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Abstract

Explicit solvent molecular dynamics simulations of a macromolecule are slow as the number of 

solvent atoms considered typically increases by order of magnitude. Implicit methods introduce 

surface-dependent corrections to the force field, gaining speed at the expense of accuracy. 

Properties such as molecular interface surfaces, volumes and cavities are captured by Laguerre 

tessellations of macromolecules. However, Laguerre cells of exterior atoms tend to be overly large 

or unbounded. Our method, the inclusion-exclusion based Laguerre-Intersection method, caps 

cells in a physically accurate manner by considering the intersection of the space-filling diagram 

with the Laguerre tessellation. We optimize an adjustable parameter, the weight, to ensure the 

areas and volumes of capped cells exposed to solvent are as close as possible, on average, to those 

computed from equilibrated explicit solvent simulations. The contact planes are radical planes, 

meaning that as the solvent weight is varied, interior cells remain constant. We test the consistency 

of our model using a high-quality trajectory of HIV-protease, a dimer with flexible loops and 

open-close transitions. We also compare our results with interval-arithmetic Gauss-Bonnet based 

method. Optimal solvent parameters quickly converge, which we use to illustrate the increased 

fidelity of the Laguerre-Intersection method over two recently proposed methods as compared to 

the explicit model.
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1. Introduction

Laguerre tessellation (also known as the weighted Voronoi or power tessellation) is a well 

known mathematical tool used to partition the space containing data points into cells. Each 

data point is assigned the region which is closest to the given data point (generator of the 

cell) by the “power distance”. Laguerre methods have been widely used in biochemistry to 

find volumes of atoms, molecules, and amino acid residues (which we call simply 

“residues”) in proteins. They are useful for cavity location and in studying packing and 

deformation of proteins. They may also be used in protein structure prediction to check the 

quality of predicted structures. For example, residue volume may be considered an 

“intrinsic” property of amino acid type and is thus a predictable or checkable quantity 12. 

Laguerre surfaces have been used as a quick and parameter free way to measure accessibility 

of atoms and residues for quantifying exposure of a molecule with solvent 12. Residue 

contacts, which are important for protein structure and stability, have been studied using 

Laguerre surfaces. Interresidue contact surface areas are useful for protein structure analysis 

and prediction, and in studying structure-function relationships. Preferential contacts 

between amino acid species and atom-atom contact frequencies have also been found1326. 

Differences in contact areas between model and reference structures have been used as a 

scoring function and for benchmarking protein structure prediction methods 29. Contact 

surfaces have also been used to characterize interactions between multiple proteins, or 

proteins and ligands, with important applications in protein docking and formation of 

complexes 2730.

Surface area calculations play an increasingly important role in molecular dynamics 

simulations of macromolecules. For example, explicit solvent molecular dynamics 

simulations of a macromolecule are slow. The solute is imbedded in an adequately large 

periodic box filled with solvent and the system is simulated for a sufficiently long time so 

solvent molecules achieve thermal equilibrium. This typically increases the number of atoms 

in the system by an order of magnitude and furthermore the solvent viscosity significantly 

slows global dynamics such as protein folding 36. Using implicit solvent in molecular 

dynamics is an attractive alternative due to the reduced number of atoms in the simulation, 

along with the reduced viscosity due to the instantaneous relaxation of solvent following 

solute conformational changes. Implicit solvent calculations also play an important role in 

the post-processing of MD trajectories that were carried out in explicit water as a means to 

estimate binding affinities (the MM-PBSA method 21). Here implicit solvent is often 

advantageous since it directly provides an estimate of the free energy of (de)solvation, as 

compared to the enthalpy that is obtained using explicit solvent. This can be valuable in 

some cases where solvation free energy is needed, since obtaining this value in explicit 

solvent requires proper averaging over all possible explicit solvent configurations for a given 

solute configuration, obtaining the entropic contribution as well as the appropriately 

averaged enthalpy. Popular implicit solvent models include the Poisson-Boltzmann and 

Generalized Born methods, however these model only the polar contribution to solvation 

energy. A more accurate treatment involves also including the nonpolar (hydrophobic and 

dispersion) contributions to solvation, which are typically considered as approximately 

proportional to the solvent accessible surface area of the solute. Several methods have been 
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developed and are commonly used 73435. The speed and accuracy of these methods is vital to 

successful application, but due to the computational overhead many recent studies of protein 

folding omit nonpolar solvation despite the importance of the hydrophobic effect 28.

The Laguerre cell is the region which is closest to the generator of the cell (atom or residue 

center, for example) by the power distance. The power distance is an appropriate quantity to 

use as larger areas are assigned to data points with larger weights (larger atoms or residues, 

for example). The Laguerre cell of a data point depends on its neighbors. This poses a 

problem for systems that are typically found in a medium such as solvent but for which the 

surrounding medium is not explicitly known. In this situation, Laguerre cells of points on the 

convex hull are unbounded and the cells of points otherwise in contact with the surrounding 

medium tend to be too large. To arrive at a geometrical description of a macromolecule that 

is both independent of the rapidly changing detailed structure of the surrounding solvent 

molecules (typically water) while at the same time encoding an “average” geometrical 

profile as seen by the medium is a challenge that must be overcome in order to enhance the 

accuracy of implicit solvation modeling.

Researchers have addressed this difficulty in a variety of ways. Some consider only cells in 

the bulk of the protein which are not affected by the surrounding (unknown) environment. 

Others surround the structure by a layer of water or an artificial environment of spheres with 

size equal to the average amino acid size 1431. However, this causes the size of the problem 

to increase, typically by an order of magnitude. Soyer et al., bounded Laguerre cells by only 

considering Laguerre facet vertices from tetrahedra of a small enough size 33. Still cells near 

the boundary tend to be elongated or have fewer facets than those in the bulk of the protein. 

Cazals method 'Intervor’ constructs interface surfaces by considering facets of dual 

Delaunay edges in the space filling diagram and discarding any edges that belong to large 

tetrahedra 64. Discarding these edges causes pertinent information to be lost.

Another class of models prunes and truncates certain Laguerre facets. Mahdavi et al. 

construct intermolecular interface surfaces by considering truncated facets in the union of 

extended convex hulls 2425. The convex hulls are extended in a fashion to mimic a 1.4 

Angstrom solvent radius. Ban and coworkers construct a series of interface surfaces based 

on a sequence of alpha complexes and truncate facets to within alpha complex tetrahedra, 

but no attempt is made to mimic the effect of the solvent 116.

McConkey et al. construct Laguerre-like cells by considering the surfaces of extended 

radical contact planes between neighboring atoms within a cutoff distance and the surface of 

an expanded sphere 26. However, the algorithm miscalculates Laguerre volumes when the 

atom center lies outside its cell (what we term an “engulfing contact”), a situation that our 

algorithm treats correctly (See Section 3.2). Cazals et al. in their paper “Computing the 

volume of a union of balls: a certified algorithm” 5 provide a formalization of the 

McConkey’s algorithm which also correctly calculates engulfing contact volumes. While 

these algorithms compute the restriction of Laguerre cells to the space-filling model, there 

are three key differences with our model. McConkey’s and Cazals’ algorithms are based on 

the Gauss-Bonnet theorem whereas our algorithm is an inclusion-exclusion model which is 

an extension of Edelsbrunner’s algorithm for calculating atomic and molecular surface areas 
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and volumes 9. Inclusion-exclusion contributions extended to per-restriction quantities are 

given in equations (12)-(28) and (34)-(36). The inclusion-exclusion method is advantageous 

in that cycles of intersection points on the surface of the sphere do not need to be calculated 

which decreases algorithm complexity. The second key difference is that the former 

algorithms expand nonsolvent atoms by a solvent radius of 1.4 Å while our algorithm 

expands the squared radius. Expanding cells’ radii means that cells are bounded by extended 

radical planes rather than radical planes. This poses problems since the cells of atoms in the 

bulk, which should not be affected by the cutoff distance, are affected. Furthermore, cells of 

small atoms completely disappear for cutoff distances as small as 1.4 Å. The third difference 

is that in order to achieve double precision accuracy Cazals’ resorts to interval arithmetic 

and/or extended precicion (“ exact “) arithmetic which increases runtime by a factor of ten 

over the floating point models. As we are interested in calculating Laguerre-Intersection 

quantities at each step in a molecular dynamics (MD) simulation, speed is of utmost 

importance, and we can achieve desired accuracy using floating point operations. 

