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Abstract

There is great interest in engineering photoautotrophic metabolism to generate bioproducts of 

societal importance. Despite the success in employing genome-scale modeling coupled with flux 

balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to 

generate biologically realistic predictions has hindered broad application of this methodology to 

phototrophic metabolism. Here we describe a methodology for constraining genome-scale models 

of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental 

photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate 

predictions of growth rates and metabolic reaction fluxes at low and high light conditions. 

Additionally, by constraining photon uptake fluxes, we characterize the metabolic cost of excess 

excitation energy. The predicted energy fluxes are consistent with known light-adapted phenotypes 

in cyanobacteria. Finally, we leverage the modeling framework to characterize existing 

photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. 
elongatus. This methodology, applicable to genome-scale modeling of all phototrophic 

microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven 

metabolism.
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1. INTRODUCTION

There is significant interest in engineering light-driven metabolism towards the production 

of fuels and chemicals. Cyanobacteria represent the simplest phototrophs and have been 

employed to produce a variety of products [38]. Synechococcus elongatus PCC 7942 

(hereafter, S. elongatus), a genetically tractable obligate phototroph, has been engineered for 

the production of a wide variety of chemicals to include 3-hydroxypropinoate [24], succinate 

[25], and 1,3-propanediol [13]. Despite its classification as an obligate phototroph, this 

organism has also been engineered for mixotrophic metabolism, using carbon sources such 

as glycerol [16] and glucose [17] to generate bioproducts of interest. While experimental and 

computational fluxomics have been central to effective engineering of heterotrophic 

organisms [2,19], their application to the engineering of phototrophic metabolism has been 

limited.

Fluxomics contributes to metabolic engineering by identifying the resource partitioning 

through a metabolic network. Reaction fluxes are determined experimentally via 13C 

metabolic flux analysis (MFA), or computationally using methods such as flux balance 

analysis (FBA) [39]. Recent developments in 13C MFA have resulted in characterization of 

photoautotrophic metabolic fluxes [51] and the engineering of cyanobacteria such as S. 
elongatus [15]. Flux balance analysis coupled with genome-scale modeling (GEM) has a 

long history of facilitating bioprocess design [18], and has the potential to advance the 

engineering of phototrophic metabolism [27]. Still, despite the availability of several 

phototrophic GEMs [11], there are few examples of GEMs being employed in the design of 

light-driven metabolic processes [7].

The potential of a GEM to engineer a metabolic network for bio-production depends on its 

ability to accurately predict flux through the network. Simple constraints such as the glucose 

and oxygen uptake rate result in accurate assessments of heterotrophic reaction fluxes [29]. 

The ability to define the metabolic flux state with as few parameters as possible requires a 

mechanistic understanding of the governing constraints on the system. Recent modeling in 

S. elongatus resulted in accurate prediction of photoautotrophic growth through 

photophysiology constraints [6]. In this study, a mechanistic description of photon uptake 

coupled with constraints on oxygen evolution resulted in accurate predictions of 

photoautotrophic growth to include the transition to a linear growth curve as a result of self-

shading. With the recent publication of 13C MFA reaction fluxes for S. elongatus [15, 1], it 

is possible to assess the ability of photophysiology constraints to characterize 

photoautotrophic metabolism.

GEMs can also quantify alternative electron transport (AET) within the metabolic network. 

Photosynthetic organisms absorb light in excess of basic biomass and maintenance 

requirements. A fraction of this excitation energy is dissipated upstream of the photosystem 

as fluorescence, heat or other non-radiative dissipation mechanisms [45]. The remaining 

fraction is directed to through the photosynthetic apparatus and generates the reductant and 

chemical energy necessary for growth. Excitation energy in excess of growth requirements is 

quenched via various alternative electron transport pathways [26]. AET has been shown to 

constitute up to 40% of the total linear electron flux through the photosystems in 
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cyanobacteria [12]. Characterizing and quantifying AET can facilitate engineering strategies 

that divert these electrons to bioproducts.

In this study we show constraining a GEM of S. elongatus with the photon uptake rate 

derived from whole-cell absorbance and the net oxygen evolution rate results in accurate 

predictions of metabolic fluxes. First, we generate the necessary constraints from the 

photophysiology of S. elongatus acclimated to two light intensities differing by an order of 

magnitude. Next, we incorporate these constraints with the GEM to predict growth rates at 

the two culture conditions. The resulting metabolic reaction fluxes predicted by the model 

showed good agreement with the experimental 13C MFA results. We then use the GEM to 

assess alternate energy flows in S. elongatus, quantifying excess light energy captured by the 

system. Finally, we use the modeling framework to characterize existing engineering 

strategies for 2,3-butanediol production in S. elongatus. Overall we present the governing 

constraints of photoautotrophic metabolism, obtained by experimentally accessible 

protocols, that result in accurate prediction of photoautotrophic metabolic reaction fluxes. 

This methodology, applicable to genome-scale modeling of all phototrophic 

microorganisms, can facilitate the use of flux balance analysis in the engineering of light-

driven metabolism.

2. MATERIALS AND METHODS

2.1 Culture conditions.

Synechococcus elongatus PCC 7942 wild type, stored in our laboratory;s culture collection 

as AMC06, was cultured at 30°C in 400 mL BG-11 medium in 1 L Roux flasks. Flasks were 

bubbled with air under continuous illumination in a temperature controlled incubator. 

Cultures were light acclimated (low light (n=3) at 60 μmol photons m−2 s−1, high light (n=4) 

at 600 μmol photons m−2 s−1) for 72 hours, diluted and grown until mid-exponential phase 

before being harvested.

2.2 Cell physiology measurements.

Cell densities were manually determined using an improved Neubauer hemocytometer. 

Growth rates were determined based on the change in cell counts from inoculation to 

harvest. Cell dry weight was determined by taking 50 mL of culture (n=3) and filtering it 

onto a GF/C glass microfiber filter (diameter: 47mm). Filters containing cellular biomass 

and media controls (n=3) were dried at 95°C overnight. Cellular dry weight was determined 

by subtracting the post-filtration mass from the pre-filtration mass, after normalizing to the 

media control.

2.3 Determination of cell dimensions.

For imaging, thin pads of 1% (wt/vol) agarose were prepared using Mini-PROTEAN® Tetra 

Cell Casting Module. From this gel, 1–2 cm square pads were cut and placed onto a 

microscope slide and 2–5 ul cell culture liquid was added to the pad and let dry. Then a 

microscope slide cover was gently placed onto of the agarose pad and cells were imaged 

using a DeltaVision inverted epifluorescence microscope (Applied Precision, Issaquah, WA). 

