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Abstract

Epidemiologic studies, including prospective birth cohort investigations, have implicated maternal 

immune activation in the etiology of neuropsychiatric disorders. Maternal infectious pathogens 

and inflammation are plausible risk factors for these outcomes and have been associated with 

schizophrenia, autism spectrum disorders, and bipolar disorder. Concurrent with epidemiologic 

work are animal models of prenatal immune activation, which have documented behavioral, 

neurochemical, neuroanatomic, and neurophysiologic disruptions that mirror phenotypes observed 

in these neuropsychiatric disorders. Epidemiologic studies of maternal immune activation offer the 

advantage of directly evaluating human populations, but are limited with respect to the inability to 

uncover pathogenic mechanisms. Animal models, on the other hand, are limited with regard to 

their generalizability to psychiatric disorders, but have made significant strides toward discovering 

causal relationships and biological pathways between maternal immune activation and 

neuropsychiatric phenotypes. Incorporating these risk factors in “reverse translational” animal 

models of maternal immune activation has yielded a wealth of data supporting the predictive 

potential of the epidemiologic studies. To further enhance the translatability between 

epidemiology and basic science, we propose a complementary approach that includes 

deconstructing neuropsychiatric outcomes of maternal immune activation into key 

pathophysiologically defined phenotypes that are identifiable in humans and animals, and that 

evaluates the inter-species concordance regarding interactions between maternal immune 

activation and genetic as well as epigenetic factors, including processes involving intergenerational 

disease transmission.

INTRODUCTION

Epidemiologic studies over the past decades have repeatedly implicated prenatal 

environmental factors, including maternal immune activation (MIA), in the etiology of 

neuropsychiatric illnesses(1, 2). Maternal infectious pathogens and inflammation are 

plausible risk factors for these outcomes and have been associated with schizophrenia(1-3), 
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autism spectrum disorders(4-11) and bipolar disorder(12, 13). Concurrent with the 

epidemiologic work are animal models of MIA that have documented behavioral, 

neurochemical, neuroanatomic, and neurophysiologic disruptions in the offspring(14-17). 

The use of animal models in translational research aims at complementing this work by 

establishing causal relationships, identifying cellular and molecular mechanisms, and 

exploring potential therapeutic interventions(14-17). Despite progress on addressing these 

questions, there remain challenges regarding how to best approach the bidirectional 

“translation” between the findings of the epidemiologic and basic neuroscience studies of 

schizophrenia and other disorders.

The Epidemiological Perspective

A proliferation of epidemiologic studies have implicated maternal infection as a risk factor 

for neuropsychiatric illness(1-13). While early epidemiologic studies, which made use of 

ecologic data, suggested associations between influenza epidemics and schizophrenia among 

those exposed in utero, these findings were inconsistent. Such studies have been supplanted 

in more recent years with birth cohort studies that utilize prospectively acquired serologic 

biomarkers of infection and/or inflammation in individual pregnancies. As discussed in the 

next section, an increasing number of publications suggest associations between maternal 

infectious or inflammatory biomarkers and schizophrenia, autism spectrum disorders, and 

bipolar disorder(1, 2, 6, 14-16, 22). Other studies, which have utilized prospective data on 

maternal infection acquired from records on clinically diagnosed infections, have also 

yielded evidence in support of these exposures as risk factors(1, 6).

The Basic Science Perspective

Motivated by epidemiologic findings, a plethora of animal models of MIA have been 

established over the last two decades. As extensively reviewed elsewhere(14-17), one class 

of animal models is based on prenatal exposure to live pathogens, such as influenza 

virus(23-26) or Toxoplasma gondii (T. gondii). These models are particularly useful for the 

verification of causal relationships in epidemiological studies that assess the role of specific 

infectious pathogens. Another class of animal models makes use of immune-activating 

agents that primarily stimulate the innate immune system, such as the bacterial endotoxin, 

lipopolysaccharide (LPS), or the synthetic double-stranded RNA analog, polyriboinosinic-

polyribocytidilic acid (poly(I:C)(14, 15, 17, 25, 27-29). These were developed initially to 

test whether imbalances in maternal and/or fetal cytokines may be critical for the association 

between prenatal infection and postnatal brain pathology(30, 31). An important refinement 

of this second class of models was the application of individual cytokines as immune-

activating agents(9, 32, 33). This approach aims at addressing whether specific cytokines, or 

cytokine networks, mediate the association between MIA and neuropsychiatric illnesses. A 

third class of models is based on specific immunopathological processes that have been 

implicated in the etiology of neuropsychiatric illnesses. Two prominent examples of this 

class are animal models of maternal exposure to autism-related maternal 

autoantibodies(34-37) and allergic disorders/asthma(38-40).