Remarkably, the accuracy of the results achieved by our method in the majority of cases is 

comparable to the extended precision results of the GB method, and highly more accurate 

than the GB method employing double precision arithmetic.

The proposed Laguerre-Intersection cell algorithm 19, considers the intersection of Laguerre 

cells with expanded atoms. The contact planes are the radical planes, which means that as 

the solvent weight is varied, Laguerre cells stay constant. This method simulates the 

environment better than using the extended radical plane. The Laguerre cells are capped in a 

physical manner that enables the study of boundary facets, rather than truncation by convex 

hulls.

We calculate molecule specific optimal solvent parameters from explicit solvent HIV 

protease trajectory data. The HIVP dimer has two flexible loops covering the active site that 

exhibit open-closed dynamics 17. We generated a 100 ns trajectory of HIV in explicit water 

to use as reference data (see Results). Despite the configurational variability, optimal solvent 

parameters converge quickly which we use to predict Laguerre quantities in the remainder of 

the trajectory. We show that these predicted quantities are closer to those found using 

explicit models than two current alternative methods. Further work is required to determine 

optimal solvent parameters for an arbitrary molecule.

2. Background

2.1. Laguerre and Laguerre-Intersection cells

Consider a molecule represented by a set of spheres or atoms 𝒜 ⊂ ℝ3 × ℝ. For pi ∈ 𝒜 we 

write pi = pi′, wi  where pi′ is the center of the atom and wi = ri
2 = pi″ is the weight or squared 

radius of the atom. The Laguerre cell, Li, of atom i is defined to be

Li = {x′ ∈ ℝ3 : |pi′ − x′|2 − wi ≤ |p j′ − x′|2 − w j for all p j ∈ 𝒜} (1)

and is a convex polytope (Fig. 1).
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The quantity |pi′ − x′|2 − wi is called the power distance between pi and x′ and is written as

π pi, x′ = |pi′ − x′|2 − wi . (2)

A Laguerre cell is the set of points whose nearest neighbor by the power distance is pi, and 

each Laguerre facet lies on the plane which is equi-powerdistant between two points and 

which is called the radical plane.

The weights of the atoms in 𝒜 may be increased or decreased by a certain amount w which 

we call the solvent weight. In this section, we call this modified set 𝒜(w) where pi(w) ∈ 𝒜(w)

has pi′(w) = pi′ and wi(w) = wi + w. The Laguerre cell of pi(w) is defined as

Li w = {x′ ∈ ℝ3: |pi w − x′|2 − wi w ≤ |p j w − x′|2 − w j w ∀ p j w ∈ 𝒜 w } . (3)

Since Li(w) = Li(0) for all w (See Fig. 2) we simply write the Laguerre cell of atom i as Li.

The Laguerre diagram, ℒ(𝒜), of 𝒜 is the collection of all Laguerre cells and their faces 

which we call Laguerre facets, segments, and nodes. A Laguerre facet is the intersection of 

two Laguerre cells and is a subset of the plane which is equipowerdistant from the generator 

of the two cells. A Laguerre segment is the intersection of at least three Laguerre cells, and a 

Laguerre node is the intersection of at least four Laguerre cells. For pi ∈ 𝒜 define

Bi(w) = {x ∈ ℝ3: |pi′ − x|2 − wi(w) ≤ 0} . (4)

The space filling model of 𝒜 with solvent weight w is defined as

ℬ(w) = ⋃Bi(w) (5)

We also define the following quantities:

• LVi: Volume of the Laguerre cell of atom i.

• LSi: Surface area of the Laguerre facets of atom i.

A residue is the collection of atoms in a single amino acid unit in the protein. The Laguerre 

volume of residue j (residual volume) is the sum of Laguerre volumes of atoms in residue j. 
The interresidue Laguerre surface area between residues j and k is the sum of areas of 

Laguerre facets which lie between atoms in residue j and atoms in residue k.

2.2. Laguerre diagram and regular tetrahedrization

The regular tetrahedrization is dual to the Laguerre diagram ℒ(𝒜). There is a one to one 

correspondence between the (3 − k)-faces in ℒ(𝒜) and the k-simplices in 𝒯(𝒜). Each node 
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in 𝒯(𝒜) corresponds to a tetrahedron in 𝒯(𝒜) whose vertices are equipowerdistant to the 

node, which we call the characteristic point of the tetrahedron. Each segment in ℒ(𝒜)
corresponds to a triangle in 𝒯(𝒜) whose vertices are equipowerdistant to the power segment. 

For each facet in ℒ(𝒜) there is an edge in 𝒯(𝒜) whose vertices are equipowerdistant to the 

power facet. Each cell in ℒ(𝒜) corresponds to a point in 𝒯(𝒜), namely the generator of the 

cell. We call a point whose center is on the convex hull of 𝒯(𝒜) exterior to the 

tetrahedrization. Otherwise a point is called interior to 𝒯(𝒜). An edge is called exterior if 

both of its vertices are exterior to 𝒯(𝒜). An edge is called interior if at least one of its 

vertices is interior. Note that the Laguerre cell of an exterior point is unbounded whereas the 

Laguerre cells of interior points are bounded. The Laguerre facets corresponding to exterior 

edges are unbounded whereas Laguerre facets of interior edges are bounded.

In this paper we take for granted robust algorithms for the calculation of the regular 

tetrahedrization and the α-complex which is a subset of the the tetrahedrization.

3. Methods

3.1. Computation of Laguerre surface areas of interior facets

Interior Laguerre cells are bounded by Laguerre facets. Each of these facets correspond to an 

edge in the regular tetrahedrization. We call an edge eij if the vertices of that edge are pi′ and 

p j′ and call the Laguerre facet corresponding to that edge Lij. The facets are convex polygons 

whose vertices are nodes in the Laguerre diagram, namely the characteristic points of the 

tetrahedra which surround that given edge. If a Laguerre cell has n facets, the volume may 

be divided into n pieces, one for each of its facets. The volume of the Laguerre cell of i 

corresponding to the edge eij is written LV i j
(i) and the volume of the Laguerre cell of j 

corresponding to the edge is written LV i j
( j). We call the ordered list of tetrahedra which 

surround a given edge, i.e. the ordered list of tetrahedra in the edge’s star, a tetrahedra ring 
or tetraring. A tetraring is called complete if the ring closes, otherwise it is called 

incomplete. Note that the tetraring of an interior edge is complete, whereas the tetraring of 

an exterior edge is incomplete (Fig. 3). In this section, we assume that the protein is 

surrounded by a layer of solvent. This means that all nonsolvent atoms are interior to the 

regular tetrahedrization as well as all edges which contain a nonsolvent atom as a vertex. We 

call these “nonsolvent edges”. The computation of the Laguerre volumes and surfaces of 

each nonsolvent atom proceeds as follows:

• Regular tetrahedrization of all atoms is computed

• Characteristic points of tetrahedra are found

• For each nonsolvent edge

1. Surface area of the corresponding Laguerre facet is computed and 

assigned to appropriate atoms

2. Using the calculated area, corresponding Laguerre volumes are found 

and assigned to appropriate atoms
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3. Interresidual Laguerre surface areas are assigned

• Laguerre residue volumes are summed

3.1.1. Surface areas—When considering edge eij, we compute the surface area, LSij, of 

the facet, Lij, between atoms i and j. The ordered vertices in the Laguerre facet are the 

characteristic points of the tetrahedra in the edge’s tetraring. Note that the edge does not 

always intersect its Laguerre facet, but it is always perpendicular to it (Fig. 4). Next we 

define the characteristic point of an edge. The characteristic point, xi j = (xi j′ , xi j″ ) of an edge, 

eij satisfies

π(pi, xi j′ ) = π(p j, xi j′ ) (6)

with xi j″  minimal. The center of this point lies on the intersection of the line containing pi′

and p j′ and the plane of points which are equipowerdistant to pi and pj. The method 

computes the surface area as the sum of the areas of the triangles as shown in Fig. 5.