Images were captured using a CoolSnap HD charge-coupled device (CCD) camera 
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(Photometrics, Tucson, AZ). Cell length and width were determined using the straight line 

tool in ImageJ [44]. For high light (n=210) and low light (n=238) acclimated cells the mean 

and standard deviation were determined and the mean ± 2 standard deviations was used to 

determine cell volume by modeling the cell shape as a core cylinder capped with two 

hemispheres according to the following equation:

Vol = π w
2

2
l − w

2 + 4
3π w

2
3

(1)

Where l is the cell length and w is the cell width.

2.4 Pigment extraction.

Cells (4 mL culture) were collected by centrifugation at 10,000 × g at 5°C for 15 minutes. 

The supernatant was discarded and the cell pellet was frozen at −80°C until processed. 

Chlorophyll was extracted with 50 μL DMSO and 1950 μL of methanol, incubated in the 

dark for 30 minutes, and centrifuged at 10,000 × g at 5°C for 15 minutes. The pigment 

containing supernatant was transferred to a 1 cm path length cuvette. Absorbance spectra 

were collected used a Cary 60 UV-Vis Agilent spectrophotometer in scan mode (350–800 

nm, scan interval of 1 nm). Chlorophyll concentrations were determined using the equations 

for the appropriate solvent [42].

Phycobilisomes were extracted from the thawed cell pellets by resuspension in 2 mL PBS 

(10 mM phosphate, 150mM NaCl, pH 7.0) with a protease inhibitor (cOmplete™, Sigma-

Aldrich). Cells were lysed by sonication (Fischer Scientific Sonic Dismembrator 500, 50% 

power, 8 seconds on, 30 seconds off for 5 cycles) with the tube chilled in an ice bath during 

lysis to prevent overheating. Microscopic observation of post-sonicated samples indicated a 

lysis efficiency of over 90%. Lysed samples were centrifuged at 45,000 × g at 5°C for 60 

minutes. 200 μL of the phycobilisome containing supernatant was transferred to a 96 well 

plate. Absorbance spectra were collected using an Infinite 200 PRO Multiplate Reader 

(Tecan) spectrophotometer in scan mode (400–750 nm, scan interval of 1 nm). 

Phycocyanobilin and apophycocyanobilin concentrations were determined using published 

extinction coefficients [4] after correcting the well plate path length to a 1 cm equivalent.

2.5 Cellular absorption coefficients.

Cellular absorption coefficients were determined based on published protocols [32]. 1 mL of 

culture volume was added to 9 mL of BG-11 media and cells were collected by vacuum 

filtration onto a GF/C glass microfiber filter (47 mm diameter). The filter was placed on top 

of a 96-well plate with a plate cover along with a negative control consisting of a filter 

through which 10 mL of BG-11 media had passed. Absorbance spectra were collected using 

a Infinite 200 PRO Multiplate Reader (Tecan) in scan mode (400–750 nm). Spectra from a 

total of 6 wells per filter were collected, averaged, blank subtracted and normalized to an 

OD750 value of 0. The wavelength specific absorption coefficient was determined, along 

with correcting for filter amplification using the coefficients for Synechococcus WH103 in 

[32], according to the following equation:
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aλ = 2.303 0.301 Aλ + 0.45 Aλ
2 (2)

where Aλ is the absorbance at a given wavelength. The cell normalized absorption 

coefficient (a*cell, units: cm2 cell−1) and the pigment normalized coefficient (a*pigm, units: 

cm2 μg−1 pigments) were determined by dividing aλ by either the total number of cells 

deposited on the filter or the total pigment mass, respectively, and then multiplying the 

resulting value by the filter area onto which the cells were deposited (12.7 cm2 for the 47 

mm diameter GF/C filter).

2.6 Simultaneous oxygen evolution and chlorophyll fluorescence parameters.

Rapid light curves (RLCs) were performed as outlined in [14]. A Walz Dual PAM 100 

fluorometer in a temperature controlled custom cuvette holder and a FireSting Optical 

Oxygen Meter were used for the simultaneous measurement of chlorophyll fluorescence and 

oxygen evolution. Approximately 30 mL of culture was removed and cells were pelleted by 

centrifugation (3000 × g, 10 minutes at 30°C). Cell pellets were resuspended in fresh media 

to the target cell density (HL: 5×108 cells mL−1, LL: 2.5×108 cells mL−1) and kept in the 

dark for 10 minutes prior to analysis. Dark respiration rates were collected for 

approximately 10 minutes prior to running RLCs. A red actinic light (635 nm) was used to 

provide a saturating pulse (600 ms, 10,000 μmol photons m−2 s−1) for fluorescence 

measurements. Cells were illuminated for 1 min steps at the following increasing intensities 

(μmol photons m−2 s−1):

HL: 0, 8, 24, 43, 75,109,146,195, 259, 339, 435, 547, 674, 844, 1033, 1565, 2386, 2924

LL: 0, 8, 24, 43, 75,109,146,195, 259, 339, 435, 547, 844, 1565, 2386

The chlorophyll fluorescence parameters Fv/Fm, Y(II), qP and NPQ were determined as 

described [45, 23]. Net oxygen evolution rates were normalized to cell count. Shading in the 

round cuvette was accounted for by calculating the attenuation across the cuvette path length 

according the following equation:

QFIo
= 2∫

λ = 400

λ = 700∫
y = 0

y = r
IOλ

(λ) − Ioλ
(λ)e

−acell* (λ) ⋅ c ⋅ 2 r2 − y2
1
2
dydλ (3)

where QFIo
 is the quantum flux in μmol photons m−2 s−1 at a given PAR value (Io), λ is the 

wavelength, Ioλ
(λ) is the fraction of the PAR at a given wavelength λ, r is the radius of the 

cuvette (0.56 cm), acell*  is the wavelength-specific absorption coefficient in cm2 cell−1, and c 

is the cell density in cells cm−3. QF was converted to μmol photons cell−1 s−1 by multiplying 

QFIo
 by the rectangular surface area of the cuvette (width = 0.56 cm, height = 1.15 cm), 
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converted to m2 and dividing by the total number of cells in the cuvette. This QF value was 

used as the independent variable in plots of oxygen-based photosynthesis (Po) versus QF.

2.7 Genome-scale metabolic modeling.

The S. elongatus genome-scale model (GEM) iJB785 [6] was updated to include additional 

content (Table S1).

