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Up to now, no vaccines are available for Chagas disease, and the current therapy is largely 

unsatisfactory. Novel imidazole-based scaffolds of protozoan sterol 14α-demethylase 

(CYP51) inhibitors have demonstrated potent anti-parasitic activity with no acute toxicity. 

Presently our aim was to investigate the effectiveness of the experimental 14α-demethylase 

inhibitor VFV in the mouse models of Trypanosoma cruzi infection using naturally drug-
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resistant Colombiana strain, under monotherapy and in association with the reference drug, 

benznidazole (Bz). The treatment with VFV resulted in complete parasitemia suppression 

and 100 % animal survival when administered orally (given in 10 % DMSO plus 5% Arabic 

gum) at 25 mg/kg (bid) for 60 days. However, as parasite relapse was found using VFV 

alone under this treatment scheme, the co-administration of VFV with Bz was assayed 

giving simultaneously (for 60 days, bid) by oral route, under two different drug vehicles 

(10 % DMSO plus 5 % Gum Arabic with or without 3% Tween 80). All tested mice groups 

resulted in >99.9 % of parasitemia decrease and 100 % animal survival. qPCR analysis 

performed on cyclophosphamide immunosuppressed mice revealed that, although presenting 

lack of cure, VFV given as monotherapy was 14-fold more active than Bz, and the co-

administration of Bz plus VFV (given simultaneously, using 10 % DMSO plus 5 % Gum 

Arabic as vehicle) resulted in 106-fold lower blood parasitism as compared to the 

monotherapy of Bz. Another interesting finding was the parasitological cure in 70 % of the 

animals treated with Bz and VFV when the co-administration was given using the VFV 

suspension in 10 % DMSO + Arabic gum + Tween 80 (a formulation that we have found to 

provide a better pharmacokinetics), even after immunosuppression using cyclophosphamide 

cycles, supporting the promising aspect of the drug co-administration in improving the 

efficacy of therapeutic arsenal against T. cruzi.

Chagas disease affects more than 6 million people mostly in the poorest areas of Latin 

America. The available therapy is based on two nitroderivatives, nifurtimox (N) and 

benznidazole (Bz) that were introduced more than four decades ago and are quite 

unsatisfactory since both display limited activity (especially in the later chronic stage) and 

high toxicity. The occurrence of Trypanosoma cruzi strains that are naturally resistant to 

nitroderivatives [1] represents a special concern calling for the identification of novel 

trypanocidal candidates and treatment regimens. CYP51 (sterol 14α-demethylase) is the 

primary target for clinical and agricultural antifungals and has been proven as a relevant 

target for protozoan infections [2, 3]. Previous studies revealed the high anti-parasitic 

efficacy of the trypanosomal CYP51 inhibitor VNI, ((R)-N-(1-(2,4-dichlorophenyl)-2-(1H-

imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2 yl)benzamide) against T. cruzi in vitro 
and in vivo. However, while being able to cure mice infected with the Bz-susceptible 

Tulahuen strain (DTU VI) [4], VNI was not able to reach high parasitological cure rates 

when Bz-resistant T.cruzi strains were employed [5], although in these experiments different 

drug formulations were used, which might have influenced the cure outcomes. 

Unfortunately, the two azoles inhibitors of fungal CYP51 (posaconazole and ruvaconazole), 

although highly effective in pre-clinical studies, presented high levels of therapeutic failure 

as compared to benznidazole [6]. The lack of translation among these pre-clinical and 

clinical outcomes has been largely discussed, and some hypothesis raised including the need 

for more reproducible animal models and readouts [7, 8]. In this sense, highly sensitive in 
vivo imaging assays and in vitro deeper analysis of sterile cidality [9] claims about the 

limited ability of posaconazole (and other analogs) to cure T. cruzi experimental infections 

[10]. However, we can not discard the possibility that the lack of translation between clinical 

and pre-clinical outcomes could be due to limitations of posaconazole pharmacokinetics 