3.1.2. Volumes—The Laguerre volume contributions, LV i j
(i) and LV i j

( j), are pyramids with 

base Lij, and heights hi j
i  and hi j

j  respectively, with

hi j
i = |xi j′ − pi′| (7)

hi j
j = |xi j′ − p j′| . (8)

We can write

xi j′ = p j′ + t(pi′ − p j′) . (9)

Thus the position of the plane containing the edge’s facet with respect to pi′ and p j′ is 

encoded in the value of t (Fig. 6). This gives

LV i j
(i) = sign(1 − t)

hi j
i LSi j

3

LV i j
( j) = sign(t)

hi j
j LSi j
3

(10)

HUMMEL et al. Page 7

Int J Comput Geom Appl. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The term LV i j
(i) is positive if the corresponding pyramid lies in Li and negative otherwise 

(Figs. 7, 8). We call the latter case an “engulfing” contact; that is the generator of one cell 

lies in the Laguerre cell of another atom.

Formula 10 is in contrast to the volume calculation (Equation 7b) in McConkey’s method 26 

which does not consider signed volumes and thus returns incorrect quantities for engulfing 

contacts (For example, see Fig. 8).

3.2. Removing solvent

We would like to compute Laguerre-like volumes and surfaces of a molecule that is not 

surrounded by solvent, so that these quantities are as close as possible to the Laguerre 

volumes and surfaces that are found when the molecule is in its typical environment. In 

doing this, we come across two problems:

• The Laguerre cells are unbounded for certain atoms on the convex hull of 𝒜′.

• The Laguerre cells of atoms that would otherwise be in contact with solvent are 

too large

This may be overcome by using Laguerre intersection cells, LI(w). The Laguerre 

intersection cell of an atom is the intersection of the Laguerre cell of that atom with the 

expanded atom.

LIi(w) = Li⋂Bi(w) . (11)

Exterior cells are bounded in a realistic way, and the cells of atoms which would otherwise 

be in contact with solvent are shrunk to a more appropriate size (Fig. 9). Laguerre cells are 

constant as a function of w, which means this parameter can be tuned to generate 

appropriate exterior Laguerre intersection cells while interior cells remain unchanged (Fig. 

10).

Define LISi(w) and LIVi(w), be the surface area and volume of LIi(w)

LISi(w) = sur f LIi(w)
LIV i(w) = vol LIi(w) .

(12)

Just as the individual atomic surface area and molecular volume can be written as a sum of 

contributions corresponding to simplices in the alpha complex using the inclusion-exclusion 

formulas (See Appendix A), LIS and LIV can be split into contributions (Eqs. 13, 14) from 

simplices in the alpha complex which is a subset of the Delaunay tetrahedrization 8. Define 

𝒞(w) to be the alpha complex of 𝒜(w) with ∂𝒞(w) the set of simplices in the boundary of 

𝒞(w). For T ⊂ 𝒜(w), σT represents the simplex which is the convex hull of the centers of 

points in T. As we are working in three dimensions we only consider |T| ≤ 4, where |T| is the 

number of elements in T. Recall that eij = σT for T = {pi, pj}. We also represent vertices and 

triangles as vi and tijk in a similar manner.
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The Laguerre-Intersection cell, LI, of an atom interior to 𝒞 is precisely the Laguerre cell L. 

The Laguerre-Intersection cell of an atom exterior 𝒞(w) consists of polyhedral components 

(contributions from interior simplices) and spherical components (contributions from 

simplices on ∂𝒞(w)).

The terms LIST
(i)(w) and LIVT

(i)(w) are the surface area and volume contributions of the 

simplex σT to LIVi(w) and LISi(w) (the analogs to ST
(i) terms in A.3). We can also write 

LIVT
(i)(w) = LIV i

(i)(w) for T = {pi(w)}, LIVT
(i)(w) = LIV i j

(i)(w) for T = {pi(w), pj(w)}, etc., and 

likewise for surface areas (See Fig. 11). The terms PT
(i) and FT for |T| = 2 are pyramidal 

volumes and facet surface areas that will be discussed shortly. We have

LIV i(w) = ∑
σT ∈ ∂𝒞(w)

( − 1)k + 1cTLIVT
(i)(w) |T | = k

+ ∑
σT ∈ 𝒞(w)

PT
(i)(w) |T | = 2

(13)

and

LISi(w) = Si(w) + ∑
σT ∈ ∂𝒞(w), k > 1

( − 1)kcTLIST
(i)(w) |T | = k

+ ∑
σT ∈ 𝒞(w)

FT(w) |T | = 2

(14)

where Si(w) is the accessible surface area of atom i with solvent radius w, and cTs are given 

for the following simplices

• |T| = 1, i.e. a vertex vi: cT = ΩT is the fraction of the ball i outside the tetrahedra 

in the alpha complex. That is ΩT is the normalized outer solid angle subtended by 

the union of tetrahedra in 𝒞 which contain vi.

• |T| = 2, i.e. an edge eij: cT = ΦT is normalized outer dihedral angle of the union of 

tetrahedra in 𝒞 which contain the edge eij.

• |T| = 3, i.e. a triangle tijk: cT is 1 if the triangle is singular and 1
2  if the triangle is 

regular. In other words, cT is the fraction of VT and ST that is outside the union 

of tetrahedra in the alpha complex.

Here vi = pi′, ei j = conv({pi′, p j′}), and ti jk = conv({pi′, p j′, pk′ }).

Since
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Si(w) = ∑
σT ∈ ∂𝒞(w)

( − 1)k + 1cTST
(i)(w), |T | = k (15)

where ST
(i)(w) is the contribution of σT to Si(w), we can write

LISi(w) = ciSi
(i)(w)

+ ∑
σT ∈ ∂𝒞(w), k > 1

( − 1)kcT(LIST
(i)(w) − ST

(i)(w)) |T | = k

+ ∑
σT ∈ 𝒞(w)

FT |T | = 2

(16)

3.3. Equations

3.3.1. Vertices—The Laguerre volume and surface contributions from a vertex, vi, are 

given by

ciSi
(i)(w) = Ωiri

2(w) (17)

ciLIV i
(i)(w) =

Ωi
3 ri

3(w) . (18)

3.3.2. Edges—The formulas for the volume and surface contributions from the 

intersection of two balls pi and pj are

cTLIVT
(i)(w) =

Φi j
2 hi

2 ri(w) −
hi
3 (19)

cTLIVT
( j)(w) =

Φi j
2 h j

2 r j(w) −
h j
3 (20)

cTST
(i)(w) = Φi jri(w)hi (21)
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cTST
( j)(w) = Φi jr j(w)h j (22)

cTLIST
(i)(w) =

Φi j
2 hi 2ri(w) − hi (23)

cTLIST
( j)(w) = cTLIST

(i)(w) . (24)

