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Summary

Lineage tracing provides key insights into the fate of individual cells in complex organisms. While 

effective genetic labeling approaches are available in model systems, in intact humans most 

approaches require detection of nuclear somatic mutations, which have high error rates, limited 

scale, and do not capture cell state information. Here, we show that somatic mutations in 

mitochondrial DNA (mtDNA) can be tracked by single cell RNA or ATAC sequencing. We 

leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as 

highly accurate clonal markers to infer cellular relationships. We track native human cells both in 
vitro and in vivo, and relate clonal dynamics to gene expression and chromatin accessibility. Our 

approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome 

sequencing, with simultaneous information on cell state, opening the way to chart cellular 

dynamics in human health and disease.

Graphical Abstract
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Introduction

Recent innovations in single cell genomics have enabled insights into the heterogeneity of 

human cell populations and have redefined concepts about lineage commitment and 

development (Giladi and Amit, 2018). While all cells in the human body are derived from 

the zygote, we lack a detailed map integrating cell division (lineage) and differentiation 

(fate). As a result, we have a limited understanding of how cellular dynamics play a role in 

physiologic and pathologic conditions for any given tissue.

Two classes of methods have been developed to study cellular relationships and clonal 

dynamics in complex tissues of vertebrates. In model organisms, most approaches to date 

rely on an engineered genetic label to tag individual cells with heritable marks (Kester and 

van Oudenaarden, 2018; Woodworth et al., 2017), such as fluorescent reporter genes, high 

diversity DNA barcode libraries, mobile transposable elements, Cre-mediated 

recombination, or CRISPR-based genetic scars (McKenna et al., 2016; Pei et al., 2017; Sun 

et al., 2014; Yu et al., 2016). Recent studies have combined several of these tracing methods 

with single cell RNA-seq (scRNA-seq) to interrogate both lineage relationships and cell 

states (Alemany et al., 2018; Montoro et al., 2018; Raj et al., 2018; Spanjaard et al., 2018).

However, the genetic manipulations required for such approaches cannot be applied in intact 

humans (Biasco et al., 2016). Limited lineage tracing studies in humans have relied on the 

detection of naturally occurring somatic mutations, including single nucleotide variants 

(SNVs), copy number variants (CNVs), and variation in short tandem repeat sequences 

(microsatellites or STRs), which are stably propagated to daughter cells, but are absent in 

distantly related cells (Ju et al., 2017; Lodato et al., 2015). Detection of nuclear somatic 

mutations by whole genome sequencing in individual cells remains costly, is difficult to 

apply at scale, and has substantial error rates (Biezuner et al., 2016; Chu et al., 2017; Tao et 

al., 2017; Zafar et al., 2017). Moreover, most methods have not been combined with 

approaches that provide information about cell type and state based on gene expression or 

epigenomic profiles. As a result, we have had a limited ability to study cellular dynamics in 

humans in health and disease.

We hypothesized that mitochondrial DNA (mtDNA) sequence variation could provide an 

innate and natural barcode from which to infer clonal relationships. This sequence variation 

has several promising attributes for its utility in clonal and lineage tracing. The 16.6 kb long 

genome provides a substantial target for genetic diversity, but is sufficiently small for cost-

effective sequencing. Although there is some variation in the measurements, mtDNA 

mutation rates are estimated to be 10- to 100-fold higher than for nuclear DNA (Biezuner et 

al., 2016; Kang et al., 2016; Li et al., 2014; Stewart and Chinnery, 2015). Mitochondrial 

genomes have high copy number (100s-1,000s), and mutations in mtDNA often reach high 

levels of heteroplasmy (proportion of mitochondrial genomes containing a specific 

mutation) due to a combination of vegetative segregation, random genetic drift, and relaxed 

replication (Figure 1A) (Elson et al., 2001; Stewart and Chinnery, 2015; Wallace and 

Chalkia, 2013). Indeed, the utility of mtDNA mutations for clone tracking has already been 

indirectly demonstrated in various tissues (Taylor et al., 2003; Teixeira et al., 2013).
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Critically, mtDNA sequences and genetic variation are detected by existing methods, 

including the single cell assay for transposase accessible chromatin-sequencing (scATAC-

seq) and single cell RNA-seq (scRNA-seq). While sequencing reads mapping to the 

mitochondrial genome are often treated as an experimental nuisance, we reasoned that they 

can open an opportunity to trace cellular hierarchies at scale. To demonstrate the utility of 

mtDNA variation for clonal tracing, we must show that heteroplasmic mtDNA mutations (1) 

can be reliably detected in single cells; (2) are propagated in daughter cells; (3) can be used 

to accurately determine clonal relationships; (4) can be combined with cell state 

measurements to learn meaningful biology; and (5) can be applied to study human samples.

Here, we investigate these properties, provide evidence that scRNA- and scATAC-seq 

provide reliable measurements of mtDNA genetic variation, and demonstrate how these 

mutations can be used as endogenous genetic barcodes to retrospectively infer cellular 

relationships in clonal mixtures of native hematopoietic cells, T lymphocytes, leukemia, and 

solid tumors.

Results

mtDNA genotyping with ATAC-seq allows accurate clone tracking and association with 
chromatin state

To test if mtDNA genotypes can correctly identify clonal relationships we performed a 

proof-of-principle experiment, where we derived and propagated sub-clones of the 

hematopoietic TF1 cell line (Figure 1B). We generated a “ground truth” experimental 

lineage tree of 65 individual sub-clonal populations over 8 generations (generation time ~3 

weeks between two consecutive bottlenecks) (Figure 1C). For each generation, we isolated 

single cells from the parental colony and expanded each clone to derive sub-clones in an 

iterative process. The original population and each expanded sub-clone were profiled by 

ATAC-seq, which captures the full mitochondrial genome as an unwanted by-product 

(Corces et al., 2017) (Figure S1A; Table S1). On average, the 16.6 kb mitochondrial genome 

was covered at 3,380-fold per million mapped reads. We determined high-confidence 

heteroplasmic mitochondrial genotypes with a computational variant-calling pipeline that 

utilizes individual per-base, per-allele base quality (BQ) scores and verified that our calls 

were reproducible across sequencing runs (Figures S1B,C; STAR Methods).

The large range of detected mutations included clone- and sub-clone-specific mutations that 

were propagated over generations (Figures 1D and S1D). Most mutations were C>T 

transitions, consistent with previous reports (Ju et al., 2014; Ni et al., 2015; Yuan et al., 

2017). Although some somatic mutations were shared among multiple first-generation 

clones and their progeny (e.g., Figure 1D 8003 C>T), nearly all progeny of an individual 

clone shared mutations that were unique and stably propagated over the course of the 

experiment (e.g., Figure 1D 15089 C>T, 1495 C>T, Figure S1D). Furthermore, we detected 

new somatic mutations that arose within subclones and were stably propagated (Figure 1D, 

2110 G>A, Figure S1D).

We used these high-confidence mtDNA mutations to reconstruct clonal relations with high 

accuracy (Figures 1E,F). Ordinal hierarchical clustering on individual samples grouped 
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nearly all (sub-)clones belonging to a single clonal family correctly (Figures 1C,E). 

Specifically, we accurately identified the most recent common ancestor (MRCA) at 96% 

between first-generation clones and 79% within sub-clones derived from first-generation 

clones (Figures 1F and S1E; STAR Methods). Moreover, we correctly inferred clonal 

contributions to heterogeneous bulk populations comprised of three clones at various 

concentrations (Figure S1F; STAR Methods).

We next paired mitochondrial genotypes with chromatin state information for each clone and 

identified differences in chromatin state that follow inferred clonal relationships. We 

approximated the pairwise clone-clone mitochondrial relatedness (Figure 1G; STAR-

Methods) and performed a random effects variance decomposition of each chromatin 

accessibility peak in our TF1 clones (Figure 1H), asking how “heritable” a chromatin feature 

is in a population. Of 91,607 peaks tested, 8,570 peaks were highly heritable (> 90% 

variance explained; Figures 1I and S1G). Overall, this demonstrates the utility of ATAC-seq 

for mtDNA genotyping to enable accurate clone tracing, while simultaneously providing 

information on cell state.

Successful detection of mtDNA heteroplasmy using single cell genomics

Because the mitochondrial genome is almost completely transcribed (Figure 2E), we 

hypothesized that heteroplasmic mitochondrial mutations might be detected by scRNA-seq. 