[11]. In fact, its maximal concentration in mice plasma does not exceed 5 μM, and the low 

doses of the drug used in clinical trials for Chagas disease (because of its high cost) resulted 
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in 5 to 10-fold lower concentration in humans than in animal models [12, 11]. In addition to 

the extremely high cost of posaconazole, another import point is that fungal sterol 14α-

demethylases share less than 30 % amino acid sequence identity with the T. cruzi enzyme 

ortholog [13]. This may also explain at least in part, clinical trial failure and in turn 

stimulates the analysis of other inhibitors, more closely related to the protozoan enzyme, 

such as VNI and derivatives (5). Unlike posaconazole, this scaffold does not induce the T. 
cruzi CYP51 gene expression and does not require an increase in the dosage to sustain its 

anti-parasitic efficiency over time suggesting that it may have a lower propensity to induce 

resistance [14]. Also, due to its erratic bioavailability and unpredictable trough plasma 

concentration, posaconazole has been limited mainly for oropharyngeal or esophageal 

candidiasis and for prophylaxis in high-risk patients [15], though now, when the intravenous 

formulation of posaconazole has become available, its clinical use has potential to be 

extended [16].

Co-administration therapy has been successfully used to treat different pathologies including 

those triggered by parasitic infections [17, 18]. It has also been largely recommended as 

promising alternative therapy for CD [19] aiming to improve drug efficacy by allowing (i) to 

target different cellular elements and metabolic pathways, (ii) to reduce the doses and drug 

exposure periods thus contributing to the lowering of toxic effects, and (iii) minimizing the 

risk of drug resistance [20, 21]. In this regard, we investigated the anti-parasitic effect of 

VNI and VFV [(R)-N-(1-(3,4′-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-

phenyl-1,3,4oxadiazol-2-yl)benzamide] (the derivative of a broader spectrum of 

antiprotozoal activity [22]) in mouse models of T.cruzi infection caused by a highly resistant 

parasite strain (Colombiana) using both monotherapy and in schemes of co-administration 

with Bz. The in vivo efficacy of VFV was also investigated using different drug formulations 

such as DMSO with Arabic gum in the presence or not of Tween 80. Our findings 

demonstrate the benefits of Bz/VFV association, leading to high (>99.9 %) suppression of in 
vivo infection and reaching considerable rates of parasitological cure (70 %).

Materials and methods

Compounds

Synthesis of VNI and VFV was performed as reported [23]. In this study, the CYP51 

inhibitors were diluted using (i) 10 % dimethyl sulfoxide (DMSO) plus 5 % Gum Arabic as 

we performed in [5] or (ii) 10 % DMSO + 5 % Arabic gum + 3 % Tween 80 – DGAT as we 

performed in [4, 22]. Benznidazole (Bz) was purchased from Laboratório Farmacêutico do 

Estado de Pernambuco, LAFEPE, Brazil and dissolved in distilled and sterile water 

supplemented with 3% Tween 80, which does not cause any detectable effect on mice [24]. 

Cyclophosphamide (Cy) (Genuxal) was purchased from Baxter Oncology (Frankfurt) and 

prepared in sterile distilled water [25].

Parasites

Bloodstream trypomastigote (BT) forms of Colombiana (discrete typing unit – DTU I) strain 

of T. cruzi was obtained from the blood of infected male Swiss mice at the peak of 

parasitemia [26]. Immediately after the purification step, the parasites were resuspended in 
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RPMI-1640 medium (pH 7.2–7.4) without phenol red (Gibco BRL) supplemented with 10% 

fetal bovine serum and 2 mM glutamine, as reported previously [27].

In vivo infection

Male Swiss Webster mice were obtained from the Fundação Oswaldo Cruz (FIOCRUZ) 

animal facilities (ICTB /FIOCRUZ, Rio de Janeiro, Brazil). Mice were housed at a 

maximum of 05 per cage and kept in a standard room at 20 to 24°C under a 12 h/12 h light/

dark cycle. The animals were provided with sterilized water and chow ad libitum. Mice (18 

to 23 g) were infected by intraperitoneal (i.p.) route with 5×103 bloodstream trypomastigotes 

of the Colombiana strain of T. cruzi. Age-matched non-infected mice were maintained under 

identical conditions [5].

Treatment schemes

The animals were divided into the following groups (5–10 animals per group): uninfected 

(non-infected and non-treated); untreated (infected but treated only with vehicles); and 

treated (infected and treated with the compounds). The therapy was performed for 60 days 

starting at 10 dpi (corresponding to the parasitemia onset in this model of infection), given 

per oral (po) route, comparing the effectiveness of the monotherapy of each compound (100 

mg/kg/day of Bz and 25 mg/kg/bid of VNI and VFV) with the simultaneous administration 

(60 daily doses given po, 100 mg/kg of Bz and after 15 min, 25 mg/kg of VFV, both only 

once a day). Only mice with positive parasitemia were used in the infected groups.