Simulations were performed in a similar manner to [6]. The biomass objective function was 

updated to account for differences in pigments between the low and high light conditions 

(Table 1). Demand reactions to allow dissipation of excitation energy at PSII and PSI were 

added to assess the minimum quantum requirement of biomass production:

DM_chla_qy2_c:chla_qy2 * _c cholphya_c

DM_chla_qy1_c:chla_qy1 * _c cholphya_c

Photoautotrophic growth was simulated for a 12 hour time period broken into 20 minute 

psuedo-steady-state segments. Light was modeled coming from the side of the flask. The 

Roux flasks had approximately 375 mL of culture at the time of the experiments which 

resulted in a light-facing surface area of 80 cm2 and a path length of 4.7 cm. At the 

beginning of each simulation, the appropriate constraints were updated. First, the total 

biomass in the culture was divided by the cell dry weight to determine the total cells in the 

culture. Next, the photon uptake rate was determined by dividing the culture into 50 slices 

along the 4.7 cm path length. These slices were considered thin enough that cell shading was 

assumed to be negligible. Thus, we used the spectral distribution of photon flux for the given 

light source at the experimental irradiance (I0(λ)), the cell specific spectral absorption 

coefficient aλ* , and the cell count, to determine the photon uptake flux (Ia) in units of μmol 

photons (time interval)−1 using the following equation:

Ia = cell
SA ∫

400

700
I0(λ)acell* (λ)dλ (4)

where cell is the total number of cells in the slice and SA is the light-facing surface area of 

the slice. Light attenuated in one slice was removed from I0(λ) for the subsequent slices, 

accounting for shading along the culture path length. A running total of the absorbed light 

was used to set the reaction bounds of the photon exchange reactions in the GEM.

The PO vs. QF curves were fit to a Platt [41] equation for photosynthesis prediction (P), 

using quantum flux as the independent variable.
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P = Pmax 1 − e
− α × QF

Pmax e
− β × QF

Pmax (5)

Pmax is the maximum photosynthetic rate, α and β are the parameters that describe the initial 

slope of the curve, and the photoinhibition (if present), respectively. These curves were used 

to determined the oxygen evolution rate at each slice. The total oxygen evolution across the 

culture path length was used to set the bounds of the oxygen exchange reaction in the GEM 

(reaction ID: EX_o2_e).

Non-growth associated maintenance (NGAM) was calculated from the experimental dark 

respiration rate. This value was set as the lower bound for an fictional plastoquinone oxidase 

(reaction ID: NGAM), which forces a minimal amount of reductant mediated oxygen 

consumption consistent with the observed dark respiration rate.

The simulation was performed by maximizing the BOF reaction using the parsimonious 

FBA function [28] as implemented in COBRApy [8]. The flux through this reaction is equal 

to the biomass accumulation in milligrams over the 20 minute time interval. This biomass 

was added to a running total of the total culture biomass and used to parameterize the next 

20 minute simulation interval. All calculations and simulations were performed using in-

house scripts developed in IPython [40].

2.8 Comparison with 13C isotopically-nonstationary metabolic flux analysis.

For low light simulations, the predicted flux vector from the model simulation was divided 

by the flux through the RPBCcx model reaction (RubisCO carboxylase) and multiplied by 

100. The experimental data was normalized to 100 units of flux through the RUBP + CO2 

→ 3PGA + 3PGA reaction in Supplemental Table A2 for wild type S. elongatus PCC 7942 

in [15]. For high light simulations, the same process was applied, except fluxes were 

normalized to the sum of the CO2 and bicarbonate exchange fluxes, multiplied by 100, and 

compared with the experimental fluxes reported in Supplemental Table 5 in [1].

3. RESULTS

In this study we set out to assess the ability of genome-scale modeling coupled with 

photophysiology constraints to predict metabolic capabilities in S. elongatus. To this end, we 

first collected the necessary physiology data necessary to parameterize the models. This 

resulted in a comprehensive comparison of low versus high light acclimated cultures. Next, 

we integrated these data as constraints on the model simulations, comparing model 

simulations with in vivo growth rates and fluxes. Finally, we assess the alternate energy 

flows through the photosystems as a result of the absorption of excess excitation energy.

3.1 Photoacclimation of S. elongatus PCC 7942..

S. elongatus was acclimated and cultured at a high light condition of 600 μmol photons m−2 

s−1 (HL, n=4) and a low light condition of 60 μmol photons m−2 s−1 (LL, n=3). Specific 

Broddrick et al. Page 7

Metab Eng. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growth rates were 0.081 ± 0.015 and 0.047 ± 0.004 hr−1 respectively for HL and LL 

cultures. While cells grown at both light levels had approximately the same cell width (1.2 

± 0.1 and 1.1 ± 0.1 μm at HL and LL respectively), LL cells were significantly longer 

resulting in a 20% increase in cell volume at LL (Table 1).

There were significant differences in light harvesting pigments as a result of 

photoacclimation. Total pigments (phycocyanin (PC), allophycocyanin (APC) and 

chlorophyll a (chla) at LL were 4.9 fold higher than at HL (Table 2). Chla and APC 

increased at a similar rate (3.4 and 3.8 fold respectively). Almost all chla in S. elongatus is 

contained within the photosystems [48] and APC is a linker pigment-protein complex 

physically and energetically connecting the light harvesting PC with the photosystems. 

Thus, this increase in chla and APC is likely attributed to an increase in the number of PSI 

and PSII complexes present at LL. The light harvesting pigment-protein complex PC 

increased 5.7 fold at LL compared to HL. The larger-fold increase in PC versus APC 

suggests not only did the number of phycobilisomes increase but the rod length of each 

phycobilisome increased at LL compared to HL. The phycobilisomes constituted 28% of the 

cellular biomass at LL compared to 7% at HL.

The pigment content and composition of the cell dictates its light harvesting capacity. This 

cell-specific absorption coefficient is an important modeling parameter as it determines the 

photon uptake rate and the extent of self-shading that occurs in the culture. We compared the 

cell normalized absorption coefficient (a*cell) and the pigment normalized coefficient 

(a*pigm) at both light levels (Fig. 1). LL acclimation resulted in 2.3 times more light 

absorbed per cell than the HL cells, despite the 4.9 fold increase in total pigments. This 

decrease in light capture efficiency on a per-pigment basis is illustrated in the LL to HL 

a*pigm ratio of approximately 0.5 (Fig. 1B, area under the curve: HL: 7.4 vs LL: 3.6 cm2 μg
−1 nm−1). Thus, while low light acclimation allowed S. elongatus to absorb more light per 

cell, there were diminishing returns with respect to the resources needed to harvest the light 

energy.