The majority of current MIA models are based on maternal exposure to non-virulent, 

immune-activating agents such as the viral mimetic poly(I:C)(14-17, 53). While this 
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experimental approach offers some clear advantages(14-17, 53), it does not reproduce the 

full spectrum of immune responses normally induced by infectious pathogens. For example, 

this method falls short in stimulating pathogen-specific humoral and cellular immune 

reactions, which may be part of the mechanism mediating the negative effects of maternal 

infection on the offspring. As discussed in detail elsewhere(53), one reason why the field 

shifted from MIA models that are based on exposure to infectious pathogens is that they 

require stringent biosafety levels, which in turn cannot be easily realized in many research 

laboratories. Another reason for the increasing popularity of non-virulent immune activating 

agents such as poly(I:C) in MIA models is that they allow basic scientists to tightly control 

the intensity and duration of the (innate) maternal immune response. This, in turn, allows 

researchers to identify sub- and supra-threshold effects of MIA on brain and behavioral 

functions in the offspring(28, 31), and whether these are influenced by the precise 

gestational timing of MIA(41, 42, 54-56). Finally, MIA models using non-virulent immune 

activating agents were initially developed with the aim of exploring whether the association 

between prenatal infection and neurodevelopmental abnormalities is mediated by specific 

infectious processes, or alternatively, by components of immune responses that are 

commonly triggered by various infections, including cytokines(30, 31, 57). Although the 

latter seem to be crucial contributing factors to many associations(2, 15), it is unlikely that 

distinct pathogens mediate the negative effects of maternal infection on the offspring 

through the same immune responses and pathophysiological mechanisms(58). To fully 

appreciate and approach this complexity, we believe that the field would benefit from a 

revival and extension of experimental approaches that make use of prenatal exposure to 

distinct virulent and non-virulent agents.

Another limitation of MIA models is that they typically exclude “real-life” influences in 

humans other than the primary exposure of interest, which may mediate or modify the 

effects of the exposures, and play contributory roles in disease outcomes. This limitation 

may also be one of the reasons why the findings from animal models of MIA appear more 

robust in terms of their effects on adult brain functions, as compared to epidemiological 

studies that explore the association between markers of infection and risk of mental 

disorders (see next section). In keeping with their “artificial” nature, the findings from 

animal models of MIA may also be associated with the potential of providing data that are 

not borne out by human studies. The recent discovery that maternal segmented filamentous 

bacteria (SFB) mediate the association between prenatal poly(I:C)-induced immune 

activation and autism-related brain abnormalities in mouse offspring(59) is an illustrative 

example. SFB are a family of autochthonous, apathogenic bacteria occurring in the ileum of 

rodents and other vertebrate species and have been shown to potently influence immune 

development and functions in mice(60). Contrary to mice, however, it remains controversial 

whether, and to what extent, SFB modulate the same immune parameters in humans(61-63).

The use of cross-species approaches in MIA models is one possible solution to minimize the 

potential of overinterpreting or oversimplifying the findings obtained in a certain animal 

species or strain (64-71). While the majority of these models have been developed in rodent 

species, most notably rats and mice, some have recently been extended to species that are 

evolutionarily and ethologically close to humans, including rhesus monkeys(8, 64, 69, 70). 

Whereas rodents are separated evolutionarily from humans by more than 70 million years, 
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rhesus monkeys diverged from human evolution approximately 25 million years ago and 

thus exhibit greater similarity to humans in terms of genetics, immunology, neurobiology, 

and behavior (71,72). Compared with rodents, rhesus monkeys are also more comparable to 

humans regarding placental physiology, gestational timelines, pre- and postnatal brain 

development, and cortical architecture(71, 72). Thus, the inclusion of species that are more 

similar genetically to humans (e.g., rhesus monkeys) can aid in interpreting the outputs of 

rodent MIA models in terms of what they might mean for pathological symptoms in 

humans(65-68), thereby enhancing the cross-species transfer of information and 

translatability to the clinical condition in humans(71, 72)