Parasitemia and mortality rates

Parasitemia was individually checked by direct microscopic counting of parasites in 5 μL of 

blood, and mortality rates checked daily until 30 days post-treatment and expressed as the 

percentage of cumulative mortality (% CM) as described before [25].

Assessment of therapeutic failure

Mice that presented consistent negative parasitemia up to 30 days post-treatment were 

submitted to three cycles of cyclophosphamide exposure (50 mg/kg/day), each with four 

consecutive days of administration (ip) and with three days of intervals between each cycle 

[25]. As reported, assessment of therapeutic failure (or not) was based on the following 

parasitological methods: blood parasitemia reactivation observed (i) by light microscopy, 

and (ii) by quantitative real-time polymerase chain reaction (qPCR). Animals presenting 

negative results for all tests were considered “cured”. For qPCR 500 μL blood was diluted in 

1:2 volume of guanidine solution (guanidine-HCl 6M/EDTA 0.2M), and heated for 90 sec. 

in boiling water. Guanidine-EDTA blood samples were processed using the QIAamp DNA 

mini kit (QIAGEN), as described by [28]. Quantitative Real-Time PCR Multiplex assays 

were performed (40 cycles, threshold set at 0.01) for parasite detection targeting the T. cruzi 
satellite nuclear DNA and the internal amplification control - IAC (pZErO-2 plasmid 

containing an insert from the A. thaliana aquaporin gene), as described [29]. In uninfected 

samples, the result of the qPCR was NA (Non-amplified). The standard curves for absolute 

quantification were constructed with 1/10 serial dilutions of total DNA obtained from a 
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negative GEB sample spiked with 105 parasite equivalents per milliliter of blood (par. eq./

mL).

PK studies

Pharmacokinetics and tissue distribution of VNI and VFV were studied using the previously 

developed protocol that is based on their oxadiazole ring-specific absorption maximum at 

291 nm (ε291 36 mM−1 cm−1), which makes this inhibitory scaffold easy to monitor in vivo, 

with a detection limit of 0.1 μM (4) The compounds were given from two different 

formulations (3% tween 80, 10% DMSO, and 5 % Arabic gum (DGAT) or 20 % 

hydroxypropyl-β--cyclodextrin (HPCD)) to compare distinct administration vehicles since 

our previous studies revealed superior efficacy while using DGAT formulation [4,22] as 

compared to others vehicles [30, 5]. The compounds were given to mice by oral gavage as a 

single administration dose of 25 mg/kg. This dose was used in our previous studies 

(4,5,22,30) and was initially chosen because it is most common for testing azole drugs and 

drug candidates in mice. To obtain the drug plasma concentration profiles, the blood samples 

were collected over time (1, 2, 4, 6, 10, 16, and 24 hours after administration, using two 

mice per each time point), and the tissues were collected four hours after administration as 

we described previously [22]. For the blood analysis, 30 μl samples of plasma were diluted 

to 100 μl with PBS, mixed with 100 μl of acetonitrile containing 10 μM ketoconazole (used 

as an internal standard), the mixture was vortexed, and the drugs were extracted with 300 μl 

of extraction solution containing 80 % acetonitrile and 20 % water (v/v). After 

centrifugation at 16,000 g for 10 min the supernatant was transferred to a new tube and 

dried. For the analysis the samples were re-dissolved in the 500 μl of solvent composed of 

50 % acetonitrile and 50 % water and analyzed using reversed-phase high-performance 

liquid chromatography (HPLC). The HPLC system was equipped with the dual-wavelength 

UV 2489 detector (Waters) set at 291 and 250 nm and a Symmetry C18 (3.5 μm) 4.6 × 75 

mm column. The mobile phase was 55 % 0.01 M ammonium acetate (pH 7.4) and 45 % 

acetonitrile (v/v) with an isocratic flow rate of 1.0 ml/min. For the tissue distribution 

analysis, prior to drug extraction approximately 100 mg of each tissue was diluted 5-fold 

with PBS and homogenized using an IKA Ultra Turrax T8 tissue homogenizer (The Lab 

World Group, USA), and 100 μl of the homogenate samples was used for the extraction and 

analysis as described for plasma. VFV, given from the DGAT formulation, was selected for 

the final set of our experiments because we have found previously that after the second 

administration its concentration in tissues becomes (and remains) higher than the 

concentration of VNI [22]. A broader spectrum of antiprotozoal activity [22,23] was another 

reason for selecting VFV over VNI for further co-administration studies. Finally, because 

VFV is detectable in plasma for more than 24 hours, it was reasonable to adminster it once a 

day.

