Table 2 |.
Predicted adverse pathology | Sensitivity | Specificity | AuC | N | True positive | True negative | Predicted positive | Predicted negative |
---|---|---|---|---|---|---|---|---|
Prostate tissue | ||||||||
Seminal vesicle invasion | 0.89 | 0.96 | 0.93 | 57 | 9 | 48 | 8 | 46 |
Positive surgical margin | 0.99 | 0.93 | 0.94 | 59 | 18 | 41 | 18 | 38 |
Extra-prostatic extension | 0.95 | 0.97 | 0.96 | 53 | 21 | 32 | 20 | 31 |
Perineural invasion | 0.99 | 0.99 | 0.99 | 50 | 37 | 13 | 37 | 13 |
Lymph node positive | 0.95 | 0.96 | 0.81 | 47 | 4 | 43 | 4 | 41 |
Lymph vascular invasion | 0.99 | 0.98 | 0.98 | 54 | 6 | 48 | 6 | 47 |
GAPP | 0.91 | 0.93 | 0.88 | 59 | 45 | 14 | 41 | 13 |
LAPP | 0.93 | 0.90 | 0.93 | 59 | 28 | 31 | 26 | 28 |
MAPP | 0.95 | 0.84 | 0.89 | 59 | 40 | 19 | 38 | 16 |
Breast tissue | ||||||||
Extra-nodal extension | 0.99 | 0.73 | 0.84 | 37 | 14 | 23 | 13 | 19 |
Positive surgical margin | 0.99 | 0.95 | 0.98 | 45 | 3 | 42 | 3 | 39 |
Lympho-vascular invasion | 0.90 | 0.87 | 0.87 | 44 | 21 | 23 | 19 | 19 |
Lymph invasion | 0.96 | 0.79 | 0.91 | 46 | 27 | 19 | 20 | 18 |
GAPPa | 0.81 | 0.93 | 0.85 | 47 | 32 | 15 | 26 | 14 |
LAPPa | 0.99 | 0.72 | 0.81 | 47 | 15 | 32 | 15 | 23 |
MAPPa | 0.84 | 0.88 | 0.85 | 47 | 31 | 16 | 26 | 14 |
MAPPLIb | 0.90 | 0.85 | 0.83 | 32 | 19 | 13 | 15 | 12 |
MAPPLVIb | 0.83 | 0.87 | 0.86 | 32 | 18 | 14 | 15 | 12 |
Sensitivity, specificity, AUC, total number of samples, true-positive and true-negative numbers, and number of samples predicted positive or negative were obtained from machine-learning-derived statistical algorithms.
For breast samples, GAPP, LAPP and MAPP scores are derived from algorithms trained on all breast samples.
For breast samples, MAPPLI and MAPPLVI scores are derived from algorithms trained on DCIS positive samples only.