Across six scRNA-seq protocols (Ziegenhain et al., 2017), full length scRNA-seq methods 

showed more extensive coverage of the mtDNA genome than 3’ end directed scRNA-seq 

(Figures 2A and S2A,B). Importantly, there was a high concordance between heteroplasmic 

allele frequency estimates from scRNA-seq and whole genome sequencing from the same 

cell (Han et al., 2018) (Figure 2B). However, several highly heteroplasmic mutations were 

specific to mtRNA (Figure 2B): some likely reflect RNA-editing, including one that has 

been previously validated (2619 A>G) (Bar-Yaacov et al., 2013), but many others are 

observed at low frequencies (<20%) and reflect either RNA transcription errors or technical 

errors in scRNA-seq (Filbin et al., 2018; Venteicher et al., 2017).

We systematically compared our ability to detect clones from mtDNA mutations at various 

levels of heteroplasmy in three TF1 cell clones (Figure 2C: clones C9, D6, G10) using bulk 

and scATAC-seq, bulk and scRNA-seq (SMART-seq2), and a newly developed single cell 

mtDNA sequencing protocol based on rolling circle amplification (scMito-seq) (Figures 2C 

and S2C, STAR Methods) (Ni et al., 2015). We observed high concordance in the 

frequencies of RNA and DNA-derived mitochondrial genotypes across all methods (in 

addition to RNA-specific mutations, as described above) (Figures 2D and S2E). As 

expected, scATAC- and scMito-seq had more uniform and deeper coverage of the 

mitochondrial genome than SMART-seq2 (Figures 2E and S2D). Data from every method 

allowed us to detect the previously identified unique clonal allele for 95.4% (210/220) of 

cells and to accurately infer clonal relationships by hierarchical clustering (Figure 2F and 

S2F).
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Mitochondrial mutation clones match those from lentiviral barcoding

To compare mitochondrial mutations to an exogenous gold standard of clone detection, we 

used a lentiviral barcoding approach (Kester and van Oudenaarden, 2018; Woodworth et al., 

2017). We infected TF1 cells with a modified Perturb-seq lentiviral construct (Dixit et al., 

2016) expressing a mNeonGreen gene carrying a 30 bp random nucleotide sequence in its 

untranslated region (Figure S3A). We sorted 25 mNeonGreen+ cells and expanded them, 

followed by bulk ATAC-seq and scRNA-seq of 158 quality-controlled cells (Figure 3A). 

Notably, there was no correlation between the number or types of barcodes discovered and 

mitochondrial coverage (Figure S3B). The 158 cells included 15 informative barcodes that 

mapped cells to one of 11 non-overlapping groups (Figure S3A). To filter any artefactual 

mitochondrial mutations from scRNA-seq (Figures 2B, 3C and S2E, S6F,G), we restricted 

our analysis to the 20 variants that were present in the bulk ATAC-seq at allele frequencies > 

0.5% and which had high per-allele base quality scores in bulk and in the sum of single cells 

(Figures 3B,C, STAR-Methods).

Hierarchical clustering by these 20 mitochondrial mutations correctly inferred clonal 

structure in single cells in a comparable manner with gold-standard exogenous barcodes 

(Figure 3D). Of note, specific mutations were shared among a number of barcode groups 

(7790 G>C and 4038 T>A), suggesting these may reflect common sub-clonal structure in 

the original population. A cell-cell similarity matrix using a Pearson correlation distance 

metric of the 20 mutations (Figure 3E) effectively classified pairs of cells within the same 

barcode group (area under receiver operating characteristic curve (AUROC): 0.96; area 

under the precision recall curve (AUPRC): 0.84; Figures S3C,D). Cells that were most 

similar based upon mitochondrial genotypes correctly predicted shared barcode pairs in a 

trio analysis with 95% accuracy (Figure 3F). In this context, mitochondrial mutations 

provided a significantly more accurate measure of shared clonality than alterations in copy 

number variants (CNVs) inferred from scRNA-seq (Figures S3E,F).

mtDNA mutation diversity across human tissues

To assess the broader applicability of mitochondrial genotyping, we examined mtDNA 

mutations across diverse human tissues, similar to previous studies that have shown 

widespread inter- and intra-individual diversity of heteroplasmic mtDNA mutations (Li et 

al., 2015; Ye et al., 2014). We analyzed mitochondrial genotypes from bulk RNA-seq of 

8,820 individual samples in the GTEx project, spanning 49 tissues with at least 25 donors, as 

well as 462 donors with at least 10 tissues (Consortium et al., 2017) (Figure 4A; Table S2, 

STAR-Methods). There was significant variation in the proportion of mitochondrial reads 

mapping to the mitochondrial transcriptome across tissues, consistent with known 

differences in the absolute numbers of mitochondria and levels of mitochondrial gene 

expression in each tissue (Figures 4B,C and S4A). After stringent filtering to remove 

artifacts related to RNA-seq (STAR Methods), we identified 2,762 mutations that were 

tissue-specific within an individual donor at a minimum of 3% heteroplasmy (Figures 4D-G 

and S4B; Table S4), revealing a diverse spectrum of mutations. The majority of mutations 

were C>T (G>A) or T>C (A>G) transitions (Figure 4E), consistent with previous reports (Ju 

et al., 2014; Ni et al., 2015; Yuan et al., 2017).
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Each of the 49 tissues examined had at least one tissue specific mutation across all donors, 

only 28 non-polymorphic mutations were shared between any two tissues from any one 

donor (minimum heteroplasmy of 5%), and no non-polymorphic mutations were shared 

between three such tissues, indicating that these mutations arose somatically and in a tissue-

specific manner. However, this is likely an underestimate of the true extent of heteroplasmy 

at the level of individual cells, due to measurement of bulk populations (Kang et al., 2016). 

Most of the predicted deleterious mutations (STAR-Methods) did not show an appreciable 

difference in median heteroplasmy compared to the benign ones (Figures S4C,D), although 

high heteroplasmic (>20%) mutations were present at ~3.6- to 4.4-fold fewer than expected 

(Figures S4E,F). Of note, these levels are substantially below the estimated biochemical 

threshold of 60-90% heteroplasmy, where deleterious mtDNA mutations are generally 

thought to have an effect (Stewart and Chinnery, 2015). Thus, even predicted damaging 

mutations appear to be tolerated at heteroplasmy levels suitable for lineage tracing, although 

high-throughput functional studies of mtDNA mutation and large population genetic studies 

are needed to refine these definitions. Overall, this diversity of mitochondrial mutations 

within individual humans indicates that these can be leveraged to probe questions related to 

cellular relationships across a range of healthy tissues and cell types.

Stable propagation of diverse heteroplasmic mtDNA mutations in primary hematopoietic 
cells

We next tested if mtDNA mutations are clonally propagated in primary human cells. We 

plated CD34+ hematopoietic stem and progenitor cells (HSPCs) from two independent 

donors in semi-solid media, derived 65 erythroid and myeloid colonies, and profiled 8-16 

cells per colony by scRNA-seq for a total of 935 cells that passed quality metrics (Figure 

5A). Cells composing any individual colony are derived from a single, distinct 

hematopoietic progenitor cell. As expected, based on expression profiles, the cells 

partitioned into two major clusters, corresponding to erythroid and myeloid cells, consistent 

with colony morphology and irrespective of donor (Figures 5A-D and S5A,B). Conversely, 

the mtDNA mutation profile separates single cells according to their donor of origin, as well 

as their single cell-derived colony of origin based on highly heteroplasmic mutations 

(Figures 5E-G and S5A,B).

Supervised analysis shows that colony-specific mutations within each donor are faithfully 

propagated (Mann-Whitney U Test p-value < 10−10), a significant subset of which 

distinguishes most cells in each colony from all other cells from the same donor (Figures 
5H and S5C; Table S4). Specifically, we identified unique clonal mutations in 71% of 

colonies for donor 1 and 47% for donor 2, each detected at similar frequencies in at least 

80% of cells of the same colony (Figure S5F; STAR-Methods), although certain 

experimental challenges, such as mixing between adjacent colonies (Figures S5D,E) likely 

result in an underestimate. The extent of heteroplasmy varied considerably, including 

multiple mutations that nearly achieved homoplasmy (Figure 5I). We observed similar 

mutational diversity with bulk ATAC-seq of colonies similarly derived from two other 

donors (Figure S5H), and in 268 sorted phenotypic hematopoietic stem cells (HSC) from 

three additional donors from a published scATAC-seq study (Figure S5I) (Buenrostro et al., 

2018). Importantly, the colony-specific mitochondrial mutations do not overlap between 
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donors in the scRNA-seq analysis (Figure S5G) and show very limited overlap between 

donors in the scATAC-seq analysis (Figure S5J). Thus, adult human HSPCs show a large 

spectrum of mtDNA mutational diversity and these mutations are stably propagated in 

daughter cells at a level that allows for lineage or clonal tracing studies of in vivo human 

hematopoiesis.

mtDNA mutations from scRNA-seq and scATAC-seq allow inference of clonal structure in 
primary human cells

To assess our ability to accurately infer clonal structures in complex primary human cell 

populations, we obtained 30 primary CD34+ HSPCs from donor 2, expanded them into a 

single large population over 10 days, and processed cells by bulk ATAC-seq and either 

scATAC- or scRNA-seq (Figures 6A and S6A). We used probabilistic k-medoids clustering 

of these mtDNA mutation profiles to cluster individual cells (STAR Methods). Our 

clustering assigned cells with high-confidence to 10 clusters consisting of 3-36 cells per 

cluster, with cells in each cluster sharing one or two heteroplasmic mutations at comparable 

frequencies (Figures 6B and S6E), consistent with expectations under a simulated setting 

(Figure S6C, STAR-Methods). Notably, when all RNA-based mtDNA mutations (including 

the artefactual variants) were included, we could not readily discern clusters (Figures 

S6F,G). Applying this approach to cells with mtDNA mutations called from scATAC-seq, 

we were similarly able to assign 95 of 148 cells (64%) to 9 different clusters (Figures 6C 

and S6B,D,H) and identify clone-specific regions of open chromatin (Figure 6D, STAR-

Methods).