3.3.3. Triangles—Let xT = xi jk = (xi jk′ , xi jk″ ) be the characteristic point of the triangle tijk. 

Let p be one of the two points of intersection on the spheres pi(w), pj(w), and pk(w). We can 

write p = xi jk′ + nxi jk″  where n is the normal to the plane containing the triangle,

n =
(p j′ − pi′) × (pk′ − pi′)
|(p j′ − pi′) × (pk′ − pi′)|

. (25)

Let σTc the tetrahedron defined by the centers of T and xT. Then

1
2ST

(i) = ϕi jSi j
(i) + ϕikSik

(i) − ωiSi
(i) (26)

1
2ST

( j) = ϕ jkS jk
( j) + ϕ jiS ji

( j) − ω jS j
( j) (27)

1
2ST

(k) = ϕkiSki
(k) + ϕk jSk j

(k) − ωkSk
(k) (28)

where ϕij is the fractional inner dihedral angle of σTc along edge σij, ωi is the fractional 

(inner) solid angle of σTc subtended from pi′, etc. Let xi j′ , xik′ , x jk′  be the centers of the 

characteristic points of the triangle’s edges. Then 1
2 LSi jk

(i)  is the sum of the areas of the 

triangles given by xi jk′ , xi j′ , p, and xi jk′ , xik′ , p. We have

1
2LIVT

(i) = V i − ωiV i
(i) + ϕi jLIV i j

(i) + ϕikLIV ik
(i) (29)
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where V i is the signed volume of the solid with vertices at pi′, xij, xijk, xik, and p. More 

specifically, let

a = xi j′ − pi′ (30)

b = xi jk′ − xi j′ (31)

c = xik′ − xi jk′ (32)

d = pi′ − xik′ (33)

then

2V i = h
3 (a × b) + (c × d) ⋅ n (34)

Equivalent equations hold for LIVT
( j), LIVT

(k), V j, and Vk. See Figs. 12, 13, 14 for possible 

configurations.

3.3.4. Other contributions—We get additional contributions, FT and PT
(i), from all 

edges in 𝒞(w). There are two types of these edges:

• edges interior to 𝒞(w)

• edges exterior to 𝒞(w).

Contributions from interior edges of 𝒞(w) are computed as in section 3.1. That is

Pi j
(i) = LV i j

(i) (35)

and

Fi j = LSi j . (36)

The terms PT
(i) and FT are zero for all edges that are not part of at least one tetrahedron in 

𝒞(w). To calculate the contribution from all other exterior ∂𝒞(w) edges, we must know the 
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characteristic points of the triangles on the boundary of the 𝒞(w) tetraring. The characteristic 

point of the boundary triangle may or may not be on the Laguerre facet, but it always 

indicates the direction of one of the facet’s boundary segments (Fig. 15). For each exterior 

edge, the counterclockwise list of Laguerre nodes corresponding to tetrahedra in the alpha 

complex is already known. The surface area is computed by using signed surface areas as 

shown in pseudocode in the appendix. The volume contributions to LIi and LIj are found by 

multiplying the resulting surface by 
hi j
i

3  and 
hi j

j

3 , respectively. In this case, a sign is 

Incorporated into the surface area which means the sign(1 − t) and sign(t) terms in equation 

10 are not needed.

Note that the 𝒞(w) tetraring of an edge may not be connected. The pseudocode does not take 

this into account for simplicity reasons, while the actual implementation does.

4. Experiments: Accuracy of Algorithm

4.1. Monte-Carlo based estimates

We tested the accuracy of our Laguerre-intersection algorithm on a tryptophan dipeptide 

trajectory (1000 structures) with Monte-Carlo based estimates of Laguerre-Intersection 

volumes and surfaces. Tryptophan has a near-planar ring which was useful for testing the 

robustness of our algorithm.

Monte-Carlo Laguerre-Intersection volume estimates were obtained by generating N = 10n 

with n = 1 : 7 uniformly random points in the volume of each atom. The fraction fij of points 

in the volume of atom j in structure i which are closest to atom j by the power distance were 

tabulated. The Laguerre-Intersection volume estimate is

LIV i j = f i j
4πr j

3

3 (37)

where rj is the radius of atom j.

Laguerre-Intersection atomic surface areas consist of spherical (solvent-accessible) portions 

and planar portions that lie on discs of intersection between two spheres. The solvent-

accessible portions were estimated in a similar manner as Laguerre-Intersection volumes. N 
= 10n with n = 1 : 7 uniformly random points were generated on each sphere and the 

estimated surface areas are

SASi j = f i j4πr j
2 (38)

where fij is the fraction of points on the surface of atom j in structure i that lie closest to 

atom j by the power distance.

The planar Laguerre-Intersection surface area for atom j is structure i is
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pLISi j = ∑
k = 1

q
LISi jk (39)

where q is the number of alpha-complex neighbors and LISijk is the portion of LISij that lies 

on the disc of intersection between atom j and its neighbor k in structure i. Let Aijk be the 

surface area of this disc and define

Ai j = ∑
k = 1

q
Ai jk . (40)

Then Mi j = N
Ai jk
Ai j

 random points are generated on the disc of intersection between atom j 

and its neighbor k in structure i and the estimated planar Laguerre-Intersection surface area 

is

pLISi j = ∑
k = 1

q
f i jkAi jk (41)

where fijk is the fraction of points on the disc of intersection that are closest to atom j by the 

power distance.

Maximum and mean errors decrease as the number of test points increase (Fig. 16). Final 

mean errors for LIV, SAS, and pLIS estimates are O(10−4). Maximum relative errors for 

LIV, SAS, and pLIS estimates are O(10−3).

An analysis of the accuracy of the estimates follows. Let LIV be the Laguerre-Intersection 

volume for an atom with radius r. Then the probability that a test point x falls in LIV is

p = LIV
4/3πr3 . (42)

Given n trials, the number of points, k, that fall within LIV follows a Binomial distrubution 

with parameters p and n,

k ∼ B(p, n) . (43)

For large np and n(1 − p), B(p, n) is approximated well by the normal distribution 

N(np, np(1 − p)).
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Given a significance level, α = .01, upper and lower limits, k and k, on k may be calculated 

with 99% confidence. Since the normal distribution is symmetric about the mean, we are 

99% confident that the relative error of the estimate is bounded by

LIV − LIV
LIV ≤

k
n − p

p . (44)

Note that the right hand side of (44) is a decreasing function of p.

We follow the same analysis for SAS and pLIS. For our trajectory, p ≥ .174, p ≥ .056, and p 
≥ .180 for LIV, SAS, and pLIS respectively. This gives 99% probability that

LIV − LIV
LIV ≤ 1.77 × 10−3 (45)

SAS − SAS
SAS ≤ 3.34 × 10−3 (46)

pLIS − pLIS
pLIS ≤ 1.73 × 10−3 (47)

which is consistent with the values in Fig. 16.

4.2. Comparison with Gauss-Bonnet-type algorithm

We compared atomic Laguerre-Intersection volumes and surface areas calculated using our 

method with those found using vorlume 3, the Gauss-Bonnet-type algorithm adopted in the 

Structural Bioinformatics Library (SBL) on a diverse set of 1013 proteins in the Protein Data 

Bank. With the latter algorithm, we used the ‘exact’ option which employs interval 

arithmetic with extended precision and sufficiently small intervals that the solution is 

considered ‘exact’. We compared the results from our algorithm and the single number 

reported by vorlume without the ‘exact’ option in the SBL, to test how our method compares 

to Gauss-Bonnet-type method when both employ double precision computations. We 

checked both algorithms’ results of surface and volume to see whether they fall in intervals 

provided by the algorithm with ‘exact’ option and calculate the correct ratio, which is 

defined as the ratio of atoms for each protein whose value for surface or volume falls in the 

interval provided by vorlume with the ‘exact’ option.