Ethics

The procedures dealing with infected mice and drug treatments were approved by the 

FIOCRUZ Committee of Ethics for the Use of Animals (CEUA LW16/14) and the 

procedures dealing with drug administration for the PK experiments were approved by the 

IACUC of Meharry Medical College.

Guedes-da-Silva et al. Page 5

ACS Infect Dis. Author manuscript; available in PMC 2020 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Given as monotherapy (25 mg/kg/bid, diluted in 10 % dimethyl sulfoxide (DMSO) plus 5 % 

Gum Arabic), VFV suppressed completely the parasitemia in infected animals, showing the 

effect similar to that of VNI (25 mg/kg/bid, prepared in 10 % dimethyl sulfoxide (DMSO) 

plus 5 % Gum Arabic) (Table 1) and Bz (100 mg/kg/day, its optimal dose) (Table 1). All 

treated groups reached 100 % of mice survival during the whole period of analysis (Table 1), 

but after the end of monotherapy, a natural parasitemia relapse was observed in all animals 

exposed to monotherapies of Bz and VFV but only in 3 out of five mice in the VNI group 

(Table 1). To confirm the therapeutic outcomes, all the animals were further 

immunosuppressed by 12 cycles of cyclophosphamide (Cy) and then monitored for another 

four weeks by counting the parasite load in the blood samples using light microscopy. We 

found that 20 % of the VNI group displayed a sustained negative parasitemia (which was 

also consistently negative according to the results of qPCR blood analysis), and VFV 

presented about 14-fold reduction of the blood parasite load measured by qPCR as compared 

to Bz (Table 2).

In the co-administration assays, the simultaneous administration of Bz and VFV (both 

compounds given once a day, 100 mg/kg and 25 mg/kg, respectively) revealed that besides 

reaching >99 % parasitemia decline at the peak and 100 % animal survival (Figure 1), two of 

five mice remained negative after the end of the co-administration (Table 1). After Cy 

administration, although none remained negative according to the light microscopy analysis, 

the qPCR demonstrated a substantial reduction in the blood parasite load, reaching more 

than 100-fold decrease in comparison with the Bz monotherapy (Table 2). In these 

experiments, as well as in the monotherapy experiments VFV was administered to mice 

using 10 % DMSO plus 5 % Gum Arabic as a vehicle, which (because of VNI and VFV 

hydrophobicity) was most likely not the best formulation.

Next, to compare two alternative vehicles that in our previous in vivo studies produced better 

results, we analyzed the PK of VNI and VFV given from 20% hydroxypropyl-β-

cyclodextrin (HPCD) (30) or from Tween 80 (3% Tween 80, 10% DMSO, 5% Arabic gum) 

(DGAT) (4,22). Because the PK studies indicated a three-fold higher bioavailability when 

Tween 80 was added to the vehicle (Figure 2, Table 3), further studies were conducted, now 

using the DGAT formulation (10% DMSO + 5% Arabic gum + 3% Tween 80 (DGAT) as the 

vehicle. The data corroborated the high efficacy of Bz, VFV, and BZ + VFV in suppressing 

the parasitemia levels (> 99.8 % at the peak), leading to 100 % animal survival, while in the 

untreated infected group all animals died (Fig. 3, Table 4). After the drug administration, we 

found a natural parasitemia relapse in 6, 5 and 2 out of 10 mice for groups Bz, VFV, and the 

co-administration Bz plus VFV, respectively. After immunosuppression, again, we found 

that while Bz-treated group reached 30 % of clear blood parasite load, the co-administration 

resulted in 7 negative samples by qPCR (one out of 8 negative samples was lost during the 

qPCR procedure), thus reaching 70 % of cure when Bz + VFV were given using DGAT 

vehicle (Table 4).
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Discussion

There is an urgent need for safer and more efficacious drugs for Chagas disease, a neglected 

silent life-threatening illness that causes more than 7,000 annual deaths, with about 25 

million people at risk of infection in endemic areas of Latin America, affecting mainly rural 

populations in areas of low resources, where human contact with the vectors is frequent [31]. 