3.2 Photophysiology of S. elongatus at low and high light.

As the GEM requires quantitative incorporation of photophysiology constraints, we 

converted both the photon uptake and the photosynthesis versus irradiance (P vs. I) curve 

into a model-compatible format. The photon uptake rate is derived from the PAR spectrum 

and the a*cell values. The PAR spectrum is a wavelength density function describing the 

relative distribution of photons. For example, a red LED exclusively delivers photons in the 

600–700 nm range while a white LED distributes the photons over a broader range of 

wavelengths. The a*cell describes the wavelength-specific attenuation of light. For example, 

the cyanobacterial light harvesting pigment phycocyanin preferentially captures orange and 

red photons and is responsible for the absorption maximum at 620 nm in Fig. 1. Therefore, 

the intersection of the PAR spectrum and the a*cell describes the cell-specific attenuation of 

light, which is the photon uptake rate.

We simultaneously measured chlorophyll fluorescence parameters and oxygen evolution 

using a rapid light curve (RLC) protocol [14]. In an improvement over previous 

photoautotrophic modeling of S. elongatus [6], we converted the incident light 
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(photosynthetically available radiation, PAR) to the quanta of light absorbed by the cells 

(quantum flux, QF). This representation is necessary to convert between light sources of 

different spectral quality. In the previous study [6], the P vs. I curve was determined with a 

white LED and the culture light source was a fluorescent lamp. For S. elongatus, these light 

sources result in similar QF rates. In this study, the oxygen evolution and fluorescence were 

collected using a red actinic light, while the cells were cultured under fluorescent light. 

These light sources have dramatically different spectral qualities; thus, necessitating a 

conversion.

Upon conversion the P vs. I curve becomes a P vs. QF curve and describes the maximum 

photosynthesis rate as a function of photon uptake. In this study we used oxygen evolution 

as a proxy for photosynthesis (PO). While a culture under full diurnal, solar irradiance may 

experience a wide variety of QF values, constant light cultures only experience a small 

section of the PO vs. QF curve. Thus, the only relevant section of the curve is the maximum 

QF (QFmax), representative of photon capture rates of cells closest to the light source, and 

the minimum QF (QFmin), representative of the photon capture rate at the point farthest from 

the light source, attenuated by cell shading. Thus, we report both the maximum QF (QFmax), 

representative of photon capture rates of cells closest to the light source, and the mean QF 

(QFmean), representative of the average photon capture rate across the full path length.

To induce sufficient fluorescence signal, PAM measurements often require high cell 

densities. The resulting increase in cell shading decreases the quanta of light absorbed across 

the path length of the sample cuvette. In an improvement over the previous modeling effort 

[6], we calculated the photon uptake accounting for cuvette shape, path length, cell density 

and cellular pigmentation [50]. This transformation dramatically affected the calculated 

oxygen evolution rate at a given photon absorption rate (PO vs.QF) (Fig. S1).

PO versus QF curves showed the LL acclimated cells had a significantly steeper light limited 

slope of photosynthesis, α, and a higher maximum photosynthetic rate, Pmax, compared to 

HL cultures (Fig 2A). This resulted in similar cell-specific maximum oxygen evolution rates 

at the experimental QF for the two light levels with the HL PO at QFmax approximately 20% 

higher than the LL condition (Table 3). Comparing the mean oxygen evolution rates, this 

difference increases to almost 40%, quantifying the impact of cell shading on culture 

productivity. When the PO versus QF curves were normalized to gram dry cell weight, the 

difference in mean oxygen evolution rate increased to 75% (Fig. 2B), which is similar to the 

difference in specific growth rate (72%, Table 1).

Interpretation of chlorophyll fluorescence measurements in cyanobacteria differs from that 

in algae and higher plants [46, 35]. As such, we report the maximum quantum yield of PSII 

(Fv/Fm), the effective quantum yield of PSII as a function of QF (Y(II)), and the fraction of 

open reaction centers (qL) (Table 3 and Fig. S2). However, the values were not 

quantitatively integrated with our model simulations. S. elongatus PCC 7942 lacks the 

orange carotenoid protein that confers the blue light activated phycobilisome fluorescence 

quenching mechanism in cyanobacteria [20] and we did not observe non-photochemical 

quenching (NPQ) induced fluorescence in either acclimation condition. The effective 

quantum yield was approximately two-fold higher for the LL acclimated cells (0.33 ± 0.01 
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vs. 0.15 ± 0.01 at LL and HL respectively), suggesting an increase in excitation energy 

diverted to PSI, consistent with previous observations in cyanobacteria [35].

3.3 Genome-scale modeling of S. elongatus at low and high light.

The photophysiology results were translated into modeling constraints to simulate 

photoautotrophic growth of S. elongatus. The a*cell coupled with the experimental PAR 

intensity and spectral quality of the fluorescent light was used to determine the photon 

uptake constraint for the simulations. This uptake value, equivalent to QF, was used to 

determine the oxygen evolution rate of the culture. This value constrained the oxygen 

exchange flux for the simulations. The biomass objective function (BOF) [9] defines which 

metabolites and in what ratio must be synthesized to generate the macromolecular cellular 

components necessary for growth. We updated the BOF to reflect the differences in pigment 

mass between the two growth conditions prior to performing simulations.

The quality of the model simulations depends on the accuracy of the experimental 

photophysiology parameters. Thus, we not only simulated growth using the mean values, but 

also the upper bound (UB) and lower bounds (LB) of the Po vs. QF curves, a*cell and dry 

cell weight (pg cell−1). As the experimental growth curves are based on cell counts, the dry 

cell weight converts the biomass accumulation predicted by the model to cell counts; thus, 

having an impact on the accuracy of the model growth rate predictions.

The model predicted a LL mean growth rate of 0.033 h−1(UB: 0.044, LB: 0.025) compared 

to an experimental value of 0.047 ± 0.004 h−1 representing a 30% underestimation by the 

model (Fig. 3). For the HL condition the model predicted a mean growth rate of 0.051 h−1 

(UB: 0.067, LB: 0.039) compared to an experimental value of 0.081 ± 0.015 h−1 

representing a 38% underestimation by the model (Fig. 3). While the upper bound of the 

simulations values approached the range of the experimental observations, the model tended 

to underestimate the growth rate at both high and low light.

We explored whether or not maintenance energy requirements forced upon the model could 

explain the growth rate discrepancies. Maintenance energies in phototrophs differs from that 

of heterotrophs as the energy source, light, is uncoupled from the carbon source, inorganic 

carbon. Thus, as long as the culture is not light-limited, maintenance energy costs will not 

affect growth rate.