Both algorithms do better on computing surfaces than on computing volumes. However, no 

matter whether surface or volume, our algorithm appears more robust and accurate. We 
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identified the 20 proteins where each one of these two algorithms obtained its lowest correct 

ratios, respectively. The average correct ratio for vorlume to calculate the surface of its 20 

most unfavorable proteins is 3.695%, while the correct ratio of our algorithm for the same 20 

proteins is 96.44%. The average correct ratio for vorlume to calculate the volume of its 20 

most unfavorable proteins is 2.316%, while the correct ratio of our algorithm for the same 20 

proteins is 68.45%. The average correct ratio for our algorithm to calculate the surface of its 

20 most unfavorable proteins is 94.99%, while the correct ratio of vorlume for the same 20 

proteins is 37.52%. The average correct ratio for our algorithm to calculate the volume of its 

20 most unfavorable proteins is 67.377%, while the correct ratio of vorlume for the same 20 

proteins is 3.043%. We see that our algorithm’s results do not vary as much as the Gauss-

Bonnet-type vorlume when it is calculating the surface/volume for the 2 different sets of 20 

proteins.

If we consider the whole 1013 protein database which contain 3710687 atoms, the correct 

ratio for surface of our algorithm is 3580002/3710687 = 96.48% and the correct ratio for 

volume of our algorithm is 3295669/3710687 = 88.81%. Correspondingly, the correct ratio 

for surface of vorlume is 1079062/3710687 = 29.08% and the correct ratio for volume of 

vorlume is 615823/3710687 = 16.60%. In conclusion, our algorithm gives results more 

accurate and robust.

From the perspective of computing time, our algorithm has obvious advantages. We take the 

two modes of the Gauss-Bonnet-type algorithm vorlume in the SBL as a reference. The 

mode with option ‘exact’ will give results with extended precision at a considerable time 

cost while the mode without ‘exact’ uses double precision floats, which is less accurate than 

‘exact’ model but much faster. Excluding the time for tetrahedralization from the total time 

budget, we find that over the 1013 protein database, which involved 3710687 atoms in total, 

the total time spent on computing surface and volume using vorlume with ‘exact’ option is 

36982.902331s. The total time spent on computing surface and volume using vorlume 
without ‘exact’ option is 2948.505325s. The total time spent on computing surface and 

volume using our algorithm is 73.316s. Our algorithm is about 40 times faster than the much 

less accurate mode, while it is about as 504 times fast as the exact mode, with which we 

agree on the great majority of cases.

5. Experiments: Optimizing Solvent Parameter

We test the capability of the Laguerre-Intersection method for predicting explicit water 

Laguerre quantities. We train on molecular dynamics trajectory data to determine “optimal 

solvent parameters”; those parameters for which the Laguerre-Intersection volumes and 

surface areas are, on average, as close as possible to the Laguerre volumes and surfaces of a 

molecule in its typical solvent environment.

5.1. Data

We work with solvated molecular dynamics trajectory data (2500 structures) of the HIV 

protease dimer (See Fig. 17) to determine optimal solvent parameters. The trajectory was 

initiated from the 1HVR crystal structure 22, and generated using the Amber software 2 with 

the ff99SB protein force field 18 and the TIP3p water model 20. Equilibration followed 
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published protocol 32 with a 2fs time step, and the simulation coupled to a thermostat at 

300K. A total of 100 ns of data were generated.

Optimal solvent parameters, which converge quickly, determine the capability of the implicit 

Laguerre-Intersection model to predict explicit water Laguerre quantities. We also compare 

our method to other implicit models.

First residual and atomic Laguerre volumes, atomic, interresidual, and residue-solvent 

surface areas (LV_res, LV_atom, LS_atom, LS_interres, LSAS_res, respectively) were 

calculated for the solvated trajectory.

For various solvent parameters, wk and rk,

wk = k ⋅ dw
rk = k ⋅ dr

equivalent Laguerre-Intersection quantities were computed for each structure (LIV res, 

LIV_atom, LIS atom, LIS_interres, LISAS_res, respectively). We set dw = .1 Å and chose 

dr such that

1.72 + kmax ⋅ dw = 1.7 + kmax ⋅ dr 2 . (48)

This means that for an atom with atomic radius 1.7 Å (the typical radius of carbon), the 

initial (k = 0) and final (k = k_max) total weights are the same using both methods.

Laguerre and Laguerre-Intersection quantities were compared and “optimal” solvent 

parameters were found. The optimal solvent weight (radius) is the value wk (rk) that 

minimizes the error (Equations 49, 50).

We write the Laguerre volume of residue j in structure i as LV_res(i, j), and the Laguerre-

Intersection volume of residue j in structure i with solvent parameter wk (rk) as LIV_res(i, j, 
k). We write the interresidual Laguerre surface area between residues j and jj in structure i as 

LS_interres(i, j, jj), and the interresidual Laguerre-Intersection surface area between residues 

j and jj in structure i with solvent value wk (rk) as LIS_interres(i, j, jj, k). Equivalent 

formulas hold for the other Laguerre and Laguerre-Intersection quantities.

Using wildcard notation, an arbitrary Laguerre quantity and Laguerre-Intersection quantity 

are written as L* and LI*. Then with solvent parameter wk (rk) 1-Norm and 2-Norm errors 

are

E1 LI*(k) = 1
N ∑

i = 1

N
ϵ1, i LI*(k) (49)

and
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E2 LI*(k) = 1
N ∑

i = 1

N
ϵ2, i LI*(k) (50)

where N is the number of structures in the MD trajectory.

For LIV_res, LIV_atom, LIS_atom, and LISAS_res

ϵ1, i LI*(k) = 1
n ∑

j = 1

n
|LI*(i, j, k) − L*(i, j)| (51)

and

ϵ2, i LI*(k) = 1
n ∑

j = 1

n
LI*(i, j, k) − L*(i, j) 2 (52)

where n is the number of residues or atoms and

n = ∑
j = 1

n
𝕀( j) (53)

with

𝕀( j) = 1 if LI*(i, j) ≠ 0 or L*(i, j) ≠ 0
0 otherwise

For the first three quantities n = n. The average Laguerre quantity is defined as

av L* = 1
N ∑

i = 1

N 1
n ∑

j = 1

n
L*(i, j) . (54)

With LIS_interres we have

ϵ1, i LI*(k) = 1
n ∑

j = 1

n
∑

j j = j + 1

n
|LI*(i, j, j j, k) − L*(i, j, j j)| (55)

and
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ϵ2, i LI*(k) = 1
n ∑

j = 1

n
∑

j j = j + 1

n
LI*(i, j, j j, k) − L*(i, j, j j) 2 (56)

where

n = ∑
j = 1

n
∑

j j = j + 1

n
𝕀( j, j j) (57)

with

𝕀( j, j j) = 1 if LI*(i, j, j j) ≠ 0 or L*(i, j, j j) ≠ 0
0 otherwise .

The average interresidual surface area is defined as

av LS−interres = 1
N ∑

i = 1

N 1
n ∑

j = 1

n
∑

j j = j + 1

n
L*(i, j, j j) . (58)

In this paper we present the absolute errors divided by the average quantities. We do not 

compute the relative errors at each step because the exact quantities may be zero.

First we present optimal solvent parameters obtained from HIV protease trajectory data. We 

show these parameters converge quickly despite the configurational variability of the 

molecule. We compare the capability of the Laguerre-Intersection, McConkey 26, and 

Cazals’ 4 method to predict explicit solvent Laguerre quantities. After a brief overview of 

these methods, We will compare all three methods to explicit water models, followed by a 

comparison of the radius vs. weight method of expanding atoms.