Somatic mtDNA mutations are consistent with and further refine human T lymphocyte 
clones defined by TCR rearrangements

As a test of the ability of mtDNA mutations to correctly resolve human cell clones in vivo, 
we turned to T lymphocytes, where T cell receptor (TCR) rearrangements are frequently 

used as natural markers of clonality. We applied our method to tumor-infiltrating T 

lymphocytes from human lung and liver cancers (Guo et al., 2018; Zheng et al., 2017a). 

Supervised analysis of T lymphocytes sharing a unique TCR sequence revealed shared 

specific mtDNA mutations that were absent from other T lymphocytes (Figure 6E). In some 

instances, mtDNA mutations in T lymphocytes with the same TCR rearrangement further 

classified cells into subpopulations (Figure 6F). These mutations may have arisen after TCR 

rearrangement as subpopulations underwent stimulation and proliferation, or the TCR may 

have developed independently from clonally distinct T lymphocyte progenitor cells. 

Moreover, some mtDNA mutations were shared across T lymphocytes with unique TCR 

sequences, suggesting they shared a common ancestor prior to V(D)J recombination (Figure 

6G). These findings further demonstrate that mtDNA mutations are reliable clonal markers 

in vivo.

Somatic mtDNA mutations reveal subclonal structure in primary human colorectal cancer

To test our approach in solid tissues and tumors, we analyzed EPCAM+ cells from a 

colorectal adenocarcinoma primary tumor resection by bulk ATAC-seq and scRNA-seq 

(Figure 7A). To derive the non-cancer mtDNA genotype, we processed EPCAM+ cells from 
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two adjacent, presumed healthy sites by bulk ATAC-seq. We identified 11 mtDNA mutations 

specific to the tumor and absent in adjacent healthy tissue (Figure 7B). Across 238 cells 

from the tumor sample, we were able to partition 107 cells (45%) into 12 distinct clusters by 

mtDNA mutations (Figures 7B,C and S7A), suggesting the presence of clonal 

heterogeneity. We annotated the clusters by known markers of colonic epithelial cells 

(Figures 7D,E and S7A-C) (Dalerba et al., 2011). Of note, 28/30 (93%) of the tumor cells 

expressing the stem cell marker LGR5 shared the 9000 T>C mutation (Figures 7D,F). 

Expression of the proliferation marker MKI67 was particularly high in these cells, 

potentially explaining the large contribution of this population to the tumor tissue (Figures 

7E,F).

Somatic mtDNA mutations as stable clonal markers in CML in humans in vivo

To further validate the utility of our approach in vivo, we focused on chronic myelogenous 

leukemia (CML). Using our mitochondrial genotyping pipeline we analyzed scRNA-seq 

data from 2,145 cells profiled across 49 samples from 31 CML patients, collected at the time 

of diagnosis, when CML clones predominate, and at 3 and 6 months of therapy, when 

malignant clones are expected to decrease in frequency relative to benign HSPCs 

(Giustacchini et al., 2017). Since neither bulk ATAC-seq, nor DNA-seq were available, we 

applied particularly conservative quality thresholds (STAR Methods).

The mitochondrial genotypes robustly separated donors by unsupervised analysis (Figures 
7G and S7D,J), consistent with our observations of mtDNA variation across humans (Figure 

4), and, in some patients, further partitioned cells in a manner consistent with disease stage 

(Figures 7H,I and S7E,F). In one striking example, three heteroplasmic mtDNA mutations 

were nearly exclusive to BCR-ABL positive cells, but absent in non-leukemic cells from the 

same donor (Figure 7J). Importantly, integration of these mtDNA mutations appears to 

improve stratification of malignant cells vs. benign cells compared to the BCR-ABL 

genotyping assay alone, resulting in 100% concordance with transcriptional signatures 

(Figure 7K, boxed cells). Interestingly, although the frequency of BCR-ABL positive cells 

decreased with treatment (compare cells in cluster 1 and 2 to cells in cluster 3), one 

mitochondrial mutation (6506 T>C) present in the majority of BCR-ABL positive cells at 

diagnosis continued to mark BCR-ABL positive cells post-treatment, thereby validating the 

stable propagation of mtDNA mutations over extended periods of time in vivo (Figure 7K). 

On the other hand, BCR-ABL positive cells with the 4824 T>C mutation (that also harbor 

the 6506 T>C mutation) were depleted, implying that this subclone was likely more 

susceptible to therapy.

Unsupervised clustering by expression profiles partitioned this patient’s cells into three 

clusters. Clusters 1 and 2 were comprised of cells from the initial sample at diagnosis, but 

separated by BCR-ABL status as well as by mitochondrial genotype. Cluster 3 was 

comprised of cells obtained 3 and 6 months after the start of treatment (Figure 7K). 

Differential expression analysis of Cluster 1 cells stratified by the 4824 T>C mutation status 

(Figure 7L) identified the induction of PDIA6, a gene implicated in cancer cell proliferation 

(Gao et al., 2016), in cells lacking the mutation, suggesting that it may be associated with 

the observed variation in sub-clone frequencies. Thus, mitochondrial genetic analysis can 
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improve stratification of malignant cells and enhance understanding of clonal evolution and 

therapy resistance.

In vivo chimerism inferred from mtDNA mutations

Mitochondrial genotyping has the potential to allow efficient tracking of donor and recipient 

chimerism during HSC transplantation (HSCT). We analyzed scRNA-seq profiles of 

peripheral blood mononuclear cells (PBMCs) from an AML patient before and after HSCT, 

which were profiled with 3’ directed massively parallel scRNA-seq (Zheng et al., 2017b). 

Although such approaches have substantially reduced coverage of mtDNA (Figures S2A 

and S7G,H), we reasoned that a small number of homoplasmic mutations should be 

detectable. Indeed, our analysis revealed two homoplasmic mitochondrial alleles 

distinguishing the donor and recipient cells (Figure 7M), and inferred that ~99.6% of cells 

sampled post-transplant were donor-derived, but four recipient cells were still present. These 

results demonstrate the potential of using mitochondrial mutations to measure the dynamics 

of donor chimerism in transplantation settings. Such approaches may demonstrate even 

greater sensitivity in conjunction with currently employed approaches (Kang et al., 2018; 

Zheng et al., 2017b).

Discussion

Here, we describe an approach for high-throughput and unsupervised tracing of cellular 

clones and their states at single cell resolution in native human cells by mtDNA mutation 

detection. This approach is likely to be broadly useful and immediately applicable, since 

mtDNA mutations can be readily detected by commonly employed single cell genomic 

methods, including scRNA-seq and scATAC-seq, which concomitantly provide readouts of 

cell state. We show that somatic mtDNA mutations with levels as low as 5% heteroplasmy 

can be stably propagated and serve as clonal markers in primary human cells. We 

additionally provide an improved mutation detection framework, where mutations are first 

identified based on a DNA-based bulk sample (lower threshold 0.5%), and then called in 

scRNA-seq data, allowing for accurate mutation detection in RNA-based measurements. 

Overall, in our validation experiments, mitochondrial genotypes correctly inferred clonal 

lineage with ~95% accuracy (Figures 1–3), achieving similar accuracy as widely applied 

genetic labeling methods.

Our approach has three key advantages: (1) it is highly scalable; (2) it is directly applicable 

to human tissues; and (3) it is combined with assays to profile a cell’s state at the chromatin 

or transcriptome level. Conversely, single cell whole genome sequencing can be applied in 

human tissues, but is neither scalable nor combined with a functional state profile, whereas 

exogenous genetic barcoding cannot be applied to native human samples. For example, 

~18,000 individual cells’ mitochondrial genomes can be sequenced at 100-fold coverage for 

the sequencing cost of a single nuclear genome at 10-fold coverage, a depth not sufficient for 

confident mutation calling (Lodato et al., 2015).