REVIEW OF THE FINDINGS OF MIA STUDIES OF NEUROPSYCHIATRIC 

OUTCOMES AND RELATEDNESS OF FINDINGS BETWEEN EPIDEMIOLOGY 

AND BASIC SCIENCE

A key question is how the findings from these two disciplines can complement and inform 

one another with regard to furthering our understanding of the role of MIA in 

neuropsychiatric outcomes. In particular, we consider “reverse translational” approaches to 

this question, that is, whether human findings on maternal infection can “predict’ parallel 

findings in experimental model systems. We first consider the parallels between the findings 

in epidemiologic and animal studies for schizophrenia, bipolar disorder, and autism 

spectrum disorders. Since a full review of the findings of MIA and neuropsychiatric 

outcomes is beyond the scope of this article, we highlight some key results and refer the 

reader to several comprehensive reviews(1, 2, 6, 14-17, 22). Below, we focus on the 

potential areas of concordance between epidemiologic and basic science studies for each of 

these disorders.

Schizophrenia

To date, MIA and offspring psychiatric outcomes have been most commonly investigated for 

schizophrenia. We focus here on select findings that are based on biomarkers of infection. 

Though not all findings have been replicated, key epidemiologic results include associations 

between maternal infectious pathogens (influenza virus, herpes simplex virus (HSV)), T. 
gondii, rubella, and bacterial pathogens) and inflammatory biomarkers (cytokines, C-

reactive protein) and schizophrenia(1, 19). Maternal exposure to influenza during early to 

mid-gestation, as quantified by antibody in maternal sera, has been associated with a 

threefold increased risk of schizophrenia in the Child Health and Development Study 

(CHDS), based on a large birth cohort in northern California(3). Elevated T. gondii IgG has 

been related to a twofold elevation in schizophrenia risk in this same birth cohort(73). 

Maternal genital/reproductive infections have also been related to schizophrenia in this 

cohort(74). Maternal exposure to HSV-2 has been associated with non-affective and affective 

psychoses in the National Collaborative Perinatal Project(75) though not in the birth cohorts 

of the CHDS or the Finnish Prenatal Studies (FiPS), which is based on a large national birth 

cohort in Finland (76). Neonatal antibodies to T. gondii and cytomegalovirus have been 

associated with non-affective psychosis in adulthood(77). In our study of maternal cytokines 

in the CHDS, we observed that increased interleukin-8 (IL-8) was related to 
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schizophrenia(78). In the FiPS, we found that maternal C-reactive protein (CRP), a non-

specific biomarker of inflammation, was associated with an increased risk of 

schizophrenia(19). Since it is unlikely that associations between biomarkers of inflammation 

are accounted for by one or a small group of infections, these findings may point to a 

common pathogenic pathway by which different infections give rise to schizophrenia.

Since their initial establishment, animal models of MIA have repeatedly documented 

structural and functional phenotypes that are implicated in schizophrenia and related 

psychotic disorders(2, 14-17). On the basis of early epidemiologic findings on maternal 

influenza and schizophrenia(1), Fatemi et al. pioneered an experimental mouse model of 

prenatal exposure to human influenza virus in mice(23-26, 31). As reviewed elsewhere(14, 

15), maternal influenza infection in mice led to a variety of behavioral, neurochemical, 

morphological, and transcriptional changes in the offspring, many of which are implicated in 

schizophrenia and related disorders. These findings are thus strongly related to, and provide 

experimental support for, the association between maternal influenza infection and risk of 

schizophrenia(1, 3, 76). Since then, many additional investigations based on “reverse 

translational” animal models of MIA have yielded a wealth of new data supporting the 

predictive potential of the epidemiologic studies. For example, deficits in sensorimotor 

gating, impairments in selective or sustained attention, deficiencies in working memory, and 

hyper-responsiveness to psychotomimetic drugs have been found in various rodent models 

of MIA, including prenatal exposure to influenza virus, the viral mimetic poly(I:C), the 

bacterial endotoxin LPS, and selected inflammatory cytokines(14-17). Some of these deficits 

show a maturational delay in their appearance and can be mitigated by symptomatic or 

preventive treatments with antipsychotic medications(14-17).