5.2. Optimal solvent parameters

We plot the optimal solvent weights found from the HIV protease trajectory which has 2500 

structures (See Fig. 18). The optimal solvent parameters for Laguerre volumes and Laguerre 

surfaces differ which is expected. One additional benefit of the weight method, is that the 

weighted Delaunay tetrahedrization is constant for all weights. This means the 

tetrahedrization (the time limiting step) only needs to be computed once per structure. When 

using the radius method, the tetrahedrization must be recalculated for each optimal solvent 

parameter.

Note that these are not “universal” parameters and are not necessarily optimal for an 

arbitrary molecule. Further work is needed to determine which values should be used in a 

given molecular dynamics simulation.
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Optimal solvent parameters, as given by Equations 49, 50, 54, and 58, are recorded at each 

step in the trajectory. The first 100 out of 2500 iterations are shown in Fig. 19. We see that 

the optimal solvent parameters are immediately within one dw of the global optimal solvent 

parameters and soon become stationary with each step. Since the HIV protease dimer has 

flexible loops and open-close transitions we conjecture that most other proteins will exhibit 

similar or quicker convergence.

5.3. Overview of current methods

5.3.1. McConkey-Cazal method—McConkey-Cazals (MC) algorithm 526 constructs 

Laguerre-like cells by considering the surfaces of extended radical contact planes between 

neighboring atoms within a cutoff distance and the surface of an expanded sphere. Similar to 

our Laguerre-Intersection algorithm, this method considers the intersection of cells with the 

space filling diagram with atom radii expanded by a solvent radius of 1.4 Å. While the 

McConkey-Cazals method and the Laguerre-Intersection method are algorithmically 

different, (McConkey-Cazals method is based on the Gauss-Bonnet theorem while ours is an 

in inclusion-exlusion method), another key difference is that the cells in McConkey-Cazals 

method are bounded by extended radical planes rather than radical planes. This poses 

problems since the cells of atoms in the bulk, which should not be affected by the cutoff 

distance, are affected. Furthermore, cells of small atoms completely disappear for cutoff 

distances as small as 1.4 Å.

5.3.2. ’Intervor’ for interface surfaces—Another Cazals’ method, ’Intervor’, is used 

to determine interface surfaces between molecules or a molecule and solvent 64 and locates 

atoms that are in direct contact with each other and those whose contact is mediated by 

water. This method is more qualitative in nature than the Laguerre-Intersection method, i.e. 

it does not claim to give contact areas that are similar to those of solvated systems but rather 

locate and describe topology of interactions.

A solvent radius of r = 1.4 Å to all atoms and the alpha complex, 𝒞(0), is computed. 

Laguerre facets dual to edges not in 𝒞(0) are thrown out. This is called the α criterion. 

However, overly large facets still remain. Such facets are discarded according to ’condition 

β’:

μ
we

> M2 (59)

where we is the weight of the smaller of the two balls in the edge and μ is the size of the 

largest weighted Delaunay tetrahedron that contains the edge. The value M is set to 5.

5.4. Comparison with explicit model

We compare the Laguerre-Intersection, McConkey-Cazals 265 (MC), and Intervor 4 to 

explicit models for the HIV protease trajectory data. We see a clear improvement in 

accuracy using the Laguerre-Intersection method (See Table 1). SAS_res is approximately 

thirty percent more accurate while LV_res is about eight times more accurate when 
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compared to the MC method. Intervor4 gives norms about four times larger than the 

Laguerre-Intersection method and about two times larger than the MC method.

At this point we do not know what effect this improvement might have on the accuracy of 

statistical potentials developed with these models.

5.5. Radius vs. weight method

In our simulations, we found that the weight rather than radius method gave smaller errors 

for atomic quantities and similar errors for residual quantities. This is expected as the 

Laguerre cell of the molecule does not vary as atom weights are uniformly increased (See 

Fig. 2). Residual errors decrease relative to atomic errors for the radius method due to 

cancellation in atomic errors. Fig. 20 compares relative errors for Laguerre-Intersection 

quantities over the HIV protease trajectory.

6. Conclusion

We developed an algorithm to compute the atomic and residual volumes and surface areas of 

the intersection of the Laguerre diagram with the space filling model of a molecule with 

applications to implicit solvation. While methods exist which calculate volumes and surface 

areas of the restriction of the Laguerre diagram to the space filling model, our algorithm is 

unique in that it is based on inclusion-exclusion rather than Gauss-Bonnet which decreases 

the complexity of the calculation. We also optimize an adjustable parameter, the weight, so 

the Laguerre-Intersection atomic and residual volumes and surface areas are as close as 

possible to Laguerre volumes and surface areas found using explicit solvent. We test our 

algorithm on an explicit water HIV protease molecular dynamics trajectory. We show that 

volumes and surface areas computed using our implicit method are 30% to 8 times closer to 

explicit quantities than those found using current models. We also show that varying the 

weight rather than the radius in the space-filling diagram gives much better agreement with 

explicit quantities.

Acknowledgments

Michelle Hummel and Evangelos Coutsias were supported in part by NIH grant R01GM090205 and Stony Brook 
University research funds. Carlos Simmerling was supported in part by NIH grant R01GM107104. Evangelos 
Coutsias and Carlos Simmerling acknowledge support from the Laufer Center for Physical and Quantitative 
Biology at Stony Brook University. A portion of this work was carried out at the Department of Mathematics and 
Statistics, Univerisity of New Mexico.

Appendix A. Inclusion-Exclusion Volume and Surface Area Formulas

The equations in sections 3.2 and 3.3 are extensions od the short inclusion-exclusion 

formulas for the atomic surface areas and volumes of a molecule discussed in 9,10, 23, 11. We 

use the same notation as in 3.2.

The terms ST and VT are the surface area and volume respectively of the intersection of the 

balls in T (See Figure 21). The surface area and volume of the union of balls are 9,10,
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𝒮 = ∑
σT ∈ ∂𝒞

( − 1)k + 1cTST, |T | = k (A.1)

𝒱 = V + ∑
σT ∈ ∂𝒞

( − 1)k + 1cTVT, |T | = k (A.2)

where V is the volume of the tetrahedra in the alpha complex and the coefficients, cT, are 

given in Section 3.2.

The term 𝒮 gives the total surface area of the molecule, but we are also interested in the 

contribution of an individual atom, pi, to the total surface area. Call this term 𝒮i. Then

𝒮i = ∑
σT ∈ ∂𝒞

( − 1)k + 1cTST
(i), |T | = k (A.3)

where ST
(i) is the contribution of ST to 𝒮i with

∑
i = 1

n
𝒮i = 𝒮 . (A.4)

These formulas will be given in subsequent sections. The sum A.3 may also be taken over all 

σT ∈ ∂C such that pi ∈ T since ST
(i) = 0 if pi ∉ T.

A.1. Equations

A.1.1. |T| = 1: Volume and Surface Area

Consider T = {pi}. The formulas for the volume and surface area of a ball are

VT = 4
3πpi″

3/2 (A.5)

ST = 4πpi″ (A.6)

ST
(i) = 4πpi″ . (A.7)
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Let ℐ be the set of tetrahedra in 𝒞 to which the vertex pi is incident. For σI ∈ ℐ define ωI as 

the normalized inner solid angle subtended by the tetrahedron σI from the point pi′. Then

ΩT = 1 − ∑
σI ∈ ℐ

ωT
I (A.8)

The normalized inner solid angle, ω, of a tetrahedron subtended by the vectors a = p j′ − pi′, 

b = pk′ − pi′, and c = pl′ − pi′ (See Figure 23) is given by the equation

ω = 1
2π arctan |a ⋅ (b × c)|

abc + (a ⋅ b)c + (a ⋅ c)b + (b ⋅ c)a (A.9)

where a = |a| and likewise for b and c (See Figure 23).