Our approach can be further enhanced in several ways. First, additional assays devised to 

focus on directly measuring mitochondrial genomes can reduce cost and increase coverage 

(Figure S2D). For example, we developed a scMito-seq protocol (Figure S2C), potentially 
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providing a higher fidelity of mitochondrial mutation detection based on rolling-circle 

amplification (Ni et al., 2015) that could be also used in combination with scRNA-seq 

(Macaulay et al., 2015). Currently, massively parallel scRNA-seq data from droplet based 

approaches have limited coverage of the mitochondrial genome (Figures S2A and S7G,H), 

restricting their immediate utility and application, though a combined enrichment and 

capture of mitochondrial transcripts could improve this approach (Dixit et al., 2016; 

Zemmour et al., 2018). Finally, mtDNA sequencing could be combined with nuclear DNA 

sequencing strategies to detect SNVs, CNVs, and microsatellites to further increase the 

fidelity and reach of current single cell clonal tracing applications.

One potential limitation with using mtDNA mutations for clone detection or lineage 

inference may arise from the horizontal transfer of mitochondria between cells, which has 

been described in specific contexts, but the extent and physiologic relevance of such a 

process remains unclear. The transfer of organelles appears to be primarily triggered by 

various stress responses, is restricted to specific cell types, and can be a feature of malignant 

cells, but the extent of organelle transfer appears to be limited (Caicedo et al., 2015; 

Griessinger et al., 2017; Marlein et al., 2017; Moschoi et al., 2016; Torralba et al., 2016). 

Moreover, such transfer would have to be extensive to significantly confound the analysis 

(Figure S7I) and we have been unable to detect evidence of such transfer in our data 

(Figures 3, 6, 7J,K and 7M). Another limitation is that we are currently unable to account 

for phenotypic effects of the mtDNA mutations used for clonal tracing. Although most 

mutations likely have at most small effects at the heteroplasmy levels investigated here, 

accurate maps of allele heteroplasmy and cellular function will be an important area for 

further investigation.

Overall, we show that measuring somatic mitochondrial mutations provides a powerful and 

scalable approach to assess cellular dynamics of native human cells. Mitochondrial 

mutations readouts are readily compatible with single cell measurements of cell state to 

provide a potent means to relate stem and progenitor cells with their differentiated progeny 

that should facilitate probing the molecular circuits that underlie cell fate decisions in health 

and disease. Clonal tracking using mitochondrial mutations opens up a novel avenue to infer 

critically needed relationships in large-scale efforts, such as the Human Cell Atlas or in 

tumor cell atlases, to better understand the mechanics of homeostasis and development 

across a reference map of human tissues (Regev et al., 2017).

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information or reagents should be directed to Lead Contact, Vijay G. 

Sankaran (sankaran@broadinstitute.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TF1 Cell Culture—TF1 cells (ATCC) were maintained in Roswell Park Memorial Institute 

Medium (RPMI) 1640, 10% fetal bovine serum (FBS), 2mM L-Glutamine and 2ng/ml 

recombinant human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) 
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(Peprotech) and incubated at 37°C and 5% CO2. 293T cells (ATCC) were maintained in 

Dulbecco’s Modified Eagle Medium-High Glucose (DMEM), 10% fetal bovine serum 

(FBS), and 2mM L-Glutamine and incubated at 37°C and 5% CO2.

Primary Cell Culture and methylcellulose colony assays—CD34+ hematopoietic 

stem and progenitor cells were obtained from the Fred Hutchinson Hematopoietic Cell 

Processing and Repository (Seattle, USA) and were cultured in StemSpan II with 1× CC100 

(Stemcell Technologies) at 37°C and 5% CO2. For methylcellulose colony assays, 500 cells 

per ml were plated in MethoCult H4034 Optimum (Stemcell Technologies) according to the 

manufacturer’s instructions. Individual colonies were picked at day 10 or 12 after plating for 

single cell sorting.

Human colorectal cancer specimen—Primary untreated colorectal tumor and adjacent 

non-neoplastic tissue were surgically resected from a 75-year-old male patient with 

pathologically diagnosed colorectal adenocarcinoma at Massachusetts General Hospital. 

Written informed consent for tissue collection was provided in compliance with IRB 

regulations (IRB compliance protocol number 02-240. Broad Institute ORSP project number 

ORSP-1702).

METHOD DETAILS

Lentiviral barcoding of TF1 cells—TF1 cells were infected with a modified Perturb-seq 

lentiviral construct (Dixit et al., 2016) expressing a mNeonGreen gene carrying a 30bp 

random nucleotide sequence in its untranslated region (Figure S3A). For production of 

lentiviruses, 293T cells were transfected with the appropriate viral packaging and genomic 

vectors (pVSV-G and pDelta8.9) using FuGene 6 reagent (Promega) according to the 

manufacturer’s protocol. The medium was changed the day after transfection to RPMI 1640 

supplemented with 10% FBS, L-Glutamine and Penicillin/Streptomycin. After 24h, this 

medium was collected and filtered using an 0.22-μm filter immediately before infection of 

TF1 cells. The cells were mixed with viral supernatant in the presence of 8 μg/ml polybrene 

(Millipore) in a 6-well plate at a density of ~300,000 cells per well. The cells were spun at 

2,000 r.p.m. for 90 min at 22 °C and left in viral supernatant overnight. The medium was 

replaced the morning after infection. Twenty-five barcoded mNeonGreen+ cells were sorted 

at day 3 post infection and expanded for 11 days before processing using a combination of 

bulk ATAC-seq and scRNA-seq.

Single cell sorting—Single cells were sorted into 96 well plates using the Sony SH800 

sorter with a 100μm chip at the Broad Institute Flow Cytometry Facility. Sytox Blue 

(ThermoFisher) was used for live/ dead cell discrimination. For scRNA-seq, plates were 

spun immediately after sorting and frozen on dry ice and stored at −80°C until further 

processing.

Bulk ATAC-seq—For ATAC-seq library preparations 5,000-10,000 cells were washed in 

PBS, pelleted by centrifugation and lysed and tagmented in 1× TD buffer, 2.5μl Tn5 

(Illumina), 0.1 % NP40, 0.3× PBS in a 50μl reaction volume as described (Corces et al., 

2017). Samples were incubated at 37°C for 30min at 300rpm. Tagmented DNA was purified 
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using the MinElute PCR kit (Qiagen). The complete eluate underwent PCR, as follows. 

After initial extension, 5 cycles of pre-amplification using indexed primers and NEBNext® 

High-Fidelity 2× PCR Master Mix (NEB) were conducted, before the number of additional 

cycles was assessed by quantitative PCR using SYBR Green. Typically, 5-8 additional 

cycles were run. The final library was purified using a MinElute PCR kit (Qiagen) and 

quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High Sensitivity DNA chip 

run on a Bioanalyzer 2100 system (Agilent).

Single cell ATAC-seq—The C1 Fluidigm platform using C1 single cell Auto Prep IFC for 

Open App and Open App Reagent Kit were used for the preparation of single cell ATAC-seq 

libraries as previously described (Buenrostro et al., 2015). Briefly, cells were washed and 

loaded at 350 cells/μl. Successful cell capture was monitored using a bright-field Nikon 

microscope and was typically >85%. Lysis and tagmentation reaction and 8 cycles of PCR 

were run on chip, followed by 13 cycles off chip using custom index primers and NEBNext® 

High-Fidelity 2× PCR Master Mix (NEB). Individual libraries were pooled and purified 

using the MinElute PCR kit (Qiagen) and quantified using a Qubit dsDNA HS Assay kit 

(Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).

Bulk RNA-seq—Cells were lysed in RLT or TCL lysis buffer (Qiagen) supplemented with 

beta-mercaptoethanol and RNA was isolated using a RNeasy Micro kit (Qiagen) according 

to the manufacturer’s instructions. An on-column DNase digestion was performed before 

RNA was quantified using a Qubit RNA HS Assay kit (Invitrogen). 1-10ng of RNA were 

used as input to a modified SMART-seq2 (Picelli et al., 2014) protocol and after reverse 

transcription, 8 cycles of PCR were used to amplify transcriptome library. Quality of whole 

transcriptome libraries was validated using a High Sensitivity DNA Chip run on a 

Bioanalyzer 2100 system (Agilent), followed by library preparation using the Nextera XT 

kit (Illumina) and custom index primers according to the manufacturer’s instructions. Final 

libraries were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a High 

Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).

Single cell RNA-seq—Single cells were sorted into 5μl TCL lysis buffer (Qiagen) 

supplemented with 1% beta-Mercaptoethanol. RNA isolation, reverse transcription and PCR 

were conducted as described using a modified SMART-seq2 protocol (Picelli et al., 2014; 

Villani et al., 2017). Quality control and library preparation were conducted as described 

above.

