Skip to main content
. Author manuscript; available in PMC: 2019 Mar 8.
Published in final edited form as: Nat Biomed Eng. 2018 Sep 17;2(10):761–772. doi: 10.1038/s41551-018-0285-z

Table 2 |.

Predictive performance results for adverse pathologies from prostate tissue and breast tissue samples

Predicted adverse pathology Sensitivity Specificity AuC N True positive True negative Predicted positive Predicted negative
Prostate tissue
Seminal vesicle invasion 0.89 0.96 0.93 57 9 48 8 46
Positive surgical margin 0.99 0.93 0.94 59 18 41 18 38
Extra-prostatic extension 0.95 0.97 0.96 53 21 32 20 31
Perineural invasion 0.99 0.99 0.99 50 37 13 37 13
Lymph node positive 0.95 0.96 0.81 47 4 43 4 41
Lymph vascular invasion 0.99 0.98 0.98 54 6 48 6 47
GAPP 0.91 0.93 0.88 59 45 14 41 13
LAPP 0.93 0.90 0.93 59 28 31 26 28
MAPP 0.95 0.84 0.89 59 40 19 38 16
Breast tissue
Extra-nodal extension 0.99 0.73 0.84 37 14 23 13 19
Positive surgical margin 0.99 0.95 0.98 45 3 42 3 39
Lympho-vascular invasion 0.90 0.87 0.87 44 21 23 19 19
Lymph invasion 0.96 0.79 0.91 46 27 19 20 18
GAPPa 0.81 0.93 0.85 47 32 15 26 14
LAPPa 0.99 0.72 0.81 47 15 32 15 23
MAPPa 0.84 0.88 0.85 47 31 16 26 14
MAPPLIb 0.90 0.85 0.83 32 19 13 15 12
MAPPLVIb 0.83 0.87 0.86 32 18 14 15 12

Sensitivity, specificity, AUC, total number of samples, true-positive and true-negative numbers, and number of samples predicted positive or negative were obtained from machine-learning-derived statistical algorithms.

a

For breast samples, GAPP, LAPP and MAPP scores are derived from algorithms trained on all breast samples.

b

For breast samples, MAPPLI and MAPPLVI scores are derived from algorithms trained on DCIS positive samples only.