here we discuss three 

aspects of protein conformational ensembles and protein-protein recognition: (1) structural 

features, (2) ‘promiscuous’ and specific protein-protein interactions, and (3) disordered 

proteins.
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How interacting proteins recognize each other480 relies on their structural features, 

concentration and the cellular environment.476,481 Structural features of protein-protein 

interactions may be characterized by interface area, geometrical shape and the 

physicochemical nature of the interface. A number of chemical aspects contribute to protein-

protein associations.481–490 These range from shape complementarity to organization491 and 

the relative contributions of the physical/chemical components to their stability. Protein-

protein interfaces are characterized by the existence of hot spots or ‘hot regions’ in 

interacting regions instead of an even contribution across all contact areas.371,476,487,492–495 

Studies of protein binding hot spots487,496–497 have illustrated that conserved residues at 

protein-protein interfaces correlate with residue hot spots identified by alanine scanning 

mutagenesis.498 For example, several hot spot residues in Src SH2 interact with the 

phosphotyrosine and contribute about one-half of the binding free energy.499

Hot spots are often conserved in protein-protein interfaces. The mobility of amino acids in 

dimeric interfaces is generally lower than other amino acids on the protein surface.500–501 

However, the more rigid environment of hot spots can be coupled either locally or 

allosterically with other flexible regions. In addition, a rigid hot spot region can be flexible 

before forming the complex. Evidence of conformational selection driving the formation of 

ligand binding sites in protein-protein interfaces has been shown in one study which focused 

on ensembles of ligand-free protein conformations obtained by NMR. The identification of 

hot spot interactions was used as the measures for structure comparison. The interface 

binding hot spots were mapped through docking small probe molecules on the protein 

surface, which is independent of the ensembles generation by NMR. Interestingly, even 

though the unbound conformational ensemble was used in screening, the method selects 

binding site conformations that are similar to some peptide-bound or ligand-bound 

structures, supporting the conformational selection model of molecular recognition. 

Subsequent induced fit would shift the interaction toward the complete, optimized bound 

structure.502

Coupling of rigid hot spot and flexible protein regions can be an efficient way to adjust 

protein-protein interaction energy. Hot spot residues at binding interfaces confer rigidity to 

minimize the entropic cost of binding, whereas the residues surrounding the conserved 

residues may form a flexible cushion.496 Depending on the function of the complex, protein-

protein interactions may have a broad range of binding energies. Free energy changes (ΔGa) 

of −6 to −19 kcal/mol correspond to the range of the dissociation constants Kd of protein-

protein interactions between mM to less than pM. Some associations are obligatory where 

one protein is bound to another throughout its functional lifetime, whereas others are 

transient, continuously forming and dissociating503–510. Often, weak complexes have 

smaller contact area and the interfaces are more planar and with more polar residues,511 but 

the large interfaces area does not necessarily equate to high affinities. For example, with 

similar interactions, the binding affinities of EphA4 with ephrin-A1, ephrin-A2, ephrin-A4, 

ephrin-A5, and ephrin-B2 are 1.2 μm, 2.3 μm, 36 nm, 360 nm, and 10.8 μm, respectively,512 

indicating varied selectivity towards various ligands.

Eph-Ephrin recognition is a good example for the coupling of rigid and flexible protein 

binding sites to adjust ‘promiscuous’ and specific protein-protein interactions. Eph-ephrin 
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interactions control a subtle signal transduction between cells and play an important role in 

carcinogenesis and other diseases. Several hot spots in the Eph binding pocket were 

identified as important for the binding of several peptides.475 Conformational dynamics and 

the distribution of the conformational ensemble are important in Eph-Ephrin recognition.
9,475,513–516 In a comprehensive study of the energy landscapes of Eph-Ephrin recognition, 

the conformational ensembles and recognition energy landscapes were generated starting 

from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin 

complexes.514 Dynamic conformational changes during the Eph-ephrin recognition were 

found to be stepwise conformational selection and population shift events, with two dynamic 

salt bridges between EphB4 and Ephrin-B2 contributing to specific recognition. The results 

indicated that the specificity is not only controlled by the final stage of the interaction across 

the protein-protein interface, but also contributed by dynamic intermediate stages along the 