Single cell Mito-seq—Single cells were sorted in to 5 μl TCL lysis buffer (Qiagen) 

supplemented with 1% beta-mercaptoethanol. DNA was isolated with AMPure XP beads 

(Beckman Coulter) and the REPLI-g Mitochondrial DNA kit (Qiagen) was used for 

amplification at 33°C for 8h in a 16.5μl reaction volume. Amplified DNA was cleaned up 

with AMPure XP beads (Beckman Coulter), quantified using a Qubit dsDNA HS Assay kit 

(Invitrogen) and library preparation was performed using the Nextera XT kit (Illumina) 

using custom index primers according to the manufacturer’s instructions.

Processing of human colorectal cancer and adjacent healthy tissues—Fresh 

tissue was collected into RPMI 1640 medium supplemented with 2% human serum (Sigma), 
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cut into 1 mm2 pieces, and enzymatically digested for 20min at 37°C using the Human 

Tumor Dissociation Kit (Miltenyi Biotec) in the presence of 10μM ROCK inhibitor Y-2763 

(Sigma). Cell suspension was passed through 70μm cell strainers and centrifuged for 7min at 

450g at 4°C. Supernatant was removed and cells were subject to ACK Lysing Buffer (Life 

Technologies) for 2min on ice, centrifuged for 7min at 450 g at 4°C, and resuspended in 

RPMI 1640 supplemented with 2% human serum (Sigma). The single cell suspension was 

stained with Zombie Violet in PBS (Invitrogen) for 10min on ice and subsequently with 

antibodies against human CD326, CD45, and CD235a (Biolegend) in RPMI 1640 medium 

supplemented with 1% human serum in the presence of 10μM Y-2763 for 15 min on ice. 

Zombie Violet− CD235a− CD45− CD326+ cells were bulk sorted into 1.5ml Eppendorf tube 

containing 1× TD buffer, 2.5μl Tn5 (Illumina), 0.1 % NP40, 0.3× PBS in a 50μl reaction 

volume for ATAC-seq as described above. Using the identical gating scheme, single cells 

were sorted into Eppendorf twin-tec PCR plates containing 10μl TCL lysis buffer (Qiagen) 

supplemented with 1% beta-Mercaptoethanol and processed for scRNAseq as described 

above.

Sequencing—All libraries were sequenced using Nextseq High Output Cartridge kits and 

a Nextseq 500 sequencer (Illumina). Libraries were sequenced paired-end (2× 38 or 2× 75 

cycles).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing and read alignment—For each sequencing library generated in this 

study (Figures 1, 2D-F, 3, 5, 6A-D, and 7A-F), libraries were sequenced on an Illumina 

NextSeq 500 and demultiplexed using the bcl2fastq program. For each library, raw .fastq 

reads were aligned using either Bowtie2 version 2.3.3 (ATAC-seq and Mito-seq) (Langmead 

and Salzberg, 2012) or STAR version 2.5.1b (RNA-seq) (Dobin et al., 2013) to the hg19 

reference genome. For the mESC scRNA-seq coverage comparison (Figure 2A), reads from 

the published dataset (Ziegenhain et al., 2017) were aligned to the mm10 reference genome.

RNA-seq and scRNA-seq transcript counts were computed using STAR’s “--quantModes 

GeneCounts” flag using the Gencode 19 release .gtf file.

For the published droplet based scRNA-Seq (10× Genomics) AML dataset (Zheng et al., 

2017b), processed .bam files (aligned to GRCh37) were downloaded from the public 

downloads page on the 10× website [https://support.10xgenomics.com/single-cell-gene-

expression/datasets].

Raw .fastq files for public RNA-seq and scRNA-seq data were downloaded from the Gene 

Expression Omnibus (GEO), European Nucleotide Archieve (ENA), the database of 

Genotypes and Phenotypes (dbGaP) resources or European Genome-Phenome Archive 

(EGA), as follows:
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Table S5.

Description of public datasets analyzed in this manuscript.

Dataset Resource Accession Figure (s)

mESC scRNA-seq GEO GSE75790 Fig. 2A

SIDR scDNA/RNA-seq ENA PRJEB20143 Fig. 2B

GTEx dbGAP phs000424.v7.p2 Fig. 4

T lymphocytes scRNA-seq EGA EGAS00001002072, EGAS00001002430 Fig. 6E-G

CML scRNA-seq GEO GSE76312 Fig. 7G-L

AML scRNA-seq 10× Genomics 10× Website (Public) Fig. 7M

Only previously aligned and processed data for the AML 10× data was downloaded in 

the .bam format.

Mitochondrial genotyping—For each sequencing sample, per-base, per-allele counts 

were determined using a custom Python script that imported aligned .bam files using the 

pysam module (https://github.com/pysam-developers/pysam). Raw reads were filtered such 

that they had an alignment quality of 30 and were uniquely mapping to only the 

mitochondrial genome. The mean base-quality score was computed per-base, per-allele for 

each sample for quality control. At a given mitochondrial genome position x, the allele 

frequency (AF) of a base b was computed using the number of reads R supporting that 

particular base at position x:

AFx, b =
Rb

∑b ∈ A, C, G, T Rb
,

where Σb∊{A,C,G,T} Rb is the coverage of a given position x.

Variant quality control and filtering—To remove variants whose inferred heteroplasmy 

may reflect sequencing errors, we examined the distribution of per-base, per-allele base-

quality scores, noting a clear pattern of high quality and low-quality variants (Figure S1C). 

To determine high quality variants, we fit a mixture of three Gaussian distributions (Figure 

S1C, labeled by different colors), and filtered such that only alleles that had >99% 

probability of belonging to the blue (largest mean BQ) Gaussian were retained. This 

conservative empirical threshold for a BQ cutoff was determined to be 23.8 based on this 

mixture model approach (Figure S1C, vertical dotted line).

As one poorly quantified position allele would affect the estimates for all other alleles at the 

specific position, we filtered positions that contained one or more alleles with a BQ less than 

the empirical threshold unless the allele had a non-significant (i.e., less than 1 in 500) effect 

on heteroplasmy. In total, we called 44 high-quality variants across our TF1 (sub-)clones 

(Figure S1D) that were present at a minimum of 2.5% heteroplasmy in at least one sample. 

Throughout the study, we observed a preponderance of C>T, T>C, G>A, and A>G 

mutations (transitions), consistent with previous reports (Ju et al., 2014; Ni et al., 2015; 
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Yuan et al., 2017). Of note, we used bulk ATAC-seq to nominate high-quality variants across 

three other hematopoietic cell lines (GM12878, K562, and Jurkat) and observed 29-64 

heteroplasmic mutations per line, suggesting our inferences in Figures 1–3 would generalize 

to other cell lines.

Mitochondrial distance matrix—As input to the variance components models (Figure 

1G), we computed a mitochondrial relatedness matrix Kmito = 1 − D, where D is a 

symmetric, pairwise distance matrix whose elements encode the distance between pairs of 

cells or clones based on the differences in their respective allele frequencies. We define D 
for pairs of observations i,j over high-quality variants x ∊ X using the matrix of allele 

frequencies (AF) and coverage frequencies (C), such that only variants sufficiently well-

covered (minimum # of reads at the position > 100) are included. Explicitly, we define the 

mitochondrial distance between observations i,j using the distance di,j as follows:

di, j =
Σx AFx, i − AFx, j ∗ (1Cx, i > 100 ∗ 1Cx, j > 100)

Σx (1Cx, i > 100 ∗ 1Cx, j > 100)

where 1 is the indicator function. Intuitively, this representation of mitochondrial distance 

simultaneously accounts for variation in rare heteroplasmy (through the square root 

transformation) and only compares pairs of cells by their high-confidence variants. We note 

that the square root transformation yields a one-to-one mapping of allele frequencies and 

provides relative weight to variants whose allele frequencies are very close to zero.

For the bulk ATAC-seq of TF1 (sub-)clones analyzed in Figure 1, all quality-controlled 

variants passed the coverage requirement; however, the additional indicator functions for 

coverage were necessary for subsequent single cells experiments.

For the hierarchical clustering of the TF1 lineage cells, we used a modified mitochondrial 

distance metric computed from the Pearson correlation distance. Intuitively, this metric is 

less dependent on the absolute values of the variant heteroplasmy. We note that while an 

ideal tree reconstruction algorithm would facilitate the inclusion of internal nodes, we found 

no such algorithms readily available, as most tree reconstruction approaches do not allow for 

internal observations. Further, we did not pursue the development of such approaches here.