Growth-associated maintenance (GAM), represented as growth-dependent ATP 

consumption, has been inconsistently applied to phototrophic GEMs. Genome-scale models 

of the cyanobacterium Synechocystis sp. PCC 6803 include GAM values ranging from 53 to 

1.3 mmol ATP Gdw−1 h−1 [34, 21]. GAM requirements in our S. elongatus GEM include a 

growth associated maintenance cost of 30 mmol ATP gDW−1 h−1; however, this is a largely 

arbitrary value. Our GEM sets the non-growth associated maintenance (NGAM) to the dark 

respiration rate. This value represents the residual reductant-mediated oxygen consumption 

that is necessary to maintain viability in the absence of light. This value varies with the 

incident irradiance. We observed dark respiration rates of 0.41 and 0.15 mmol O2 gDW−1 h
−1 for S. elongatus at HL and LL respectively; with a corresponding reductant consumption 

rate of 4 mmol electrons per 1 mmol O2. Finally, there is an NGAM cost associated with the 
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repair of the photosystem II (PSII) D1 subunit. This subunit is damaged at a rate 

proportional to PSII flux [3], is independent of growth rate, and incurs an ATP and GTP cost 

at the ribosome to biosynthesize a replacement subunit.

Upon removing all GAM and NGAM requirements, the growth rate was unchanged at LL 

and HL. Additionally, we quantified the energy in excess of growth and maintenance 

requirements by fixing the growth rate at the maximum value and optimizing for either an 

ATP hydrolysis reaction or a plastoquinone-mediated oxygen consumption reaction. At LL, 

an ATP hydrolysis flux of 19 mmol ATP gDW−1 h−1 and a respiratory flux of 0.7 mmol 

electrons gDW-1 h−1 could be sustained above and beyond growth and maintenance 

requirements. At HL, these values increased to 122 mmol ATP and 2.0 mmol electrons gDW
−1 h−1, suggesting the cultures are not light limited at either irradiance. Thus, the growth rate 

discrepancy between our simulations and the observed experimental values was not due to 

excessive maintenance energy requirements forced on the model.

3.4 Comparison of GEM predicted reaction fluxes with 13C MFA.

While growth rate can be inferred from empirical models, genome-scale models have the 

advantage of predicting the flux for all biochemical reactions in the metabolic network. In 

the case of S. elongatus, constraining the oxygen evolution rate with net PO, the photon 

uptake rate with QF and the biomass objective function with the light-condition-specific 

cellular composition, reaction fluxes are predicted for 861 intracellular reactions. Recent 

studies have used 13C metabolic flux analysis (MFA) to experimentally determine the 

reaction flux for central metabolism in S. elongatus [15, 1]. We compared our LL condition 

predicted reaction fluxes with those published for S. elongatus at a similar growth rate [15], 

normalized to 100 units of RubisCO carboxylase flux to account for the slight difference in 

growth rate. The predicted reaction fluxes, determined using parsimonious FBA (pFBA) 

[28], showed remarkable similarity to the experimental values (Fig. 4 and Fig. 5A, B). The 

primary difference was in metabolic fluxes surrounding the malate dehydrogenase (MDH); a 

reaction that was inferred from the 13C MFA data, but to date the gene responsible for 

catalyzing this reaction is unidentified in S. elongatus PCC 7942.

We compared our HL predicted reaction fluxes with those published for S. elongatus PCC 

7942 at near optimal growth rates [1]. Again, pFBA flux predictions showed good 

agreement with the experimental values (Fig. 6 and Fig. 5C, D). The primary discrepancies 

were in the phosphatase reactions in the Calvin-Benson cycle. However, the net flux into and 

out of these reactions were in agreement. Overall, the GEM flux predictions constrained by 

photophysiology constraints were consistent with 13C MFA results across the range of 

observed growth rates.

Using flux variability analysis (FVA), we explored whether or not alternate optimal solutions 

existed for the LL and HL models. For both LL and HL conditions, FVA ranges were narrow 

for all reactions except those connected to an ATP or reductant consuming reaction (Fig. 

5a,c). As discussed above, both conditions have ATP and reductant pools in excess of growth 

and maintenance requirements. As a result, the FVA ranges for these reactions are wide as 

the available energy pools can drive flux through these energy consuming reactions. 
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Therefore, the discrepancy in flux predictions are likely a result of the minimization of total 

flux performed by pFBA.

3.5 Predicted excitation energy routes in S. elongatus.

The GEM’s biomass objective function defines the energetic requirements for growth down 

to the metabolite level. Comparing constrained versus unconstrained photon uptake enabled 

an assessment of excitation energy absorbed in excess of biosynthesis and maintenance 

needs. We simulated growth using the upper bound constraints as they more closely 

recapitulated in vivo growth rates and thus, realistic energy needs.

At low light, with a QF of 2.0×10−11 μmol photon cell−1 s−1, the model where all excess 

excitation energy can be dissipated upstream of the photosystems (unconstrained) predicted 

only 33% of the excitation energy was necessary to satisfy the electron needs for biomass 

production and maintenance. We then constrained the photon uptake to account for the entire 

quanta of absorbed photons. The GEM includes experimentally determined wavelength-

specific energy transfer efficiencies [48]. Based on these values and the emission spectra of 

the growth light, approximately 30% of the QF is lost before reaching the reaction centers. 

This quanta, along with the biomass and maintenance requirements accounted for 63% of 

the absorbed photons. The remaining 37% was consumed by alternative electron transport 

(AET). At high light, with a QF of 7.5×10−11 μmol photon cell−1 s−1, the unconstrained 

model predicted only 11% of the excitation energy was necessary to satisfy the electron 

needs for biomass production and maintenance. After accounting for wavelength-specific 

energy transfer efficiencies, 58% of the absorbed QF was consumed by AET.

The AET predicted by the model depends on their relative metabolic cost. The simulations 

predicted relatively high flux through PSI, even at low light. The model includes a basal PSI 

superoxide generation rate of 1% [49], while PSII includes a D1 repair cost proportional to 

flux. The model flux predictions preferentially routed excitation energy through PSI since 

the combined action of superoxide dismutase and catalase detoxifies the ROS to water with 

no energy input required. Compared to the unconstrained simulation, the constrained 

simulation predicted an increase in charge recombination at PSII which increases damage to 

the PSII D1 protein. This damage is mitigated by de novo synthesis of a new protein at a 

significant ATP/GTP cost at the ribosome. The model predicted increased cyclic electron 

flow around PSI is required to generate the chemical energy necessary for D1 protein 

biosynthesis (Table 4). Thus, the D1 repair cost determines both the predicted bifurcation of 

excitation energy between PSII and PSI and the cyclic electron flow rate, balancing ATP and 

reductant ratios necessary to satisfy photodamage mitigation and repair mechanisms. A 

summary of predicted excitation energy routing, D1 repair costs and quantum yields of 

carbon fixation and oxygen evolution are shown in Table 4.