Notably, the fact that prenatal exposure to various immune-activating agents can elicit 

similar phenotypes is consistent with epidemiological findings suggesting that the 

association between MIA and schizophrenia is not limited to a single infectious or 

inflammatory condition(1, 15). Despite the similarities between MIA models, however, there 

are also some notable differences between the models with respect to the nature of brain and 

behavioral changes. For example, whereas prenatal poly(I:C) exposure in rats and mice has 

been shown to induce cellular, neurochemical and behavioral phenotypes that are 

characteristic of a hyperdopaminergic state(27, 79, 80), prenatal LPS exposure may rather 

induce a hypodopaminergic state in adult rodent offspring(81). Prenatal LPS exposure in the 

rhesus monkey was also found to cause a significant increase in global white matter 

volume(64), whereas an opposite pattern (i.e., decreased white matter volume) was observed 

in rhesus monkey offspring born to influenza-infected mothers(69). Besides the notable 

influence of prenatal timing and the genetic background discussed above, such differences 

may arise because different immunogens can induce a distinct set of neuroimmune 

abnormalities across brain development, and consequently, may lead to differing long-term 

deficits in brain structure and function. This notion would also be consistent with 

epidemiological findings that appear to suggest that not all infectious pathogens have the 

same potential to increase neuropsychiatric disease risk(1, 13). As discussed more 

extensively below, a closer examination of the commonalities and differences between the 

mediating factors and outcomes of distinct MIA models should help to further address this 

important issue.
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Another question is whether animal models can also “predict” certain epidemiological 

associations. While comparatively little work has been conducted, our recent findings 

support this assertion. We developed an environmental “two-hit” model in mice, in which 

prenatal exposure to mild but physiologically relevant MIA served as the “first hit”, and 

subchronic exposure to unpredictable, psychological stressors in pubescence as the “second 

hit”(50). Hence, this multifactorial model incorporates two environmental risk factors that 

have each been associated with increased risk of psychiatric disorders such as schizophrenia. 

We showed that combined exposure to the two environmental adversities acted in synergy to 

induce psychosis-related neural and behavioral abnormalities in adult mice(50). These 

results provided the first evidence suggesting that prenatal immune adversities can function 

as a neurodevelopmental disease primer, which in turn can increase the offspring’s 

vulnerability to the detrimental neuropathological effects of subsequent stress exposure 

during pubescence(50). These basic-science findings have recently been translated to a large 

population-based epidemiological study, which comprised nearly 1 million Danish persons 

born between 1980 and 1998(82). In that study, Danish nationwide registers were linked to 

estimate the independent and joint effects of exposure to prenatal infection and peripubertal 

psychological trauma on the risk of schizophrenia(82). Prenatal exposure to infection was 

defined based on hospital admissions with an infection during pregnancy, whereas exposure 

to traumatizing experiences during the period of peripuberty (from age 8 to 14 years) was 

defined according to Danish standards and included parental deaths, maltreatment or 

physical and/or sexual abuse, and maternal and paternal histories of crime and occupational 

situations(82). Confirming the hypothesis initially put forward by the environmental “two-

hit” model in mice(50), the Danish population-based epidemiological study demonstrated 

that exposure to prenatal infection and peripubertal psychological trauma was associated 

with a significantly higher risk of developing schizophrenia (in males) compared to exposure 

to either insult alone, and the interaction between infection and trauma attained statistical 

significance(82). These findings suggest that the cross-fertilization between basic research in 

animals and risk factor epidemiology may offer the potential of predicting yet undiscovered 

associations between MIA and neuropsychiatric illnesses.

Bipolar disorder

Thus far, only a few epidemiologic studies have evaluated MIA in relation to bipolar 

disorder in offspring. Our group has demonstrated that maternal influenza, documented by 

antibodies in prenatal sera(19) and physician diagnoses(83), has been associated with a 

fivefold increased risk of bipolar disorder. While most other studies suggest no association 

between maternal infectious pathogens and bipolar disorder(13), one study found that 

maternal exposure to the type I strain of T. gondii was related to an increased risk of 

affective psychoses in offspring, which includes bipolar disorder(84).

Even though animal models of MIA have not specifically explored their validity for bipolar 

disorder, some of the experimentally induced phenotypes may be relevant for this 

neuropsychiatric illness as well. For example, deficits in sensorimotor gating, as seen in 

various rodent MIA models(2, 14-17), are also present in acutely manic(85) and remitted 

bipolar disorder patients(86). Moreover, several animal studies have reported the emergence 

of depression-like behaviors in offspring exposed to MIA(87, 88). The latter phenotypes 
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may not only be relevant for unipolar depression, but also for depressive episodes in bipolar 

disorder. The investigation of other core behavioral symptoms of bipolar disorder, such as 

poor decision-making, altered risk-taking behavior, impulsivity, and loss of inhibitory 

control remain unexplored in MIA models. Additional work is also necessary to evaluate 

whether MIA-induced deficits can be mitigated by pharmacological treatments used in 

bipolar disorder, including the mood stabilizer lithium, and anticonvulsants such as valproate 

and lamotrigine(89).