pathway from the separated Eph and ephrin to the Eph-ephrin complex.514

Antibody-antigen interactions optimize the coupling of rigid and flexible protein binding 

sites for specific antigen binding. Antibody variable regions are necessarily flexible to 

enable recognition of tremendously diversified targets. In an in-depth analysis of subclass-

specific conformational preferences of IgG antibodies, the SAXS data of identical variable 

regions from IgG1, IgG2 and IgG4 antibodies were thoroughly analyzed.517 The ensembles 

were optimized through shape clustering, revealing distinct subclass-specific conformational 

preferences. The specific differences in the linker region correlate with the solution structure 

of intact antibodies.517

Even though antibody-antigen interfaces have fewer hot spot residues,496,518 Tyr is a 

preferred hot spot residue for immunoglobulins.119a Antibody evolution may constrain 

conformational heterogeneity by tailoring protein dynamics.519 Controlled evolution of the 

antifluorescein antibody 4–4-20 localized the Ab-combining site from a heterogeneous 

ensemble of conformations to a single conformation by introducing mutations that act 

cooperatively and over significant distances to rigidify the protein.519 Clearly, nature utilized 

conformational selection to fit specific targets. The change and optimization of the 

conformational ensemble also allow allosteric antibody interaction. In comparing two scFv 

mutants with similar thermodynamic stability, local and long-ranged changes in backbone 

flexibility are observed.520 It was also found that correlated flexibility may increase during 

antibody complex formation.520 Antibody evolution and conformational changes are similar 

to point mutations within the ubiquitin core, which changes the binding specificity 

allosterically by shifting the conformational equilibrium of the ground-state ensemble 

between open and closed substates that have similar populations in the wild-type protein.521

The wide distribution of the conformational ensemble of flexible protein enables hub 

proteins to bind a large number of partners with different binding modes. For example, the 

interactions of nidogen-1 with laminin variants indicate the existence of a conformational 

ensemble of both individual proteins and complex, implying different modes of interaction 

through distinct protein-protein interfaces.522 To examine promiscuous binding sites and 

their dynamical properties, Fornili et al. simulated the intrinsic dynamics of a large protein 

data set and generated conformational ensembles for the isolated proteins.523 They found 

that promiscuous residues tend to be more flexible, and this additional flexibility permits a 
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broader range of organizations which could take place in different conformers in the 

ensemble.523 This mechanism appears to be in addition to other mechanisms adopted by hub 

proteins, such as covalent linkage to protein interaction domains, alternative splicing 

variants, etc.524

Obviously, the most flexible proteins are the disordered proteins, with some more folded 

than others.525 Highly fluctuating conformations of intrinsically disordered proteins offer 

functional advantages in protein-protein interactions. Upon binding their partner, natively 

disordered proteins can form ordered complexes. In cases of multiple-partner binding, or in 

altered homo-multimeric organization, the different binding modes are accomplished 

through distinct conformers from the ensemble, explaining the so-called ‘promiscuous’ 

binding. Human centrosomal proteins are one example.526–528 Bioinformatics analysis 

indicated that human centrosomal proteins have a significant bias to be both unstructured 

and with coiled-coil regions with respect to generic human proteins. Centrosomal proteins 

tend to be larger than a control set of human proteins, and are rich in predicted disordered 

regions, which cover 57% of their length, compared to 39% in the general human proteome.
526 This bias implies that they adopt an ensemble of disordered and partially helical 

conformations, with the latter becoming stabilized when these proteins form complexes, 

depending on pH and concentration.527 Interestingly, protein disorder in the centrosome 

correlates with complexity with the number of cell types, and the structural heterogeneity 

conferred by the disordered regions and phosphorylation playing an important role in its 

mechanical properties and regulation in space and time.528 Cell-signaling proteins also have 

disproportionately intrinsically unstructured regions. KID interacts with the CREB binding 

protein KIX domain. When unphosphorylated and unbound, KID is disordered. Cooperative 

folding and binding occur upon pKID–KIX interaction, forming two α-helices kinked near 

the phosphorylated site.529 KIX is an allosteric domain able to bind two other proteins 

cooperatively. Different partners binding at the second site can modulate the conformations 

and thus the affinity of pKID-KIX interaction, regulating the transactivation complex.530