Variance components model—To determine the proportion of the variance of 

chromatin accessibility that could be explained by the mitochondrial lineage in each peak, 

we performed a variance decomposition using a random effects model (Figure 1H). Briefly, 

the chromatin accessibility counts measured from ATAC-seq for 91,607 accessibility peaks 

were summed, centered, and scaled for each sample. We then estimated for each peak the 

proportion of variance explained due to the random variance component (σe
2) and due to the 

variance component from the sample-sample structure inferred by the mitochondrial 

genotype (σm
2 ), using average information restricted maximum likelihood (AIREML). 

Explicitly, our model for the variance of chromatin accessibility account for an individual 

peak is:
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Peak Accessibility ∼ N(0, σm
2 Kmito + σe

2I)

and the proportion of the variance explained by the mitochondrial structure then is the ratio 

of σm
2  over the total variation:

σm
2

σm
2 + σe

2

The proportion of the variance explained by the mtDNA mutation substructure is shown for 

each peak in Figure S1G alongside an analogous calculation, where the substructure is only 

defined by a binary indicator of clonal membership for pairs of samples.

Most Common Recent Ancestor (MRCA) analysis—To determine our ability to 

accurately reconstruct the experimental lineage in Figure 1 by mitochondrial mutations, we 

determined the proportion of correctly identified Most-Recent Common Ancestors (MRCA) 

for trios of (sub-)clones, similar to an approach recently reported by Biezuner et al. 

(Biezuner et al., 2016). For any given set of three samples in the predicted tree (e.g. A, C, 

and D; in Figure S1E), three possible arrangements are possible: (1) A and C share an 

MRCA compared to D; (2) C and D share an MRCA compared to A; or (3) A and D share 

an MRCA compared to C. Given the true experimental lineage tree (in this example, 

arrangement 2), we determined whether or not our reconstructed lineage correctly identified 

the MRCA. Thus, by chance, a random tree reconstruction would be 33% accurate. Here, we 

distinguish comparisons within-clone (e.g., B,C,D in Figure S1E) or between clones (e.g. 

A,C,D) and demonstrate that our tree reconstruction significantly outperforms what is 

expected by chance in both settings.

Clonal mixture deconvolution (TF1 clones)—To demonstrate that clonal mixtures can 

be deconvoluted, we mixed our second-generation clones in known proportions and inferred 

these proportions from the mitochondrial genotype of the mixture. For two known mixture 

fractions (Figure S1F), we genotyped each mixed sample with bulk ATAC-seq and then used 

the second-generation allele frequencies to infer each mixture, by fitting a support vector 

regression model to estimate the mixing proportions, in a manner analogous to CIBERSORT 

(Newman et al., 2015). As shown in Figure S1F, the average deviation of the inferred and 

true mixing proportions are 1.7% and 3.0%, demonstrating that a priori defined genotypes 

can be used to approximate the contributions of complex mixtures.

Comparison of scRNA-seq methods—To compare mitochondrial coverage with 

different scRNA-seq methods, we downloaded a dataset of 583 scRNA-seq profiles from 

mouse embryonic stem cell (mESC) (Ziegenhain et al., 2017). Reads were aligned to the 

mm10 reference genome using STAR. Per-base pair coverage estimates were computed for 

each single cell using reads uniquely mapping to the mitochondrial genome.
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To verify that heteroplasmic variants were expressed at a comparable frequency as these 

heteroplasmies in DNA, we downloaded 38 high-quality profiles, where both mitochondrial 

genome and transcriptome were available (Han et al., 2018). Reads from mtDNA and RNA 

were aligned as described above to the hg19 reference genome, using Bowtie2 and STAR, 

respectively, and heteroplasmic allele frequencies were plotted for variants with at least 50 

reads covering the locus in both RNA and DNA both with a minimum BQ score of 20 in the 

same cell.

Comparison of scRNA-Seq, scATAC-Seq and scMito-Seq (TF1 clones)—To 

compare given single cell profiling methods to the corresponding bulk method or to other 

single cell and bulk methods, we summed all raw allele counts for high-quality cells 

(minimum of 100× mitochondrial genome coverage). We performed such comparisons for 

nine characterized, clone-specific heteroplamsic variants (Figure S2F) and for variants 

identified as RNA-specific (Figure 2D). We further plotted the allele frequency comparing 

the two technologies for heteroplasmic variants, revealing concordance across all the 

technologies (Figure S2E).

Validation of clonal mutations in single cells using lentiviral barcoding—To 

detect barcodes in TF1 scRNA-seq libraries, we appended a 221 base pair “chromosome” to 

the standard STAR hg19 reference genome where the 30bp random sequence was soft-

masked. Custom Python scripts determined reads uniquely aligning to the lentiviral 

construct that overlapped the random 30bp barcode. From the 20 mutations nominated in 

Figure 3C, a cell-cell distance metric was computed from the Pearson correlation of the 

square root of the heteroplasmy matrix. This metric was similarly used for the MRCA 

analysis as described for Figure 1. For each pair of cells, we used the group designation from 

the lentiviral barcode assignment as a binary classifier and the mitochondrial distance metric 

as a diagnostic metric of cell-cell similarly to compute receiver operating characteristics.

CNV calling for lentivirally barcoded TF1 cells—Copy number variation (CNV) was 

determined using the InferCNV tool run using the default settings (Patel et al., 2014). We 

modified the main script to return the cell-cell distance matrix computed before performing 

the default hierarchical clustering. This cell-cell distance matrix (computed over the CNV 

bins) was used as input to our MRCA computation.

GTEx analyses—Raw .fastq files were downloaded from dbGAP as noted above for 

nearly 10,000 samples sequenced on Illumina Hi-Seq with 75bp paired-end reads. We 

retained 8,820 samples belonging to one of 49 tissues that had at least 25 total samples, from 

individuals with at least 10 tissues, and with mean mitochondrial genome coverage of 

1000×. We define a “tissue specific mutation” (Figures 4D,F,G) for a given mitochondrial 

variant if the variant is present at least at 3% heteroplasmy (or more where indicated) in an 

individual tissue but no more than 0.5% (within our margin of error for bulk RNA-seq) in 

any of the other tissues for a specific donor. We removed mutations that occurred within a 

given tissue in more than 10 individuals to exclude the possibility of tissue-specific 

mitochondrial RNA-editing events. While the noise in the RNA-seq assay inherently leads to 

more false positives and less certainty in the heteroplasmy estimation, our procedure of 
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comparing heteroplamsic values against other tissues within a donor provides a conservative 

means toward identifying putative somatic mutations that arose during development or 

homeostasis.

To compute the expected number of pathogenic and damaging mutations (Figures S4E,F), 

we multiplied the number of loci that were observed above a defined heteroplasmy threshold 

(e.g., 20%) by the rate at which damaging or pathogenic mutations occur in the 

mitochondrial genome.

Dimensionality reduction using mRNA expression profiles or mitochondrial 
genotypes—We performed a t-stochastic neighbor embedding (t-SNE) of the cells by 

either their expression or mitochondrial genotype profiles (Figures 5 and S5). First, we 

identified a set of 935 high quality scRNA-seq profiles that (1) have at least 500 genes 

detected, (2) had a total count of at least 2,000 across expressed genes, and (3) had a mean 

mitochondrial genome coverage of at least 100×. For dimensionality reduction by expression 

profiles, we first batch-corrected a log counts-per-million matrix of gene expression values 

using sva (Leek et al., 2012) and used the top 10 principal components for our t-SNE. For 

the dimensionality reduction by mitochondrial genotype profiles, we used all variants with a 

mean BQ score of 25 present at a heteroplasmy of at least 0.5% in our population of cells 

and similarly computed t-SNE coordinates using the top 10 principal components of the 

heteroplasmy matrix. We observed no significant batch effect in the mitochondrial allele 

frequencies.

Supervised identification of colony and cell-specific mutations in 
hematopoietic cells—To identify mutations that effectively separate individual colonies 

in donors 1 and 2 (Figures 5 and S5), we searched for mutations present at a minimum of 

80% of cells within a colony, at a minimum heteroplasmy of 5%, but are not present at 

greater than 5% heteroplasmy in more than two cells from all the other colonies together.

To identify mutations that separate individual bulk ATAC colonies (donor 3 and 4), we 

searched for mutations that were present at a heteroplasmy > 5% in a particular colony but 

absent (< 0.5% heteroplasmy) in all other colonies.

To identify cell-specific mutations in FACS-sorted HSCs (donors 5, 6, and 7), we searched 

for mutations that were present at > 5% heteroplasmy for a particular cell, but otherwise 

absent (< 0.5%) in all other cells for a specific donor.