Autism

In recent years, maternal infection and inflammation have been investigated in relation to 

autism spectrum disorders. Although findings are mixed, and more work is necessary, 

evidence has emerged linking maternal inflammation to risk of autism spectrum disorder in 

offspring. In the FiPS birth cohort, our group demonstrated that elevated maternal levels of 

CRP, a nonspecific biomarker of inflammation, in early to mid-gestation, was related to an 

increased risk of autism spectrum disorders in offspring(4). However, in the Early Markers 

of Autism (EMA) study in California, maternal mid-pregnancy CRP levels were related to a 

decreased risk of autism spectrum disorders(90). In studies of cytokines and chemokines in 

archived maternal serum samples in the EMA study, significantly increased levels of these 

analytes were related to autism spectrum disorders(5, 11). In amniotic fluid samples from a 

Danish study, several cytokines including tumor necrosis factor-alpha (TNFα) and several 

inflammatory interleukins were related to autism spectrum disorders in offspring(7). 

Moreover, maternal fever has been associated with autism. Although replication of these 

findings is necessary, they suggest that MIA may also be related to autism spectrum 

disorders. Consistent with this interpretation, other maternal immune factors, including 

maternal autoantibodies targeting fetal proteins, have been associated with increased autism 

spectrum disorder risk in the offspring (for review see (91)). These findings include 

significant associations between paired maternal antibody reactivity to fetal brain proteins 

with the 37 and 73kDa molecular weight bands and diagnosis of ASD in children(92). 

Within proteins corresponding to the 37-, 39-, and 73 kDa bands, maternal autoantibodies 

recognized seven developmentally regulated proteins in the fetal brain, including lactate 

dehydrogenase A and B, stress-induced phosphoprotein 1, and collapsin response mediator 

proteins 1 and 2(91, 92). Several of these proteins are critical for normal brain development, 

including neuronal migration and neural network formation.

Animal models further support the hypothesis that MIA is an environmental risk factor for 

autism spectrum disorders. For example, prenatal exposure to the viral mimetic poly(I:C), 

the bacterial endotoxin LPS, or allergies/asthma, can all induce behavioral abnormalities that 

are reminiscent of core symptoms of autism spectrum disorders, including deficits in social 

interaction and communication as well as high levels of repetitive behaviors(9, 15, 38, 93). 

These manipulations also cause brain morphological and cellular abnormalities implicated in 

autism spectrum disorders, including abnormal cerebellar development, impaired expression 

of the extracellular matrix protein reelin, and altered synapse density and neural 

connectivity(2, 15, 25). Importantly, some of these rodent findings have been extended to 

rhesus monkeys, both at the behavioral and brain morphological levels(8, 64, 70, 94).
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FUTURE RESEARCH

Broadening the Concepts to the Study of MIA and Pathophysiologically Defined 
Phenotypes

One key unanswered question is whether there are particular factors that account for 

differences in psychiatric outcomes following MIA. There do not seem to be clear 

differences between these disorders with regard to gestational timing of MIA, though larger 

sample sizes are needed given the reduction in statistical power that results from 

stratification of analyses by periods of pregnancy. Similarly, there are inadequate data to 

permit comparisons between disorders on the effects of individual maternal infections, and a 

lack of information on the intensity of the immune response. Although the study of 

interaction of MIA with parental or offspring genes that cluster with particular disorders is a 

promising research direction, only a few studies of MIA, discussed further below, have 

evaluated possible gene × environment (G×E) interactions, and none to our knowledge have 

compared them between different disorders.

While there is clear merit in conducting such comparisons, our view is that this question 

might be addressed more effectively by asking how the field might move from the study of 

MIA and specific psychiatric outcomes to improving our understanding of the connections 

of this risk factor to key elements of these disorders. One approach is to deconstruct the 

psychiatric outcomes into their essential psycho- and neuropathological components. This 

approach is conceptually closer to research of MIA in animal models and thus appears more 

likely to maximize the extent to which findings in animal models can be translated to 

humans, and back-translated to animals (Figure 1), and advance the field by opening new 

avenues for the discovery of novel etiopathogenic factors and pathways. In this regard, 

animal models of MIA will be key to identifying neurobiological pathways leading to 

discrete pathological outcomes that may (or may not) cross current diagnostic boundaries.