3.6 Model-driven engineering of 2,3-butanediol production in S. elongatus.

The chemical precursor (R,R)-2,3-butanediol (23BD) has been sccussfully produced in S. 
elongatus via both phototrophic [37] and photomixotrophic strategies [31, 17]. We explored 

the ability of the photophysiology constrained GEM to optimize 23BD production in S. 
elongatus. We added the 23BD biosynthsis pathway to the GEM (Dataset S1) and removed 
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the non-network constraints. These constraints are restrictions on pathway usage and 

magnitude that were necessary to recapitulate published in vivo gene essentiality data [43, 

6]; however, the organism can be engineered to overcome these constraints. The model 

suggested an optimal solution that uses the phosphoketolase (PKT) pathway to bypass lower 

glycolysis (Fig. 7b). Previous modeling in S. elongatus also suggested this pathway was 

optimal; however, based on the essentiality of lower glycolytic enzymes, it was concluded 

this bypass was not active during photoautotrophic conditions [6]. PKT uses the Calvin-

Benson-Bassham (CBB) cycle intermediates frucose-6-phosphate (F6P) or xyulose-5-

phosphate as substrates. It has been hypothesized the lack of available substrates, due to high 

CBB flux, may explain the lack of PKT flux. S. elongatus engineered to consume exogenous 

glucose was shown to have an elevated F6P pool [17]. Thus, hypothesizing an overexpresed 

PKT pathway could tap into this F6P pool, we performed an in silico comparison of the PKT 

pathway to the published oxidative pentose phosphate (OPP) engineered pathway [17] for 

converting exogenous glucose into 23BD (Fig. 7a,b).

First, using the model as a framework, we characterized the OPP engineered pathway results 

to derive the necessary parameters for comparison. Based on the published culture 

conditions, the feedstock was likely low light acclimated (30 μmol photon m−2 s−1); thus, we 

used the photophysiology values (a*cell, PO v. QF, pigment composition, etc.) from our LL 

acclimated culture as simulation parameters. Using the published results from Kanno et.al. 

[17], we determined the glucose uptake rate of the optimized strain was approximately 

0.29±0.1 mmol glucose gDW−1 h−1 during the first 3 days of culturing. Using a value of 

0.27 mmol glucose gDW−1 h−1 and the biomass production rate set to 20% of the maximum, 

the experimental results were accurately recapitulated (Fig. S3a–c). Thus, these values were 

used for simulating photomixotrophic production of 23BD.

Using the derived glucose uptake and biomass partitioning values, we compared flux 

simulations from the OPP engineered pathway and the PKT designed pathway. Both designs 

resulted in identical titers and specific productivities at the published experimental 

conditions in Kanno et. al. (30 μmol photon m−2 s−1, 1 g/L inoculation density) and were 

consistent with the experimental results (Fig. 8a). Parsimonious FBA flux predictions 

between the OPP and PKT designs suggested that while both designs resulted in the same 

23BD titer, the PKT design required 40% less flux through the CBB cycle (Fig. 7a,b). 

Additionally, the PKT design avoids carbon loss as CO2 at both the OPP reaction 

phosphogluconate dehydrogenase and at the pyruvate dehydrogenase (PDH) reaction. The 

OPP pathway does generate 2 equivalents of NADPH per glucose; however, these reactions 

would have to compete with photosynthesis for the oxidized NADP+ pool, which may limit 

the flux through the OPP pathway. The phosphoketolase enzyme cleaves F6P into acetyl 

phosphate, which is converted to acetyl CoA and used to generate biomass, and erythrose 4-

phosphate, a CBB intermediate. Thus, the PKT pathway coupled with a PDH knockout 

would result in a maximum biomass partitioning of 33% (2 out of 6 carbons from glucose) 

and effectively uncouple the CBB from biomass production and towards 23BD biosynthesis. 

The flux distributions suggest the PKT design could provide advantages over the OPP 

pathway, especially at high irradiances when the redox state of the NADPH pool may inhibit 

OPP flux.
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Next, we assessed the impact of cell shading on 23BD production. Using an inoculation 

density of 1 g/L, simulations suggested increases in titer and specific productivity could be 

achieved for both photoautotrophic and photomixotrophic conditions (Fig. 8b). Holding the 

light intensity constant at 30 μmol photon m−2 s−1 and varying the inoculation density 

indicated the photoautotrophic condition was more sensitive to the cell density compared to 

the photomixotrophic condition (Fig. 8c). We assessed the full production envelope from an 

inoculation density of 0.1 to 1 g/L and irradiance values from 30 to 900 μmol photon m−2 s
−1. The simulations suggested dramatic improvements in both 23BD titer and specific 

productivity could be achieved by increasing the available light (Fig. 8d). Additionally, the 

impact to production yields caused by high inoculation densities was dramatically attenuated 

at high irradiances. While it is important to mention these results are based on the 

photoautotrophic PO vs. QF curves, even the photoautotrophic condition achieved theoretical 

titers 2-fold higher than the published photomixotrophic values with increased specific 

productivity.

4. DISCUSSION

In this study we combined photophysiology constraints with a genome-scale model of S. 
elongatus PCC 7942 to predict metabolic differences between low and high light acclimated 

cultures. Overall, the model underestimated the growth rate at both high and low light but 

flux predictions were in good agreement with experimentally determined values. The 

genome-scale model predictions allowed for an assessment of excitation energy routing 

through the photosystem as a result of excess light absorption. Finally, we employed this 

modeling construct to assess and improve current S. elongatus production strategies for 2,3-

butanediol.

The photophysiology constraints resulted in accurate predictions of photoautotrophic 

growth. Whole cell absorption spectrum, cell dry weight and oxygen evolution are widely 

accessible experimental techniques that are often used to characterize photophysiology [50]. 

When coupled to genome-scale modeling, these inputs provided a detailed assessment of 

cellular metabolism to include growth rate and reaction fluxes. Such inputs could be used for 

real-time monitoring and/or process control parameters of large-scale, light-driven 

bioprocesses engineering.

While the upper bound of the simulations values approached the range of the experimental 

observations, the model tended to underestimate the growth rate at both high and low light. 

When determining the oxygen evolution rate, we did not supplement the sample with 

exogenous bicarbonate as it has been reported to affect photophysiology [47]. However, 

based on the cell densities used and photosythetic rates observed, it is likely the samples 

became carbon limited during the oxygen evolution experiment. This likely would have 

reduced Pmax of the PO vs. QF curve used to parameterize the model resulting in a 

underestimation of the growth rate.

Parsimonious FBA reaction fluxes predicted by the genome-scale model were consistent 

with experimental 13C metabolic flux analysis [15, 1]. The observed accuracy is partially 

due to the non-redundant nature of the S. elongatus metabolic network. This lack of 
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redundancy decreases the number of feasible flux states at the network level; evident by the 

similarity in experimental reaction fluxes in both 13C MFA studies. The agreement between 

the model predictions and MFA data suggests the photophysiology parameters are dominant 

constraints on photoautotrophy and the FBA assumption of optimality is appropriate. These 

factors coupled with emerging methods for combining constraint-based modeling with 

quantitative-omics data [52] brings a wide variety of phenotypes of interest to the 

phototrophic community into scope for in silico modeling.