5.4 Protein ensembles and molecular machines

Conformational ensembles are essential for molecular machine tasks requiring high 

specificity. Molecular motors are classic protein machines in cell.531 Thermodynamically, 

both enzymes and molecular motors can be described by ensembles of a discrete set of 

states.532–533 Since signaling and other regulatory complexes typically consist of highly 

dynamic molecular ensembles a ‘conventional’ mechanical description of protein complexes 

that requires well-defined quaternary structures is misleading.534–535 In an elegant work, 

Suderman and Deeds simulated the yeast pheromone signaling network. They compared 

mechanisms aiming to identify the more effective MAPK signaling through heterogeneous 

sets of protein complexes.535 They found that the ensemble model generated reliable 

responses that match experimental observations. In contrast, the model that employs 

hierarchical assembly pathways to produce scaffold-based signaling machines could not 

replicate experimental observations. The results illustrated on the cellular systems level that 

ensembles are able to signal effectively through a multiple-conformations combinatorial 

scheme that represents a form of weak linkage. Such a cellular strategy facilitates variable 

response to the environment and gain of function in network evolution.535 Ensembles 
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conceptualize parallel signaling pathways whose abundance reflect concentrations of 

cofactors and second messengers and cell states, including interplay with post-translational 

modifications.

Yu et al. discussed intersubunit coordination and control in simple biomolecular machines 

that transform chemical free energy from NTP hydrolysis to mechanical work. They focused 

on (1) how the machinery coordinates essential degrees of freedom during the 

mechanochemical coupling process, and (2) how the coordination and control are manifested 

in experiments, and how they can be captured in modeling and computations.536–538 In the 

classic example of muscle contraction as biomolecular machines, the release of chemical 

energy is often accompanied by thermal fluctuation, which can transform muscular force 

generated in response to external stimuli through cyclical interactions between myosin and 

actin.539

5.5 Protein-RNA/DNA interactions

Protein-protein and protein-RNA/DNA interactions should follow the same physico-

chemical principles. Both RNA and DNA are dynamic molecules. Since RNA and DNA 

carry generic information, protein-RNA/DNA interactions should ensure correct processing 

of genomic information. RNA and DNA also exist as conformational ensembles, no matter 

whether in freely diffusing state,540 in crystal,541 or in large nucleosomes,542 ribosomes, or 

spliceosomes.

The complexity of gene regulation requires a combination of high and low affinity DNA 

binding.543 Thermodynamic state ensemble models are needed to describe DNA regulation, 

including protein-DNA interactions.544 Protein conformational ensembles should correlate 

with gene regulation. For example, binding of transcriptional control proteins to their 

cognate DNA response elements with different DNA sequences will lead to different 

transcription factor conformations which can be reflected in altered binding sites to their co-

regulators.49,545

DNA interacting-proteins are enriched by highly flexible ordered or disordered proteins or 

domains. For example, intrinsically disordered C-terminal tails of E. coli single-stranded 

DNA binding protein regulate cooperative binding to single-stranded DNA via 

conformational ensembles.546 Flexible conformational ensembles allow proteins to diffuse 

on DNA in chromatin-unpacked regions, in search for binding sites547 (although the length 

of the DNA over which they diffuse and the mechanism are still open questions considering 

that the DNA is bound to proteins), to lock DNA binding,548 or to repair DNA damage.549 

Conformational ensembles can also safeguard against errors in DNA replication.550–555 For 

example, DNA polymerase I samples open and closed conformations in millisecond 

timescale to select substrates.550 Conformational dynamics of the Y-family DNA 

polymerase Dpo4 was also shown to control its selectivity.551–552 DNA polymerase μ (polμ) 

has a rate-limiting ‘pre-catalytic translocation step’ to ensure accuracy and retain efficiency.
553 The flexible region surrounding the H-helix of the thumb domain, which selects the 

correct Watson-Crick base pair551 can distinguish among small differences.554 In a detailed 

study of the structural factors that determine selectivity of a high fidelity DNA polymerase 

for deoxy-, dideoxy-, and ribonucleotides, Wang et al. analyzed 10 high resolution crystal 
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structures and enzyme kinetic of Bacillus DNA polymerase I large fragment variants. They 

found that intermediate conformations of the O-helix (a part of taq polymerase suggested to 

play an important role in the enzyme fidelity) between extreme open and closed states 

creates an ensemble of binding sites that trap and misalign non-cognate nucleotides.555 This 

study illustrated a particular advantage in ensemble control in gene information processing. 