Here, we illustrate this using the example of schizophrenia. Cognitive and neuroimaging 

anomalies are key components of the phenotype of schizophrenia(95), and are also amenable 

to modeling in animals. Thus far, however, only a few studies have attempted to determine 

whether exposure to MIA confers vulnerability to these and other phenotypic characteristics 

of schizophrenia. In the CHDS birth cohort, we demonstrated that maternal exposure to 

infection (influenza, toxoplasmosis) was associated with impairments in executive functions, 

including set-shifting abnormalities in the Wisconsin Card Sorting Test and disruptions in 

performance on the Trail Making Test(96). Elevated maternal IL-8 levels, which were 

associated with risk of schizophrenia in this cohort, were also related to ventricular 

enlargement(97). Notably, similar phenotypes, including impairments in executive functions 

and ventricular enlargement, are also observed in adult rats and mice exposed to MIA(2, 14, 

15, 52, 98-102) suggesting that there is bi-directional translational validity between the 

outcomes in the animal model and the epidemiologic/clinical condition.

The application of more systematic methods of classification of outcomes that are based on 

biologically relevant phenotypes(103) to MIA models may offer further promise: the studies 

reviewed above suggest that this exposure alters neurobiological and behavioral functions 

that cannot be simply mapped onto a particular diagnostic phenotype. Parenthetically, 
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prenatal exposure to infectious or inflammatory adversity may be viewed as a general 

vulnerability factor for developmental disturbances rather than a disease-specific risk factor. 

This view is compatible with the Research Domain Criteria (RDoC) system, which 

capitalizes on biological determinism to explain the pathogenesis of distinct psychiatric 

symptoms and focuses on endophenotypes rather than nosologic entities(103). Shifting the 

research focus on classification of neurobiological outcomes rather than nosologic entities 

likely minimizes strict disease-to-model correspondence, a major challenge of translational 

studies (Figure 1).

The potential for realizing these research aims exists. There are several large, existing 

population-based birth cohorts with biospecimens and data on early development that have 

been linked to national databases on psychiatric outcomes(19, 104, 105). Subjects from 

these cohorts have the potential to be located through national registries and followed up for 

neurobiological outcomes, and biomarkers of maternal infection and inflammation have 

already been assessed in mothers of cases and matched controls from these cohorts. Given 

their translational value, the findings from animal models of MIA could facilitate the 

selection of biobehavioral outcomes to be investigated in corresponding human 

epidemiologic studies.

Conducting such research in prospective birth cohort studies, however, requires either long 

intervals of follow-up or identifying a sample of cases who belonged to a birth cohort. Given 

the relatively rare outcome, the limitations inherent to such research include loss to follow-

up with consequent bias and small sample sizes. One potential solution to this problem is 

exemplified by a recent study of maternal/childhood micronutrient supplementation(106). In 

this study, pregnant mothers and their neonates were supplemented with phosphatidylcholine 

(aimed to deliver choline to the offspring’s brain), and received neurophysiologic testing of 

sensorimotor gating during infancy and of neurocognition during childhood. Compared to 

unsupplemented offspring, children assigned to phosphatidylcholine supplementation had an 

increased likelihood of normal inhibition of the P50 auditory evoked response, a biomarker 

of improved sensorimotor gating, and fewer attention problems and social withdrawal in 

early childhood(106). The P50 auditory evoked response is mediated by a specific 

cholinergic receptor, the α7-nAChR, which is encoded by the CHRNA7 gene. These 

findings were also recapitulated in a mouse model, in which choline supplementation of 

wild-type mice led to improvement in sensory inhibition of this auditory evoked response, 

whereas there were no beneficial effects in mice that were heterozygous or mutant for the 

CHRNA7 gene(107).

Transdisciplinary Approaches for Advancing the Understanding of the Role of Genetics 
and Epigenetics in the Context of MIA

Several genes identified from genome wide association studies, including those within the 

major histocompatibility complex (MHC) locus(108) and complement C4(109), encode 

proteins that play important roles in immune functioning and in neurodevelopment. With the 

exception of rare copy number variants(110, 111), mutations in these and other individual 

genes are generally associated with relatively small increases in odds of psychiatric 

outcomes, such as schizophrenia(112) and autism spectrum disorders(113), but are 
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hypothesized to confer larger disease susceptibility by interacting with environmental 

exposures such as MIA. Notably, the assessment of environmental exposures is sometimes 

required to detect genetic effects, as demonstrated, for example, by the findings of a 

genome-wide study of association and interaction with maternal CMV infection(114) and a 

study which demonstrated an interaction between maternal pyelonephritis and family history 

of psychosis(115). Hence, environmental factors such as MIA may unmask the (statistical 

and biological) significance of certain genetic variations.