A.1.2. |T| = 2: Volume and Surface Area

Consider T = {pi, pj}. The formulas for the volume and surface area of the intersection of the 

two balls, pi and pj are

VT = πhi
2 pi″ −

hi
3 + πh j

2 p j″ −
h j
3 (A.10)

ST
(i) = 2π pi″hi (A.11)

ST
( j) = 2π p j″h j (A.12)

ST = ST
(i) + ST

( j) (A.13)

where hi and hj are the heights of the spherical caps of pi and pj (See Figure 24).

The characteristic point, x ∈ ℝ3 × ℝ, of the edge σT satisfies

Π pi, x = 0
Π p j, x = 0

x′ = pi′ + t(p j′ − pi′)

(A.14)
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for some scalar t (See Figure 6). Equations A.14 gives

pi′
2 − p j′

2 − 2x′ ⋅ (p j′ − pi′) − pi″ + p j″ = 0.

Define k = pi″ − p j″ and a = p j′ − pi′. Then

t =
k − pi′

2 + p j′
2 − 2p′i ⋅ (p j′ − pi′)

2a2

= 1
2

k
a2 + 1

(A.15)

and

hi = pi″ − sgn(t)|x′ − p′i|
h j = p j″ − sgn(1 − t)|x′ − p′ j| .

(A.16)

Let ℐ be the set of tetrahedra in 𝒞 to which the edge σT is incident. For σI ∈ ℐ define ϕI as 

the normalized inner dihedral angle of σI along σT. Then

ΦT = 1 − ∑
σI ∈ ℐ

ϕT
I (A.17)

The normalized dihedral angle between planes with normals nk and nl is

ϕ =
arccos nk ⋅ nl

2π . (A.18)

Assume plane k is defined by the vectors a = p′ j − p′i and b = p′k − p′i and the plane l is 

defined by the vectors a and c = p′l − p′i. Then

nk = a × b
|a × b|

nl = a × c
|a × c| .

(A.19)

A.1.3. |T| = 3: Volume and Surface Area

Consider T = {pi, pj, pk}. The volume and surface area of the common intersection of three 

balls can be written as a weighted sum of the surface area of the single and the double 

intersections. If pi, pj, and pk have a non-empty intersection then there are two points in 
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common with the surfaces of all three balls. Call one of these points x′, define px = (x′,0) ∈ 
ℝ3 × ℝ, and let Tx = {pi, pj, pk, px}. Let S2 be the set of edges defined by σTx

 and S1 the set 

of vertices in σTx
.

The volume and surface areas (See Figure 26) of the intersection of pi, pj, and pk are given 

by 15

1
2V = VTc

+ ∑
σt ∈ S2

ΦtV t − ∑
σt ∈ S1

ΩtV t k, l = (1, 2, 3) (A.20)

1
2𝒮T

(i) = Φ i, j S i, j
(i) + Φ i, k S i, k

(i) − Ω i S i (A.21)

1
2𝒮T

( j) = Φ j, k S j, k
( j) + Φ j, i S j, i

( j) − Ω j S j (A.22)

1
2𝒮T

(k) = Φ k, i S k, i
(k) + Φ k, j S k, j

(k) − Ω k S k (A.23)

1
2𝒮T = 𝒮T

(i) + 𝒮T
( j) + 𝒮T

(k) (A.24)

where Φ{i, j} is the normalized dihedral angle of σTC
 along the edge σ{i, j}, Ωi is the 

normalized solid angle of σTc
 subtended from pi′, and similarly for other combinations i, j, 

and k.

The point x satisfies the following equations

|p′i − x′|2 − pi″ = 0 (A.25)

|p′ j − x′|2 − p j″ = 0 (A.26)
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|p′k − x′|2 − pk″ = 0 (A.27)

Let a = p j′ − pi′ and b = pk′ − pi′, which gives the normal to the plane that contains σT as n = a 

× b. The characteristic point, xc, of the triangle σT was found in the computation of the 

alpha complex and satisfies x = xc + hn where h is the height of x above the plane containing 

σT. Plugging this into equation A.25 gives

|pi′ − xc|
2 − 2h pi′ − xc ⋅ n + h2n2 − pi″ = 0 (A.28)

The vector pi′ − xc  is orthogonal to n which gives

h =
pi″ − |pi′ − xc|

2

n =
−ασT

n (A.29)

where ασT
 is the size of the triangle σT.

Given a triangle, σT, its coefficient is given by

cT =
1, if σT is singular
1
2 if σT is regular

(A.30)

The triangle, σT, transitions from singular to regular when an incident tetrahedron becomes 

part of the alpha complex.

A.2. |T| = 4: Volume

Consider T = {pi, pj, pk, pl}. Let a = p j′ − pi′, b = pk′ − pi′, and c = pl′ − pi′. The volume of the 

tetrahedron σT is given by

V tetra = |a ⋅ (b × c)|
6 . (A.31)

Appendix B. Exterior Facet Area Computation Pseudocode

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!COMPUTE AREA OF LAGUERRE INTERSECTION FACET OF EXTERIOR EDGE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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!

!surf        =    area of the Laguerre intersection facet

!num_ring    =    number of nodes in Laguerre intersection facet

!nodes        =    num_ring x 3 matrix

!            contains coords of counterclockwise

!            Laguerre nodes of tetrahedra in alpha complex

!            with characteristic points of appropriate

!            boundary triangles inserted

!x        =    center of characteristic point of edge

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

surf=0

temp_vec=0

a=nodes(2,:)-x

do i=2,num_ring

   b=nodes(i,:)-x

   temp_vec=cross_product(b,a)

   if (dot_product(temp_vec,edge)>=0 ) then

      surf=surf+.5d0*sqrt(temp_vec)

   else

      surf=surf-.5d0*sqrt(temp_vec)

   end if

   a=b 

end do

b=nodes(1,:)-x

temp_vec=cross_product(a,b)

if (dot_product(temp_vec,edge)>=0 ) then

   surf=surf+.5d0*sqrt(temp_vec)

else

   surf=surf-.5d0*sqrt(temp_vec)

end if

Appendix C. Glossary

π

Power distance between weighted point and unweighted point; π(p, x′) = |p′ − x
′|2 − p″.

σT

HUMMEL et al. Page 27

Int J Comput Geom Appl. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A simplex which is the convex hull of point centers in set T.

A

𝒜

Set of weighted data points (spheres) which represents atoms in a molecule.

𝒜′

Set of data point centers; 𝒜′ = p′ such that p ∈ 𝒜 .

𝒜(w)

Set of expanded points, 𝒜(w) = p(w) such that p ∈ 𝒜 .

B

ℬ(w)

Space filling model of 𝒜(w). Equal to ⋃pi ∈ 𝒜 Bi(w).

Bi(w)

Closed ball with center at pi′ and weight pi″.

C

𝒞(w)

Alpha complex of data set with α = w.

∂𝒞

Boundary of the alpha complex 𝒞.

E

eij

Edge connecting the centers of pi and pj.

F

FT

Surface area of the intersection of the Laguerre facet corresponding to simplex 

σT with the interior of the alpha complex.

L

ℒ(𝒜)

Laguerre diagram of the data set 𝒜.
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Li

Laguerre cell of atom i.

Li(w)

Laguerre cell of pi(w) in 𝒜(w).

Lij

Laguerre facet corresponding to edge eij.

LI(w)

Set of Laguerre-Intersection cells.