Despite the fact that vector control and blood transmission regional initiatives have 

successfully achieved substantial reduction in the number of new acute cases [32], other 

concerns still remain as challenges, including the disease globalization, the existence of 

alternative routes of transmission, such as mother-to-child or oral transmission through 

contaminated food [33, 34], and particularly the high variability in the drug sensitivity across 

multiple strains that comprise the genetically diverse population of T. cruzi. Therapeutic 

failures are well documented in Chagas disease under the use of Bz and nifurtimox, which 

seems to depend on the interplay of the genetic background of the T. cruzi strains and their 

mammalian hosts, the drug access and accumulation in different environments, and the host 

immune response [35, 36].

Thus, as the available chemotherapy for CD has substantial limitations, diverse pre-clinical 

approaches have been used in an attempt to identify new therapeutic alternatives, including 

the screening of natural and chemical libraries [37], the repositioning of drugs already 

licensed to other diseases [38], the synthesis and validation of specific inhibitors targeting 

parasite molecules [39], as well as the use of co-administration of licensed drugs with 

promising novel candidates [19, 21]. Among the target-directed anti-parasitic approaches, 

inhibitors of the sterol biosynthesis pathway, in particular, those related to the CYP51 

enzyme, have been widely studied on experimental infection with T. cruzi [21, 40] and two 

of them, the antifungal drug posaconazole and the prodrug of another antifungal drug 

candidate ravuconazole (E1224) have been recently moved to clinical trials but unfortunately 

displayed limited treatment success in chronic chagasic patients [41].

Because we found previously that VNI, our experimental inhibitor of Tulahuen T. cruzi 
CYP51, though suppressing the parasitemia and preventing mortality, was unable to achieve 

the complete parasitological cure in the mouse models of Colombiana T. cruzi infection (20 

day treatment, 25 mg/kg/bid, administered using 10 % DMSO plus 5 % Arabic gum) [5], in 

this study we mostly concentrated on the CYP51 structure-based VNI derivative VFV, since 

VFV has a broader spectrum of activity as the protozoan CYP51 inhibitor and was shown to 

be more potent than VNI against the Y strain T. cruzi [42] and Leishmania [22].

The present studies were conducted employing a longer period of treatment (60 days) using 

Bz (as reference drug at its optimal dose (100 mg/kg/day) for mouse T.cruzi infection [5, 

25]) and the imidazole molecules (VNI and VFV) under monotherapy regimen and also 

addressing the scheme of drug co-administration (using two different vehicles, 10 % 

dimethyl sulfoxide (DMSO) plus 5 % Arabic gum [5] and 10% DMSO + 5% Arabic gum 

+ 3% Tween 80 – DGAT. The later drug – formulation was chosen to improve 

pharmacological status as our PK studies demonstrated higher bioavailability and tissue 

distribution when Tween was added to the vehicle solution. plus 5 % Arabic gum) was more 

effective than Bz in reducing the blood parasitism measured by qPCR analysis of blood 

Guedes-da-Silva et al. Page 7

ACS Infect Dis. Author manuscript; available in PMC 2020 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



samples from treated mice submitted to Cy injection. VFV resulted in more than 14-fold 

reduction in blood parasite DNA that corresponds to lower and subpatent blood parasitism. 