Recently, Mendelian randomization (MR) approaches, combined with genome wide 

association studies have been used to interrogate the genetic architecture of biomarkers of 

inflammation and infection. In one study, summary association results from large consortia 

of candidate gene or genome-wide association studies were included in concert with MR 

methods to evaluate associations between soluble interleukin-6 receptor, C-reactive protein 

levels and schizophrenia(116). The findings revealed a protective effect of CRP and a risk-

increasing effect of sIL-6R on schizophrenia risk, possibly accounted for by early life 

infection. While this study was conducted in (mostly) non-pregnant adults, it provides proof 

of concept for the use of measures of the genetic architecture of response to infectious 

agents in the mother as a proxy for risk to offspring after maternal infection. Although MR 

studies are not without limitations, this work has the potential to investigate MIA in 

neuropsychiatric disorders on birth cohorts in which only information on candidate genes, 

but not maternal infection, are available. This approach could be broadly applicable to many 

cohorts since prospective data on infections during pregnancy are not widely ascertained, 

while genetic markers can be assessed using biospecimens that are more readily obtainable. 

Studies that use MR methods coupled with GWAS to explore a role of infection in triggering 

autoimmune disorders and inflammation, combined with evaluation of shared genetic 

variance for autoimmune disorders in separate cohorts, offer further promise.

To date, however, few epidemiologic studies have conducted a thorough evaluation of risk 

genes in relation to MIA in studies of neuropsychiatric outcomes(114). A major reason is 

that such studies require availability of DNA and a measure of maternal infection or 

inflammation during pregnancy, follow-up of the offspring for the neuropsychiatric 

outcomes, as well as large sample sizes given that studies of G×E interaction generally 

require greater statistical power. The integration and evaluation of putative risk genes in 

animal models of MIA may offer a complementary approach to the investigation of G×E 

interactions in human studies (Figure 1). This has been a fruitful strategy to unravel 

interactions between MIA and selected risk genes of neuropsychiatric illnesses(117), 

including CHRNA7(49), disrupted-in-schizophrenia 1 (DISC1)(46, 47), neuregulin 1 

(NRG1)(48), and Nurr1 (NR4A2)(118). Besides providing evidence for additive effects on 

brain and behavioral abnormalities resembling aspects of major mental illnesses, these basic 

science studies show that prenatal immune activation can interact with selected risk genes to 

produce novel neurobehavioral phenotypes that are not apparent in animals harboring the 

genetic variant alone(117). For example, while mutations in the dopamine-related 

transcription factor Nurr1 and poly(I:C)-induced MIA in mice exert additive effects on 

locomotor hyperactivity and sensorimotor gating deficits, the combination of the two is 

required to impair attentional shifting and sustained attention(118). Similarly, the 
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combination of mild MIA (induced by subthreshold doses of poly(I:C)) and mutations in 

DISC1 is necessary to impair social interaction in adult mouse offspring(46, 47).

Transdisciplinary approaches involving epidemiology and basic science may also advance 

our understanding of the role of epigenetics in the context of MIA. Epigenetic factors, 

defined as non-heritable alterations in the genome, are becoming increasingly recognized in 

the etiology of neuropsychiatric disorders(20, 21, 40). It has already been demonstrated that 

prenatal environmental factors such as smoking(119) are linked to epigenetic alterations and 

to psychiatric disorders. In addition, advanced paternal age has been related to an increased 

rate of de novo mutations(120) and to autism(121) and schizophrenia(122), and may have 

transgenerational effects(121). While MIA has not been examined to date in relation to 

epigenetic effects and de novo mutations in human populations, recent research in animal 

models suggests that epigenetic modifications may be a critical molecular mechanism by 

which MIA can mediate changes in brain development and function(20, 40, 43, 123-126). 