The conformational ensemble allows the protein to recognize large number of the DNA 

conformations with non-cognate nucleotides and to clear them. Such a mechanism could 

also apply to RNA polymerase.556

Conformational ensembles also allow proteins to fit into various RNA functional 

machineries. For example, while ribosome-bound elongation factor G (EF-G) predominantly 

adopts an extended conformation, the ribosome-bound EF-G may also occasionally sample 

at least one compact conformation.557–558 A number of experiments provide details of how 

conformational ensembles of U2AF(65) facilitate molecular recognition of diverse RNA 

sequences in the spliceosome.559–564 The tandem RNA recognition motif (RRM) domains 

of U2AF(65) have two different domain arrangements in the absence and presence of a high 

affinity ligand. RRMs exhibit a broad range of conformations in the solution ensemble563 

(Fig. 10), with the U2AF(65) ensemble of closed and open conformations accounting for 

recognition of sequence variability.560,562−563 The local structural changes suggest that the 

N-terminal RRM1 is more promiscuous, i.e. with a broader ensemble with preexisting 

complementary conformations, toward binding of cytosine-containing pyrimidine tracts than 

the C-terminal RRM2, with conformational selection acting as a universal 3’ splice site 

recognition by U2AF(65).562 Interestingly, another protein hnRNP A1 can help proofreading 

the 3’ splice site recognition by U2AF in the selection of AG-containing/uridine-rich RNAs.
564

Conclusions: Evolution selected protein ensembles for function

Flexibility is one of the strategies embraced by evolution to adapt to more complex functions 

at reduced costs.524 Evolution not only encodes states for direct function; but also 

propagation pathways for cellular action. These include enzyme catalysis,69–70,565 

recognition of specific DNA regulatory elements by transcription factor binding,49,414,545 

and even harnessing it to stabilize the hyperthermophilic protein well above ambient 

temperature;566 ensembles have been exploited for functions of folded and disordered states.
567–568 They allow competent biological responses to the changing environment; they can 

also trap DNA conformations with non-cognate nucleotides providing a yet another 

mechanism with evolutionary advantage. Conformational flexibility provides a practical 

solution for a cell. It may address the need to not only recognize correct binding partners, 

but also disfavor unwanted interactions. Flexibility can encode (1) preferred sampling of 

conformations which are functionally-relevant; (2) short time scales from the triggering 

event to the response; this is particularly the case for enzyme metabolic reaction efficiency; 

(3) temperature-sensing mechanism to adjust to environment;569–571 and (4) the crucial 

allosteric response. Allostery is regulation at a distance by conveying information from one 

site to another. The effector perturbs the structure of the first site and thereby leads to altered 

activity in a distant second.22,61,572–573 Allostery is of paramount importance to the cell, 

harnessing a fundamental a macromolecular physical property for cell life. Allostery is 
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based on the free energy landscape;1 however, rather than the ensemble being static, function 

is based on the redistribution of states following some structural perturbation. Allostery 

directly relates the ensemble to dynamic energy landscapes, where there is a shift in the 

distribution of the pre-existing conformational states.22,25–26,572,574

The evolution of protein structural ensembles is under functional constraints.575 Broadly 

distributed ensembles can help quaternary structure assembly; in support of this, 

evolutionarily more recent subunits are generally more flexible than older subunits.271 