Separation of clonal mixtures of CD34+ HSPCs—For the analysis of CD34+ HSPCs, 

we identified variants that had a mean BQ score of at least 20 for both the sum of single cells 

and the bulk ATAC-seq and were detected in bulk at a heteroplasmy of at least 0.5%. This 

identified 14 for scRNA- (Figure S6A) and 16 high quality variants for scATAC-seq (Figure 

S6B).

Using these variants and cells passing filter (minimum average mitochondrial genome 

coverage of 100×), we performed a fuzzy k-medoids clustering and assigned a cell to a 

cluster if it had an assignment probability greater than 95% and left it unassigned otherwise. 
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We identified 9 clusters for scATAC-seq and 10 for scRNA-seq that corresponded directly to 

one or more mutations (Figures 6B,C). While other cells showed evidence of mutations, 

these occurred at lower heteroplasmy values than the frequencies for cells assigned to the 

group (Figures S6E,H).

Simulated density of assignment—To verify that our probabilistic cluster was within 

the range of expectation, we performed a simulation study by parameterizing attributions of 

our mixing experiment (Figures S6C,D). Specifically, for each of the 30 input CD34+ cells, 

we simulated a proportion of the specific cell in the final population pi, i ∊ {1,…,30}, using 

a Beta distribution:

pi ∼ Beta(1, 29)

In expectation, the proportion in the terminal cell populations would be 1/30, consistent with 

the expectation of the draw from the Beta distribution. From this vector of population 

proportions p, we simulate the number of cells N sampled from our single-cell sampling 

using a multinomial distribution:

n ∼ Multinomial(N, p)

where N = 372 and 148 for the scRNA-Seq and scATAC-Seq, respectively. Thus, ni 

represents the number of cells that were derived from a single original cell i. Next, we 

simulated whether cell i contained a mutation that could be detected and clustered in a group 

of cells (r = 1). This was achieved using a Bernoulli draw for each cell:

ri = Bern(q)

where q was estimated to be 0.5 based on our analyses in Figure 5 for scRNA-seq. Finally, 

the total number of cells clustered (c, the unit shown on Figures S6C,D) is computed from 

the following:

c = ∑
i = 1

30
ri ∗ ni

For both scATAC- and scRNA-seq, we computed c over 10,000 simulations each. Our 

observed number of cells clustered in Figures 6B,C fell comfortably within the 95% 

coverage interval for both scATAC- and scRNA-Seq (Figures S6C,D).

Analysis of colorectal cancer data—Bulk ATAC-seq and scRNA-seq libraries were 

aligned using bowtie2 and STAR as described above. We identified variants that had a mean 

BQ score of at least 20 for both the sum of single cells and the bulk ATAC-seq and were 

detected in bulk at a heteroplasmy of at least 0.5%, yielding 12 high-quality variants. 

Clusters were defined using a similar procedure as described in the previous section. With 

the exception of 15044 G>A, the highest heteroplasmy in the bulk healthy samples was 
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0.0009. In total, 12 high-confidence clusters were identified with at least 2 cells. A t-SNE 

mapping of cells was rendered for the mRNA profiles as described above (Figures 7D-F and 

S7A-C).

Dimensionality reduction of CML scRNA-seq data—To address spurious variants in 

scRNA-seq in the absence of a bulk DNA guide (Figure S6G), we hypothesized that using a 

more stringent measure of quality, base alignment quality (BAQ) (Li, 2011), could facilitate 

the identification of fewer higher quality variants. Indeed, we identified 242 high-quality 

variants that had a minimum BAQ score greater than 20 with a mean heteroplasmy of 0.5% 

in the population of high quality cells (minimum mean mitochondrial genome coverage of 

100×).

We performed a tSNE on the first 25 principal components from the z-score normalized 

heteroplasmy matrix using default parameters (perplexity = 30). We used a Mann-Whitney 

U-Test to identify variants that co-varied with annotated patient sub-phenotypes at a 

significance of p < 10−3 within a given donor.

Analysis of CML scRNA-seq data—Clustering of the scRNA-seq data for donor 

CML656 was performed using SC3 (Kiselev et al., 2017) on processed expression values 

available through GEO accession GSE76312, with default parameters for clusters of size 2, 

3, and 4. The data form the 29 cells in cluster 1 were re-processed using STAR (Dobin et al., 

2013) using parameters noted above, followed by differential expression testing using 

limma-voom (Law et al., 2014). The lowest non-zero allele frequency of 4824 T>C for a cell 

in cluster 1 was 4%, providing a clear basis for determining cells that were 4824 T>C + (that 

is, any cell with a non-zero allele frequency for 4824 T>C were considered 4824 T>C +). In 

total, 14 cells in cluster 1 were negative for the mutation whereas 15 were positive, which 

served to define categories for differential gene expression within cluster 1 cells.

Analysis of T lymphocyte scRNA-seq data—Raw .fastq files were downloaded from 

the European Genome-phenome Archive at the accession numbers noted in Table S5. Meta 

data associated with each cell was further downloaded with the raw sequencing data, and 

included a definition of clones based on TCR sequences inferred by TRACER (Stubbington 

et al., 2016). In instances where we observed heterogeneity in mitochondrial mutations 

within a clonal marker (e.g., Figure 6F), we verified that TCR annotations were supported 

by > 100 reads as reported in the meta data.

Preprocessing the AML scRNA-Seq dataset—For the AML datasets previously 

generated by 10× Genomics (Zheng et al., 2017b), cells from two patients (AML027 and 

AML035) were analyzed for mitochondrial genotypes. Aligned and processed .bam files 

were downloaded from the 10× website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/) and further processed using custom Python scripts. Cell barcodes 

associated with at least 200 reads uniquely aligning to the mitochondrial genome were 

considered for downstream analysis. Barcodes were further filtered by requiring coverage by 

at least one read at two specific variants at mtDNA positions 3010 and 9698. We note that 

we did not observe a barcode that contained a read to support both alternate alleles 

(3010G>A and 9698T>C). We determined that 4 out of 1,077 cells were derived from the 
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recipient (Figure 7M), a higher estimate than in the previously reported analysis performed 

with nuclear genome variants (reported exactly 0%) (Zheng et al., 2017b), though these four 

cells were not included in the published analysis as they did not pass the author’s barcode/ 

transcriptome filters. We did not observe a well-covered set of variants separating the donor/ 

recipient pair in the AML027 dataset, and did not further analyze it for mutations but only 

for determining well-covered barcodes (Figures S7G,H).

DATA AND SOFTWARE AVAILABILITY

Accession codes—All sequencing data generated in this work is available on the gene 
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• Somatic mtDNA mutations can track cellular relationships and hierarchies in 
vitro

• Single cell genomic assays faithfully detect mtDNA mutations

• Lineage inference can be combined with gene expression or chromatin state 

profiles

• mtDNA mutations enable studies of clonal architecture in human health and 

disease

Using single cell sequencing technologies, somatic mutations in mitochondrial DNA can 

be used as natural genetic barcodes to study cellular states and clonal dynamics
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Figure 1. Mitochondrial mutations are stably propagated in human cells in vitro.
(A) Dynamics of mtDNA heteroplasmy in single cells. Each cell has multiple mitochondria, 

which in turn contain many copies of mtDNA that may acquire somatic mutations over time. 

(B) Proof-of-principle design. Each TF1 cell clone and sub-clone is assayed with ATAC-seq. 

(C) Supervised (true) experimental TF1 lineage tree. Colors indicate each primary clone 

from initial split. (D) Allelic heteroplasmy of four selected variants reveals stable 

propagation and clone-specificity. Color bar: allelic heteroplasmy (%). (E) Unsupervised 

hierarchical clustering of TF1 clones. Color: primary clones as in (C). (F) Between-clone 

and within-clone accuracy of identifying the most-recent common ancestor (MRCA) per trio 

of clones based on mtDNA mutational profile. (G) Schematic of mitochondrial relatedness 

matrix Kmito where each pair of clones is scored based on mitochondrial genotype similarity. 
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(H) Random effects model for variance decomposition of epigenomic peaks. (I) Two 

examples of peaks inherited in clonal lineages. Peaks represent the sum of open chromatin 

for the clones with the most samples.
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Figure 2. Mitochondrial mutations are detected using single cell genomics.
(A) Coverage of mouse mitochondrial genome by six scRNA-seq methods. Shown is the 

fraction (%) of the mitochondrial genome (y axis) covered by reads from each of six 

methods (color code), at different levels of coverage (x axis). (B) Agreement in allelic 

heteroplasmy estimates from single cell whole genome sequencing (WGS) and scRNA-seq 

from the same single cells. Shown is the allele frequency for scRNA- (y axis) and scWGS-

seq (x axis) based estimates for two cell lines (HCC827: orange; SKBR3: purple). Two 

examples of RNA-specific changes are highlighted. (C-F) Identification of mitochondrial 

mutations by scRNA-, scATAC- and scMito-seq in three TF1 clones. (C) Bulk and single 

cell data collected for three TF1 clones (boxed). Each clone (n = 3) was processed with 

variable numbers of single-cell libraries (k). (D) Agreement in allelic heteroplasmy 

estimates from bulk ATAC- (x axis) and bulk RNA-seq (y axis) from three indicated TF1 

clones (as in (C)). Two examples of RNA-specific changes are highlighted. (E) Coverage of 

the mitochondrial genome of the TF clone G10 by each indicated assay. Inner circle: 

mitochondrial genome; middle blue outline: coverage; outer grey circle: genome 

coordinates. For single cell assays, coverage is the sum of single cells. (F) Four clone-
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specific mutations that are reliably detected by various single-cell assays with 

heteroplasmies as low as 3.8%. Each boxplot shows the % heteroplasmy (y axis) of one 

mutation across scATAC-, scMito- and scRNA-seq in the three TF1 clones (color code as in 