Another significant finding was the improved efficacy of VFV when administrated in co-

administration with Bz resulting in >100-fold less blood parasitism measured by qPCR than 

Bz alone. Interestingly, exposure to Bz plus VFV induced 70 % blood parasite clearance 

when the second vehicle was used (10% DMSO + 5% Arabic gum + 3% Tween 80 – 

DGAT), supporting the PK studies that demonstrated higher plasma levels and better tissue 

distribution of VFV when Tween 80 is added to the vehicle solution and corroborating the 

previous findings using acute and chronic T.cruzi mouse infection (Tulahuen strain) that 

demonstrated high rates of cure when these CYP51 inhibitors were given using DGAT 

solution [4]. Also, the promising aspect of this co-administration drug scheme reinforces the 

potential use of CYP51 inhibitors along with Bz as therapeutic arsenal against T. cruzi. 
Other studies also revealed the successful use of drug co-administration in experimental 

animal models of T. cruzi infection, e.g., amidine compounds and Bz [25] and also other 

compound classes including posaconazole and Bz (24,40,41,42). The advantages of VFV 

include its low cellular (EC25>50 μM, NIH/3T3 [23]) and in vivo toxicity (NOAEL> 200 

mg/kg [30]), weak influence on the major human drug-metabolizing cytochromes P450 

(e.g., CYP3A4 IC50=3.6 μM vs. IC50=0.14 μM for posaconazole), moderate hepatic 

clearance, and the ability to penetrate different tissues and organs [23].

To summarize, this study supports the use of co-administration schemes of anti-parasitic 

drugs as future potential clinical evaluation of Chagas disease. The curative action of 

Bz/VFV co-administrations was achieved in a well-established acute infection model with 

the Colombiana strain using optimal doses of compounds that did not exert any signs of 

animal toxicity until the endpoint (>120 days of following up). These findings accumulate 

evidence that it is possible to achieve a better therapeutic outcome using Bz in co-

administration with other drug candidates that target other metabolic pathways of the 

parasite. Several other pathogen-induced diseases such as tuberculosis, leprosy, HAT and 

HIV infection reached better efficacy with co-administration of drugs with different 

mechanisms of action. The co-administration drug treatment not only can boost the effect of 

the different therapeutic compounds but may also aid in avoiding the development of 

parasite chemotherapeutic resistance [19]. Indeed, more than one new drug is needed for 

each so that co-administration can be employed to avoid drug resistance and to provide 

back-up drugs when resistance emerges [34]. The presented results encourage further 

investigations aiming to achieve therapeutic and affordable orally administrated drugs, as 

alternatives for those millions of chagasic patients.
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Figure 1: 
Effect of VFV (25 mg/kg/day, in 10 % dimethyl sulfoxide (DMSO) plus 5 % Gum Arabic 

administered simultaneously with Benznidazole (Bz) – 100 mg/kg/day) for 60 days in the 

experimental mouse model of Chagas disease caused by the Colombiana strain of 

Trypanosoma cruzi (n=5). (A) Parasitemia levels and (B) Percentage of cumulative 

mortality.
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Figure 2: 
Pharmacokinetics of VNI and VFV in mice after a single oral administration dose of 25 

mg/kg depending on formulation: DGAT (3% Tween 80, 10% DMSO, 5% Arabic gum) or 

HPCD (20% hydroxypropyl-β-cyclodextrin). 16 mice were used for testing of each drug and 

two mice were used for each of the 8 independent experimental points. A. Plasma 

concentration profiles. B. Tissue distribution 4 hours after administration. Panel A, p< 0.001 

between VNI/DGAT and VNI/HPCD; and p<0.0015 between VFV/DGAT and VFV/HPCD. 

Panel B, ★ p<0.015 ; ◆p< 0.02 (Two-Way-Anova).

Guedes-da-Silva et al. Page 13

ACS Infect Dis. Author manuscript; available in PMC 2020 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Effect of VFV (25 mg/kg/day) administered simultaneously with Benznidazole (Bz) - 

100mg/kg/day) for 60 days in the experimental mouse model of Chagas disease caused by 

the Colombiana strain of Trypanosoma cruzi (n=10). (A) Parasitemia levels and (B) 

Percentage of cumulative mortality. VFV was diluted in 10 % DMSO + 5% Arabic gum 

+ 3 % Tween 80 – DGAT.
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Table 3 -

PK profile data for VNI and VFV given from HPCD and DGAT formulations.

Compound Formulation Tmax, hours Cmax, μM [μg/mL] AUC, μg × h/L Life time, hours
a

VNI DGAT 2 39±2 [20] 163 16

HPCD 2 30±4 [15] 55 10

VFV DGAT 4 24±2 [11] 159 >26

HPCD 4 14±2 [8] 64 <24

a
Life time, hours: The time until compound becomes undetectable given by per oral route (below 0.1 μM, which is the detection limit). References: 

4 and 22.
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