Along similar lines, p53 appears to have consistently increased its disordered contents 

during evolution, and cancer-related mutations may have reversed this trend.576 Apparently 

intrinsically unstructured proteins with simple sequences evolve more rapidly than those of 

ordered proteins.577 Within this framework, there is evolutionary evidence for the 

importance of linker flexibility.578 A study that compared the evolvability of weakly active 

ordered and disordered variants of dihydrofolate reductase by genetic selection observed that 

scaffolds evolved at similar rates and to similar extents, reaching near-native activity after 

three rounds of evolution. Evolution of both the ordered and disordered states improved 

catalytic efficiency indirectly by bolstering the network of dynamic conformational 

fluctuations that productively couple with the reaction coordinate.579

Appreciation of the importance of protein ensembles and allostery – viewed as dynamic 

shifts of the free energy landscape – is on the rise. This view links biology with chemistry 

and physics, and provides a basis for a ‘second molecular biology revolution’ which is the 

energy landscapes of biomolecular function.90 The free energy landscape is not merely a 

metaphor; it brings forth new theoretical and a panoply of new experimental approaches for 

characterizing the key ensembles in both biomolecular assembly and function. The 

landscape way of thinking is now bearing fruit, helping to understand the chemical basis of 

biological phenomena, and by so doing, leading the way in prediction and design. The 

structure-function paradigm that now dominates molecular biology was inspired by the 

notion that even living things must conform to the laws of quantum mechanics and structural 

chemistry. The powerful idea that energy landscapes and their dynamic change with the 

environment can capture the essence of molecular behavior in the cell and in life has far 

reaching implications in biology. It is challenging to translate it to the gigantic range of 

scenarios in biological actions. Biomolecular behavior should be described statistically. The 

immense range of conformational states and substates contain all the possibilities for 

function in living matter. Biomacromolecules are dynamical objects; they continuously 

interconvert between structures with varying energies. These fluctuations encode current – 

and future – functions to be gained whether via evolution to increase organism complexity 

and diversity or via mutations in disease. Mutations do not lead to new conformations; 

rather, they too work by shifting the landscape.

Here we only touched the surface with a few examples. Among these, two functions 

standout: enzyme catalysis and recognition carried by disordered protein states. Disordered 

states are sometimes still viewed as ‘plastic’. However, they too consist of ensembles – 

albeit broader and with metastable states with no sufficiently-stable dominant conformation. 

Importantly, the disordered state acts via the same physicochemical principle: 

conformational selection of favored (complementary) pre-existing states, which results in 
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shifting and redistributing the (dynamic) landscape, followed by minor induced fit. In 

catalysis, enzyme dynamics point to stepwise or combinatorial conformational selection – 

through ensembles. Conformational ensembles and conformational selection and population 

shift provide the basic mechanism.69–70 Since its inception, the free energy landscape theory 

has transformed approaches to protein folding. Currently, the focus has been shifting from 

folding to function. The principles are unaltered: rather than consider the entire protein 

conformational landscape as in folding, attention centers on the ensemble around the bottom 

of the folding funnel and its dynamics. Population shift is the origin of allostery, and thus of 

signaling; it crosses protein interfaces,580 influences multimolecular associations, and 

signaling pathways across the cell.34 It exists in proteins, RNA, DNA581 and membrane 

lipids,582–583 including cholesterol.584 It explains cooperativity. Protein ensembles link 

fundamental physicochemical principles and protein behavior - and the cellular network and 

its regulation.

Within this broad framework, here we aimed to highlight the critical importance of a 

statistical inclusive view anchored in dynamic interconverting ensembles. We believe that it 

foments powerful biological research under normal physiological conditions, dysfunction in 

disease, and the evolving molecular translational science. Insight into the hallmarks of the 

cellular network and its regulation would come from such physicochemical ‘second 

molecular biology revolution’.
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Figure 1. 
The energy landscape defines the amplitude and timescale of protein motions. (A), One-

dimensional cross-section through the high dimensional energy landscape of a protein 

showing the hierarchy of protein dynamics and the energy barriers. Each tier is classified 

following the description introduced by Frauenfelder, Sligar and Wolynes and co-workers.1 

A state is defined as a minimum in the energy surface, whereas a transition state is the 

maximum between the wells. Lower tiers describe faster fluctuations between a large 

number of closely related substates within each tier-0 state. (B), Timescale of dynamic 

processes in proteins and the experimental methods that can detect fluctuations on each 

timescale.133 (Adapted with permission from reference 133. © 2007 Macmillan Publishers 