LIi(w)

Laguerre-Intersection cell of atom i with weight w.

LISi(w)

Surface area of LIi(w).

LIST
(i)

Contribution of the simplex σT to LISi.

LIVi(w)

Volume of LIi(w).

LIVT
(i)

Contribution of the simplex σT to LIVi.

LIV i
(i)

Equivalent to LIVT
(i) for T = pi .

LIV i j
(i)

Equivalent to LIVT
(i) for T = pi, p j .

LIV i jk
(i)

Equivalent to LIVT
(i) for T = pi, p j, pk .

LSi

Surface area of the Laguerre cell of atom i.

LSij

Surface area of facet Lij.

LVi

HUMMEL et al. Page 29

Int J Comput Geom Appl. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Volume of the Laguerre cell of atom i.

LV i j
i

Volume contribution of the edge eij to the Laguerre cell of atom i.

P

p = (p′, p″)

Weighted point (sphere) in ℝ3 × ℝ with center p′ and weight (radius squared) p
″.

p′

Unweighted point or location in ℝ3.

p″

Weight or radius squared of point p. This can also be written as w.

p(w)

Expanded point p(w) = (p′, p″ + w)

PT
(i)

Pyramidal volume contribution of σT to LIVi.

S

Si(w)

Accessible surface area of atom i with solvent weight w.

ST

Surface area of the intersection of balls represented by points in T.

Si
(i)

Equivalent to ST
(i) where T = {pi}.

ST
(i)

The contribution of ST to Si.

T

𝒯(𝒜)

Weighted Delaunay (Regular) tetrahedrization of the data set 𝒜.

T

Set of points corresponding to simplex in 𝒜.
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|T|

Number of elements in the set T.

tijk

A triangle with vertices at pi′, p j′, pk′ .

V

vi

Vertex.

VT

Volume of the intersection of balls represented by points in T.

W

w

Weight or radius squared of a data point

X

xij

Characteristic point of the edge eij.

xijk

Characteristic point of the triangle tijk.

xT

Characteristic point of the simplex σT. xT = xT′ , xT″  where xT′  is the center of the 

characteristic point and the weight xT″  is the size of the simplex.
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Fig. 1. 
2d and 3d Laguerre diagram: 2d illustrates how the radical plane partitions space between 

atoms of different radii; 3d courtesy of Frederick Vanhoutte.
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Fig. 2. 
Red bounds Laguerre cells of 𝒜(w) (shown in black) and 𝒜(0) (shown in gray). Note that the 

cells are the same for both weights. This is the reason that varying the weight rather than the 

radius in the space filling diagram gives better agreement between Laguerre-Intersection 

quantities and Laguerre quantities found using explicit solvent (See Section 5.5).
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Fig. 3. 
Top row: Side and perpendicular views of the complete tetraring of an interior edge (shown 

in dark blue). Bottom row: Side and perpendicular views of an incomplete tetraring of an 

exterior edge (shown in dark blue).
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Fig. 4. 
Laguerre facet of edge represented in red. The vertices of the facet are the characteristic 

points of the tetrahedra in the edge’s tetraring. Top row: Two views of a facet which is 

intersected by its corresponding edge. Bottom row: Two views of a facet which is not 

intersected by its corresponding edge.
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Fig. 5. 
Subdivision method for the two facets shown in Fig. 4.
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Fig. 6. 
The value of t is determined by the relationship of the equi-powerdistant plane with respect 

to the two edge points and indicates if the center of the generator of the cell is interior or 

exterior to its cell.
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Fig. 7. 
Left: Laguerre cell that contains generator’s center. Right: Pyramidal decomposition of 

Laguerre cell. All volumes are positive.
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Fig. 8. 
Left: Laguerre cell that does not contain generator’s center (black vertex). Center: Negative 

pyramidal volume. Right: Positive pyramidal volumes.
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Fig. 9. 
Example of Laguerre-Intersection cells (shown in grays and greens). Solvent is represented 

by light blue spheres, boundary of Laguerre cells of molecule (minus solvent) are shown in 

red, and boundary of Laguerre cells of molecule in solvent is represented by the dotted line.
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Fig. 10. 
Laguerre cell does not depend on w while the Laguerre-Intersection cell does depend on w.
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Fig. 11. 

Laguerre-Intersection cell volumes (blue), LIV i
(i), LIV i j

(i), LIV i jk
(i) , and surfaces (red) LISij, and 

LISijk. to atom i from ∂𝒞(w) simplices.
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Fig. 12. 
pi′, p j′, pk′ , and xi jk′  represented by dark blue, light blue, green, and black dots, respectively. 

The point p is out of the page. The black arrows represent positive contributions to the 

volumes V i, V j, and Vk.
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Fig. 13. 
Above: Sample configuration. Below: Black arrows represent positive contributions to V i, 

V j, and Vk, while red arrows represent negative contributions.
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Fig. 14. 
Above: Sample configuration. Below: Black arrows represent positive contributions to V i, 

V j, and Vk, while red arrows represent negative contributions.
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Fig. 15. 
Two examples of additional contributions from edges which are regular and exterior with 

respect to 𝒞(w). The royal blue points are the characteristic points of edges which are 

exterior to 𝒞(w) and which points directly out of the paper. The triangles represent tetrahedra 

in the tetrahedra ring which are also in 𝒞(w). Dark blue, green, and purple dots represent the 

Laguerre nodes corresponding to the tetrahedra of the same color in the 𝒞(w) tetraring. The 

black points are characteristic points of the boundary triangles. In the first case, both triangle 

characteristic points lie in the Laguerre facet. In the second case, one of the triangle 

characteristic points is not in the facet but is still needed to determine a line segment (shown 

in gray). In the first case all Laguerre nodes lie in the union of tetrahedra and all 

corresponding surface contributions are positive. In the second case, a Laguerre node lies 

outside the union of tetrahedra in 𝒞(w). The triangular surface that is bounded by the right 

black, purple, and clear dots was originally assigned during contributions from the boundary 

triangle, and must be subtracted to obtain the correct area.
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Fig. 16. 
Mean and maximum relative difference over all atoms between estimated and analytic 

Laguerre-Intersection atomic volumes and surfaces areas for 1000 structure tryptophan 

dipeptide trajectory.
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Fig. 17. 
Sample structure from the HIV protease molecular dynamics trajectory.
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Fig. 18. 
Optimal solvent weights from the HIV protease trajectory.
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Fig. 19. 
Convergence of optimal solvent parameters.
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Fig. 20. 
Relative errors corresponding to optimal solvent parameters.
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Fig. 21. 
Volume (blue) and surface area (red) contributions from simplices of dimensions one, two, 

and three.
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Fig. 22. 
Fractional outer solid angle and fractional outer dihedral angle.
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Fig. 23. 
Normalized inner solid angle, ω, subtended by a = p j′ − pi′, b = pk′ − pi′, and c = pl′ − pi′.
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Fig. 24. 
Heights of the spherical caps and the partition of the surface area ST between two atoms.
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Fig. 25. 
Normalized dihedral angle ϕ between planes with normals nk and nl.
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Fig. 26. 
Partition of ST between the three atoms.
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Table 1.

Ratio of errors to average Laguerre quantities. See equations 49, 50, 54, 58.

Quantity Method 1-Norm / Average 2-Norm / Average

LS_interres Laguerre-Intersection .1416 .2027

MC r=1.4 .3224 .5101

Intervor .6988 1.3150

LV_res LI .05695 .07097

MC r=1.4 .4184 .5487

LS_atom LI .06794 .09994

MC r=1.4 .4841 .5714

LV_atom LI .1039 .1636

MC r=1.4 .7573 1.0937

SAS_res LI .1176 .1548

MC r=14. .2039 .2536
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