While there were discrepancies in the simulation flux predictions and experimental data, the 

experimental values fell within the flux range of equally optimal solutions. For the high 

light/fast growth rate comparison (Fig. 6), the primary differences were in the Calvin-

Benson cycle phosphatase reactions. The experimental values for these reactions did fall 

within the flux ranges determined by flux variability analysis (FVA) (Fig. 5c). The wide flux 

ranges reported by FVA are due to the fact these phosphatases are coupled to ATP-

consuming kinases. As the GAM/NGAM assessment indicated, there was an excess of ATP 

at both LL and HL. Thus, when FVA is maximizing flux through the phosphatase, the 

corresponding kinase reaction has a large pool of ATP to drive the reaction pair resulting in a 

wide flux range. Despite these discrepancies, the overall flux into and out of the Calvin-

Benson cycle was accurately predicted by the model. For the low light/slow growth rate 

comparison (Fig. 4), the primary differences were around the hypothesized malate 

dehydrogenase reaction. This MDH bypass of pyruvate kinase is hypothesized to be 

necessary due to regulatory inhibition of pyruvate kinase [22]. The MDH reaction, which 

has yet to be ascribed to a gene in S. elongatus, was added to our GEM based on 

biochemical evidence from MFA [15]. Regulatory mechanisms are not included in the 

genome-scale model; thus, the default prediction is for the bypass to not carry flux. While 

the pFBA solution predicted the MDH reaction carried no flux, the FVA flux ranges for this 

reaction were quite wide. Like the HL/fast growth rate comparison above, this was due to an 

ATP-coupled reaction (phosphoenolpyruvate synthase) driving flux through a loop that 

included MDH. Data-dependent incorporation of the PYK regulatory mechanism into a 

GEM could more accurately constrain the flux through this bypass. Of note, despite the bio-

chemical evidence from MFA showing an MDH-mediated bypass of PYK, PYK is essential 

in vivo [43]. Therefore, in S. elongatus, the in vivo MDH-mediated PYK bypass cannot 

carry sufficient flux to maintain cell viability in the absence of PYK.

An advantage of genome-scale modeling over 13C MFA is the ability to predict reaction 

fluxes beyond central metabolism. We used this capability to assess alternate energy flows in 

S. elongatus. Our simulations predicted approximately 37% and 58% of the absorbed 

photons at low and high light respectively, were in excess of growth requirements and 

energy transfer losses. These numbers are likely overestimates since the energy transfer 

losses included in the model are based on measurements in S. elongatus permeaplasts [48] 

using chemical electron donor and acceptors; thus, they represent the most efficient energy 

transfer rates. Lever-aging recent developments in cyanobacterial PAM fluorometry 

techniques [35] may help constrain the physiological values. Still, up to 40% of 

photosynthetic flux was reportedly directed to the Mehler AET reaction in the 

cyanobacterium Synechocystis [12], suggesting our simulated values are in a biologically 

realistic range.
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The model predicts an increase in excitation energy directed to PSI with an increase in QF 

(Table 4), consistent with known state transitions in cyanobacteria [33]. Additionally, our 

prediction of increased cyclic electron flow at high light, evident by increased flux through 

the NDH-1 complex, is in agreement with the known role of this complex in cyanobacteria 

[36][5]. The absolute fluxes through PSII versus PSI depends on accurate accounting of the 

metabolic cost of ROS detoxification at both reaction centers. Currently, the metabolic cost 

to repair the D1 protein, as represented in the model, drives the predicted excitation energy 

routing. Additionally, the GEM assigns a ROS generation rate that scales linearly with 

reaction flux. The kinetics of ROS generation are likely not linear in vivo and properly 

constraining the flux-dependent ROS generation rates stands as an area of improvement for 

the GEM. Still, the fold change in predicted PSI versus PSII flux predicted by the model was 

in close agreement in the change in Y(II) at the experimental QF (Table 4). This suggests 

coupling photon uptake constraints with the GEM assumption of optimality results in 

accurate qualitative assessments of excitation energy routing between low and high light.

It should be emphasized that FBA and MFA are complementary methods. Often GEM 

simulations result in multiple mathematically-equivalent flux states for a given set of 

constraints. MFA results restrict these alternate, equivalent optima to a narrower, 

biologically realistic subset. MFA results also validate or refute assumptions in the GEM. 

For example, in S. elongatus a phosphoketolase bypass of glycolysis is feasible based on the 

genome annotation [6]. The GEM uses a hypothesized constraint that limits this bypass flux. 

The agreement between the model predictions and MFA data validates this constraint on 

phosphoketolase flux. GEMs also support and extend discovery and engineering in MFA 

experiments. Metabolic reconstructions define the core metabolism of the organism, 

assisting in the development of the isotopomer models needed for MFA. Additionally, 13C 

MFA experiments in phototrophs are resource intensive. A validated GEM can explore 

phenotypes and engineering strategies in silico prior to committing resources on 

experimental validation of the predictions. Finally, genome-scale models extend MFA flux 

measurement outside of central metabolism either through direct constraints [30] or by 

analyzing the full flux distribution from a simulation that was validated against MFA central 

carbon flux, as we have done in this study.

The framework presented in this study provided insights into an existing 23BD production 

strain. Computational analysis of the published data [17] established the glucose uptake rate 

of the photomixotrophic strain as well as constrained the fraction of carbon allocated to 

biomass. This analysis included the culture vessel geometry, total culture volume, light 

intensity, inoculation density and photophysiology; all parameters that can be optimized 

during bioprocess design. Characterization of the engineered strain enabled an assessment of 

the theoretical yield, suggesting that an increase in irradiance would result in higher 

production titers. While our assessment assumed photophysiology parameters from our 

study, replacing the PO vs. QF curve with an experimentally derived curve from the 

photomixotrophic strain would enable a more accurate characterization of the production 

culture. The phosphoketolase design suggested by our flux simulations may provide unique 

S. elongatus bioengineering solutions. In particular, growth-coupled engineering strategies 

could be developed for bio-products that are synthesized from the acetyl-CoA pool, such as 

isoprene [10].
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5. CONCLUSIONS

Engineering of cyanobacteria shows promise for generating energy-dense products with 

minimal input requirements. In this study we presented an in silico methodology for 

accurately characterizing photoautotrphic metabolism. These experimentally accessible 

constraints enable phototrophic genome-scale engineering equivalent to classical 

heterotrophic in silico design. Additionally, by incorporating photophysiology constraints 

with engineering design, we were able to assess an existing photomixotrophic engineering 

strategy and revealed the current design was light limited. Coupling genome-scale modeling-

driven in silico design with experimental validation, to include 13C metabolic flux analysis, 

is a promising strategy to accelerate the iterative bioprocess design of light-driven metabolic 

engineering strategies.
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Figure 1. 
Cell- and pigment-specific absorption coefficients for S. elongatus acclimated to low and 

high light. (A) Cell-specific absorption coefficient. (B) Pigment-specific absorption 

coefficient. The pigment mass includes phycocyanin, allophycocyanin and chlorophyll a. 