Limited).
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Figure 2. 
Schematic of energy landscapes.162 (a) A folded protein (human nucleoside diphosphate 

kinase (NDPK), PDB ID: 1nsk) and (B) an intrinsically disordered peptide (CcdA C-

terminal, PDB ID: 3tcj); (C) close-up of the minimal free energy well in (A), where IDRs 

are shown in red and ordered regions are shown in white. The example NDPK 

conformations are shown again enlarged to the right for better visualization. In (C) lower 

free energy (dark blue) represents more probable conformations. Representative protein 

conformations were generated with molecular dynamics simulations in CHARMM using 

coordinates from the 1nsk and 3tcj PDB structures as initial states. Reprinted with 

permission from reference 162. © 1996–2015 MDPI AG

Wei et al. Page 66

Chem Rev. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Ensemble optimization analysis of the SAXS profile measured for L12. (a) Cartoon of a 

single L12 conformation, 1rqu, showing the NTD dimer (green), the CTD (blue), and the 

linker (red). (b) Logarithm of the scattering intensity (black dots) as a function of the 

momentum transfer, s = 4πsin(θ)/λ. The fitted scattering profile of the optimized ensemble 

(OE), obtained by the Ensemble Optimization Method (EOM) approach, is shown in red. 

The theoretical scattering curve of the random ensemble (RE, green line) is shown for 

comparison. The bottom panel displays the point-by-point error function for the two 

ensembles using the same color code. Both ensembles contain 10,000 independent 

conformers. (c) Three orthogonal views of a random subset (N = 50) of the OE; color code 

as in panel A. The orientation in the side view (left) is the same as in panel A. (d) Radius of 

gyration (Rg) and (e) anisotropy (A) distributions for the RE (black lines) and the OE (red 
lines). The sharp peaks at A < 1 correspond to oblate conformers with populations of 4.8% 

and 14.2% for the OE and RE, respectively. Reprinted with permission from reference 235. © 

2015 Elsevier B.V.
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Figure 4. 
Dynamic movements of αB-crystallin in solution. A model of how the dynamic motions of 

αB-crystallin at three different time scales are inter-related. The C-terminus is localized to 

an adjacent dimer with the IXI unbound for the majority of time, but converts on the 

millisecond time scale into a bound conformation that can be either inter- or intra-molecular 

(middle panel). This tail-binding may induce distortions in the dimer interface that lead to 

rearrangements including breaking of the dimer interface or registration shifts (lower panel). 

Together these two effects determine the rate of subunit exchange between higher-order 

oligomers, which is ultimately rate-limited by C-terminal fluctuations (upper panel). 

Reprinted with permission from reference 273. © 2015 Elsevier B.V.
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Figure 5. 
Effect of open and closed UvrD conformation on unwinding and rezipping activity. (A): 

location of donor and acceptor fluorophores for smFRET measurement and model of UvrD 

conformational switching. Upper (and lower) orange arrows denote 2B (and 1A-2A) domain 

orientation. (B): a representative time trace of monomeric UvrD conformation and activity. 

(C): correlation between UvrD activity and conformation. The color map represents the 

probability distribution of FRET state and velocity. Adapted with permission from reference 
358. © 2015 American Association for the Advancement of Science.
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Figure 6. 
Structural analysis of K18 monomer in aqueous solution at 310 K. (A) Representative 

conformations for the top eight most-populated clusters (labeled by “Cn”, n=1~8) along with 

their corresponding probabilities. Secondary structures are displayed in new-cartoon style, 

with different colors representing different repeats, blue for R1, red for R2, green for R3, 

and purple for R4 and the last four residues after R4. For each structure, helices are indicated 

with H1, H2, …, and β-sheets are labeled with B1, B2, …; β-strands in the same sheet are 

labeled with Bna, Bnb, Bnc...(n = 1, 2, …). Two adjacent β-strands (for example, a and b) 

are labeled using two neighboring letters in the alphabet. (B) Sequence views of the eight 

clusters. The amino acid (aa) residue numbering is based on the full-length 441-aa tau 

protein. The β-strand is shown with a blue arrow and the helix with a red cylinder. Each 

helix/β-strand is labeled using the same label and color as used in (A). (C, D) Scatter plots 

comparing experimental (Expt.) and SPARTA-predicted (MD) chemical shifts (CSs) and 

secondary chemical shifts (SCSs) of the Cα atom. The Pearson correlation coefficients (R) 