Lasting epigenetic changes in response to MIA have been identified in various brain areas, 

including cortical and subcortical regions(40, 123-125), and in specific cell types such as 

microglia(40). Furthermore, using the maternal poly(I:C) administration model in mice, we 

have recently provided the first piece of evidence showing that MIA-induced behavioral 

abnormalities and whole-genome transcriptional changes can be transmitted across 

generations without additional immune exposures(126). These transgenerational effects 

were mediated via the paternal but not maternal lineage and were present for at least three 

generations, pointing towards epigenetic inheritance via male gametes. Further studies on 

the identification of epigenetic and transgenerational effects in MIA-induced 

neurodevelopmental disorders may help identify complex patterns of transgenerational 

disease transmission beyond genetic inheritance. Conceivably, the consideration of ancestral 

histories of infection may be a useful approach for developing new preventive treatment 

strategies against infection-mediated neurodevelopmental disorders.

Implications of research in MIA for health policy and prevention

This work has the potential for significant impact on future health policy and prevention. 

Many infectious agents are preventable with relatively straightforward public health 

measures (127). In work from our group, we estimated that the population attributable risk 

for schizophrenia following exposure to 3 maternal infections (influenza, T. gondii, and 

genital reproductive infections), was 30% in the CHDS birth cohort, suggesting that the 

number of cases in this population that are preventable by elimination of these infections 

from the population can be reduced by as much as one third(1, 127). T. gondii can be 

prevented by the use of simple hygienic measures, such as the use of gloves when gardening 

or changing cat litter boxes, adequate cooking of meat before consumption, and washing 

kitchen knives after cutting meats, fruits, and vegetables(128). The occurrence of many 

sexually transmitted infections can be reduced by the use of barrier contraceptives, 

antimicrobials, educational programs to promote safe sex, delaying first sexual contacts, and 

partner notification(129, 130). Maternal immunization during pregnancy is another health 

policy option with potential ramifications for prevention of neuropsychiatric disorders. 

Though not always offering complete protection, influenza vaccination is a mainstay for the 

prevention of this virus(131). These measures are scalable to large populations given their 
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relatively low cost and practicality. Most influenza vaccines appear safe in terms of 

maternal, fetal or neonatal complications, even if given to pregnant women(132-135) and 

several health organizations recommend prophylactic influenza vaccination for this 

population (132).

CONCLUSIONS

Accumulating evidence suggests that maternal exposure to infectious and inflammatory 

insults is related to the etiology of major neuropsychiatric illnesses. The bi-directional 

translation of epidemiologic to basic neuroscience studies offers the promise of developing a 

more complete and nuanced understanding of MIA in relation to biological mechanisms. We 

suggest future studies aimed at capitalizing on the integration of these disciplines, 

particularly in relation to pathophysiologic entities that transcend diagnostic boundaries, and 

assessing multi-factorial models including genetic and epigenetic factors, in MIA-induced 

psychopathology.
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Figure 1. 
Contribution of epidemiologic and basic science studies to translational research of maternal 

immune activation in neuropsychiatric disorders. (a) Schematic illustration of the prevailing 

research approaches in both disciplines. With a few exceptions, epidemiologic studies of 

MIA generally aim at establishing associations between infectious, inflammatory, or other 

immune exposures and risk of certain neuropsychiatric disorders, the latter of which are 

defined by the current nosologic system. On the other hand, most animal models of MIA are 

single-factor models in which the isolated effects of MIA-related exposures are investigated 

with respect to behavioral, cognitive, neuroimaging, and neurophysiologic phenotypes in the 

offspring. For practical reasons, these models are often implemented in rodent species and 

are based on artificial immune-activating agents (e.g., synthetic doublestranded RNA) that 

do not require stringent biosafety precautions. The outcome of these epidemiological and 

basic science approaches is often a lack of analogy, resulting in a translational gap that can 

undermine their translational validity. (b) Schematic illustration of epidemiological and 

basic science approaches that can maximize the bi-directional translational validity through 

the modification of research concepts and the addition of supplementary research modules. 

In these alternate approaches, the objective of assessing MIA exposure-disease risk 

associations in epidemiologic designs is complemented with or even replaced by: 1) 

attempts to explore the effects of MIA on specific behavioral, cognitive, neuroimaging, and 

neurophysiologic phenotypes, which are free of nosologic constraints; 2) the concomitant 

study of genetic and epigenetic factors; 3) the establishment of multifactorial animal models 

that incorporate genetic/epigenetic risk factors and MIArelated exposures that involve 

epidemiologically established infectious pathogens and other immune factors such as 

inflammatory mediators. In addition, cross-species comparisons involving animal species 

with advanced cortical development will further enhance the bi-directional translatability 

between epidemiologic and basic science studies.
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