(C)). Dots: individual cells.
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Figure 3. Validation of mitochondrial mutations as clonal markers in single cells using lentiviral 
barcoding.
(A) Experimental overview. TF1 cells were infected with a lentiviral vector expressing the 

mNeonGreen gene and a 30bp random barcode in the untranslated region (Figure S3A). 25 

cells were sorted and expanded, followed by bulk ATAC-seq and scRNA-seq. (B) Filtering 

of high confidence mutations. Base quality (BQ) scores from scRNA- (y axis) and from bulk 

ATAC-seq (x axis). White box: high-confidence variants detected by both technologies (BQ 

>20) (STAR Methods). (C) Allele frequencies determined by the sum of single cells from 

scRNA-seq (y axis) and bulk ATAC-seq (x axis). Black – filtered; red – retained. (D-F) 

mtDNA inferred clones agree with barcode-based clones. (D) Hierarchical clustering of TF1 

mitochondrial genotyping profiles (rows) for cells assigned to annotated barcode groups 

(columns) (from Figure S3A). Color bar: Heteroplasmy (% allele frequency). (E) Cell-cell 

similarity from mitochondrial mutations called in (C). Column and rows are annotated by 

barcode group. (F) Between-group accuracy of identifying the most-similar pair per trio of 

clones based on mtDNA mutational profile using detected barcodes as a true positive.
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Figure 4. Tissue-specific mitochondrial heteroplasmic mutations.
(A) Analysis overview. (B) Proportion of aligned reads that map to the mitochondrial 

genome for each tissue. (C) Mitochondrial genome coverage for different tissues. Inner 

circle: mitochondrial genome; middle circular tracks: mean coverage for heart (green), liver 

(blue), and blood (red); outer grey circle: genome coordinates. (D-G) Tissue-specific 

heteroplasmic mutations (> 3% heteroplasmy) in GTEx RNA-seq data. (D) Distribution 

along the mitochondrial genome. Inner circle: mitochondrial genome. Dots: % heteroplasmy 

of each tissue specific mutation; outer grey circle: genome coordinates. (E) Number of 
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observed tissue-specific heteroplasmic mutations (y axis) in each class of mononucleotide 

and trinucleotide change. (F) Number of tissue-specific heteroplasmic mutations (y axis) at 

different allele frequency thresholds (x axis). (G) Number of tissue-specific heteroplasmic 

mutations (y axis) across the 10 tissues (x axis) with the largest number of tissue specific 

mutations in GTEx.
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Figure 5. Mitochondrial mutations are stably propagated in primary hematopoietic cells.
(A) Overview of experiment. Hematopoietic colonies are derived from single primary 

CD34+ HSPCs in semi-solid media, which were then picked and sorted before performing 

scRNA-seq. (B-D) Expression profiles separate cells by types and not by donor. t-Stochastic 

Neighborhood Embedding (tSNE) plots of cells’ expression profiles, labeled by donor (B) or 

by expression of HBB (C, marking erythroid cells) or MPO (D, marking myeloid cells). (E-
G) Mitochondrial mutation profiles separate cells by donor. tSNE plots of mitochondrial 

mutation profiles, with cells labeled by donor (E), a polymorphic mutation unique to donor 1 

(F), or a heteroplasmic mutation present only in a specific colony (G). (H) Colony-specific 

mutations for Donor 1. Shown are the allele frequencies and base pair change of mutations 
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(rows) that are found by supervised analysis as specific to the cells (columns) in each colony 

(sorted by colony membership; colored bar on top), color bar: allelic heteroplasmy (%). (I) 

14 selected colony-specific mutations in Donor 1 colonies. Box plots show the distribution 

of heteroplasmy (%, y axis) in cells of a specific colony for the indicated mutation, and in 

the cells in all other colonies. Dots: individual cells.
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Figure 6. Mitochondrial mutations identify clonal contributions in polyclonal mixtures of human 
cells.
(A-D) Determination of clones in primary hematopoietic cells. (A) Overview of experiment. 

CD34+ HSPCs are expanded, genotyped in bulk and single cells, and clonal origin is 

inferred. (B, C) Identification of confident cell subsets based on retained heteroplasmic 

mutations by unsupervised clustering of scRNA- or scATAC-seq using probabilistic k-

medoids. Cells (columns) are sorted by unsupervised clustering on the variants (rows). 

Clusters: colored bar on top; grey: unassigned cells; color bar: allelic heteroplasmy (%). (D) 

Example locus with one clone-specific (left) and one shared (right) open chromatin peak 

recovered by mitochondrial clustering. (E-G) Relationship between mitochondrial mutations 

and TCR clones in human T lymphocytes. Each panel shows data from independent patients. 

(E) Shown are the allele frequencies of heteroplasmic mutations (rows) that are concordant 

with individual TCR clones (columns, color code). (F) Sub-clonal relations within a single 
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TCR clone. Heteroplasmic mutations (rows) that differ between cells within a single TCR 

clone (columns). (G) Heteroplasmic mutations (rows) shared among a variety of TCR clones 

(columns, color code). Color bar: allelic heteroplasmy (%).

Ludwig et al. Page 38

Cell. Author manuscript; available in PMC 2020 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Application of mitochondrial mutation tracking in human cancer in vivo.
(A-F) Identification of clones in human colorectal cancer. (A) Cells from tumor and adjacent 

normal tissue are sorted based on EPCAM+ surface marker expression and genotyped using 

bulk ATAC-seq and scRNA-seq. (B) Identification of clonal subsets based on heteroplasmic 

mutations (rows) across cells (columns), sorted by unsupervised clustering (clusters: colored 

bar on top; grey: unassigned cells). Right: allele frequencies in the bulk healthy and tumor 

populations. (C) Heteroplasmy levels per single-cell. Colors and clusters are from panel B. 

(D-F) Clone of predominantly LGR5+ cells. tSNE of scRNA-seq profiles from the tumor, 
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colored by expression for (D) LGR5 (E) MKI67 (Color bar: log2 counts per million) and (F) 

heteroplasmy of the 9000 T>C allele (color bar: % allelic heteroplasmy). (G) Near-perfect 

separation of donors based on mitochondrial genotypes. tSNE of mitochondrial mutation 

profiles of 2,145 single cells from 31 donors with CML, colored by donor ID. Boxes: 

Donors analyzed for sub-clones in (H-L). (H,I) Identification of putative sub-clonal structure 

within donors. tSNE of mitochondrial mutation profiles of cells from donor CML1266 (H), 

sampled at pre- (blue) and during (red) blast crisis, and for donor OX00812 (I), sampled at 

diagnosis and <6 months of treatment (magenta) or >6 months treatment (green). (J) Shown 

are the allele frequencies of three highly heteroplasmic mutations (rows) across BCR-ABL 

positive vs. negative cells (columns). Color bar: allelic heteroplasmy (%). (K) Consensus 

clustering of CML656 transcripts suggests variable annotation in BCR-ABL positive cells at 

diagnosis. Heatmap showing proportion of times (red/blue) that two cells (columns, rows) 

belong to the same cluster (STAR Methods). Color bars denote from top to bottom: time of 

collection, BCR-ABL status, and allele frequencies (6506 T>C, 4824 T>C). Boxes indicate 

cells where mitochondrial mutations suggest that the BCR-ABL status was incorrectly 

determined by the BCR-ABL genotyping assay alone. (L) Differentially expressed genes (x-

axis) between cells in Cluster 1 comparing cells with and without the 4824 T>C mutation. P-

value (y-axis) is from an empirical Bayes moderated t-test. (M) mtDNA mutations 

distinguish recipient- and donor-specific cells after HSCT in AML. Shown are the allele 

frequencies of one recipient-specific and one donor-specific mutation (rows) across single 

cells (columns) collected before and after transplant. Arrow: four recipient cells detected 

after transplant. Color bar: allelic heteroplasmy (%).
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