between experimental and MD-generated CSs and SCSs are indicated. Adapted with 

permission from reference 370. © 2015 American Chemical Society.
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Figure 7. 
Analyses of conformations of middle segments in each repeat and of the contacts between 

lysine and cysteine residues in K18. (A) Representative structure of the most populated 

helical conformation in each repeat. Helical structures are mainly located in the middle 

region of each repeat: i.e. 250MPDLKNVKSKI260 in R1, 280KKLDLSNVQSK290 in R2, 
315LSKVTSKCGSL325 in R3, and 345DFKDRVQSKIG355 in R4. The most populated helix 

in each repeat was identified by performing a RMSD-based cluster analysis using a 

backbone-RMSD cutoff of 3 Å. (B) Lys-Cys minimum-distance probability density function 

(PDF) for conformations in the top eight most-populated clusters (C1~C8). (C) 

Representative conformation of C5 and C7 showing the close contact between lysine and 

cysteine residues. Adapted with permission from reference 370. © 2015 American Chemical 

Society.
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Figure 8. 
Free energy landscape of the Na+ and Cs+ systems. (A) Top and side views of the selectivity 

filter in the crystal structure are shown (Glu66 in green sticks; oxygen atoms are colored 

red). In the top view (Left), the distances between the carbonyl and carboxylic group of 

Glu66 in different monomers are shown as black dotted lines. (B, C) The free energy 

landscape as a function of the z dipole [nanometers for electron charge (nm*e)] and of the 

Glu66-Coordination variable for the Na+ (B) and Cs+ system (C). The variable Glu66-

Coordination counts the number of carboxylate and carbonyl groups of Glu66 in opposite 

monomers whose distance is larger than 8 Å. Possible conformations of Glu66 residues 

corresponding to different minima are shown for both the Na+ and the Cs+ systems. This 

figure is adopted from reference 394 with permission. Adopted with permission from 

reference 394. © 2015 National Academy of Sciences.
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Figure 9. 
(A) Network representation of the 3000-state MSM built from the simulations of agonist-

bound GPCR with each circle representing an individual conformational state. (B) 10-state 

MSM built from the 3000-state MSMs using spectral clustering methods to identify 

kinetically relevant states. The circles in the 3000-state MSM are colored according to their 

membership in the coarse-grained 10-state MSM. The weight of arrow indicates the 

transition probability between states. Reproduced with permission from reference 401. © 

2013 Macmillan Publishers Limited.
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Figure 10. 
The 20-PDB (light color) or 50-PDB (dark color) ensemble fits of (A) U2AF651,2 (blue) and 

(B) U2AF651,2FIR (green) SAXS data. The radii of gyration (RG) are plotted on the x-axis, 

and the frequency of a structure with a given RG on the y-axis. Gray dashed lines plot the 

randomized starting pool; Solid lines the selected pool. The most typical or divergent 

selected structures are inset. Reproduced with permission from reference 563. © 2015 

American Chemical Society.

Wei et al. Page 74

Chem Rev. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wei et al. Page 75

Table 1.

Selected proteins whose dynamics and conformational ensembles have been characterized by NMR/SAXS 

experiments. This table gives the NMR/SAXS parameters along with the combined ensemble selection 

methods used to describe conformations of these proteins.

NMR/SAXS parameters Ensemble fitting approaches Protein type Protein name Refs.

RDCs MD simulations
Single-domain 
protein Multi-domain 
protein

Ubiquitin Calmodulin-IQ complex 200 338

SAXS EOM EOM 2.0 Multi-domain protein BTK Calmodulin 311 335

SAXS
amplified collective motions 
(ACM)

Multi-domain protein 
with hinge motion

T4 lysozyme, formin-binding 
protein 21 223 224

RDCs, SAXS Flexible-Meccano, MD simulations IDP p53 339

CSs, RDCs, PREs, SAXS ENSEMBLE IDP in protein 
complex Sic1 in Sic1-Cdc4 complex 340

PREs, RDCs, SAXS Flexible-Meccano ASTEROIDS
IDP Multi-domain 
protein IDP in 
protein complex

Tau U2AF65 MKK7 in MKK7–
JNK signaling complex 323 251 341
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