Shaded areas represent one standard deviation from the mean (HL n=4, LL n=3).
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Figure 2. 
Oxygen evolution versus quantum flux for S. elongatus acclimated to low and high light. (A) 

Cell-specific Po versus QF curves. (B) Dry cell weight-specific Po versus QF curves. Vertical 

dashed lines represent the maximum quantum flux received by the cultures at the 

experimental irradiance. Abbreviations. LL: low light, HL: high light, QF: quantum flux.
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Figure 3. 
Experimental versus simulated growth rates for S. elongatus acclimated to low and high 

light. For experimental values, error bars represent the standard deviation (HL: n=4, LL: 

n=3). For the simulation values, the error bars represent the model upper and lower bounds 

of the model predictions based on the error of the experimental inputs. Abbreviations. Exp: 

experimental, Sim: simulated.
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Figure 4. 
Simulated versus experimental metabolic reaction fluxes for S. elongatus at low growth 

rates. (A) Predicted fluxes at low light by the S. elongatus genome-scale model iJB792. (B) 

Experimental reaction fluxes for S. elongatus as reported in [15]. Metabolic reactions and 

metabolites are indicated by their BiGG identifier (bigg.ucsd.edu). Flux values normalized 

to 100 units of RubisCO carboxylase flux are shown below the reaction abbreviations.
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Figure 5. 
Correlation between simulated and experimental metabolic reaction fluxes for S. elongatus. 

(A) Comparison of low light predicted fluxes (gray bars) and experimental fluxes (white 

bars) reported in [15]. Flux ranges determined by flux variability analysis are shown for the 

predicted fluxes. Upper bounds that exceed the Y-axis scale are indicated by an arrow and 

the upper bound flux value. (B) Correlation between low light predicted fluxes and 

experimental fluxes reported in [15]. (C) Comparison of high light predicted fluxes (gray 

bars) and experimental fluxes (white bars) reported in [1]. Flux ranges determined by flux 

variability analysis are shown for the predicted fluxes. Upper bounds that exceed the Y-axis 

scale are indicated by an arrow and the upper bound flux value. (D) Correlation between 

high light predicted fluxes and experimental fluxes reported in [1]. Metabolic reactions and 

metabolites are indicated by their BiGG identifier (bigg.ucsd.edu). For (A) and (B), flux 

values are normalized to 100 units of RubisCO carboxylase flux. For (C) and (D) flux values 

are normalized to 100 units of inorganic carbon uptake. Abbreviations: ACONT: aconitase, 

CS: citrate synthase, ENO: enolase, FBA: fructose-bisphosphate aldolase, FBA3: 

sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-phosphate-lyase, FBP: fructose-

bisphosphatase, FUM: fumarase, PGK: phosphoglycerate kinase, ICDH: isocitrate 

dehydrogenase, MDH: malate dehydrogenase, ME: malic enzyme, PDH: pyruvate 

dehydrogenase, PEPC: phosphoenolpyruvate carboxylase, PGI: glucose-6-phosphate 

isomerase, PGM: phosphoglycerate mutase, PGMT: phosphoglucomutase, PRUK: 
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phosphoribulokinase, PYK: pyruvate kinase, RPE: ribulose-5-phosphate 3-epimerase, RPI: 

ribose-5-phosphate isomerase, SBP: sedoheptulose-bisphosphatase, SUCD: succinate 

dehydrogenase, TKT1: transketolase (S7P → R5P + X5P), TKT2: Transketolase (F6P → 
E4P + X5P), TPI: triosephosphate isomerase, ACLS: acetolactate synthase, ALAD: L-

alanine-dehydrogenase, PGLYCP: phosphoglycolate phosphatase.

Broddrick et al. Page 26

Metab Eng. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Simulated versus experimental metabolic reaction fluxes for S. elongatus at high growth 

rates. (A) Predicted fluxes at high light by the S. elongatus genome-scale model iJB792 at 

low light. (B) Experimental reaction fluxes for S. elongatus as reported in [1]. Metabolic 

reactions and metabolites are indicated by their BiGG identifier (bigg.ucsd.edu). Flux values 

normalized to 100 units of inorganic carbon uptake are shown below the reaction 

abbreviations.
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Figure 7. 
Comparison of the phosphoketolase engineered pathway with oxidative pentose phosphate 

pathway. (A) Engineered pathway as described in [17] that routes extracellular glucose 

through the oxidative pentose phosphate toward 2,3-butanediol production. (B) Engineered 

pathway as described in this study that routes includes a phosphoketolase bypass toward 2,3-

butanediol production. Metabolic reactions and metabolites are indicated by their BiGG 

identifier (bigg.ucsd.edu). Flux values are in units mmol gram−1 glucose uptake.
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Figure 8. 
Engineering photoautotrophic and photomixotrophic production of 2,3-butanediol in S. 
elongatus. (A) Specific productivity versus titer comparison of phosphoketolase (PKT) 

design (this study) with the oxidative pentose phosphate (OPP) engineered pathway as 

described in [17]. Solid and open markers represent OPP and PKT values respectively. 

Control marker: no carbon fixation (Rubisco bounds = 0). Validation marker: in silico 

simulation of the experimental conditions reported in [17] (inoculation density: 1 g/L, light: 

30 μmol photon m−2 s−1). (B) Specific productivity versus titer as a function of increasing 

light intensity. Select PAR values, in units of μmol photon m−2 s−1, are indicated. (C) 

Specific productivity versus titer as a function of increasing inoculation density. (D) Specific 

productivity versus titer production envelope as a function of inoculation density and light 

intensity. Yellow shaded region: photoautotrophy. Blue shaded region: photomixotrophy. For 

all panels the experimental value as reported in [17] is shown and the total culture duration 

was 3 days.
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Table 1

Physiology parameters of S. elongatus acclimated to low and high light.

Growth rate (h−1) Cell volume (μm3) pgDW cell−1

Low Light 0.047 ± 0.004 3.4 ± 0.6 1.3 ± 0.2

High Light 0.081 ± 0.015 2.8 ± 0.3 1.0 ± 0.2
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