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Abstract

In Hybrid Foraging tasks, observers search for multiple instances of several types of target. 

Collecting all the dirty laundry and kitchenware out of a child’s room would be a real-world 

example. How are such foraging episodes structured? A series of four experiments shows that 

selection of one item from the display makes it more likely that the next item will be of the same 

type. This pattern holds if the targets are defined by basic features like color and shape but not if 

they are defined by their identity (e.g. the letters p & d). Additionally, switching between target 

types during search is expensive in time, with longer response times between successive selections 

if the target type changes than if they are the same. Finally, the decision to leave a screen/patch for 

the next screen in these foraging tasks is imperfectly consistent with the predictions of optimal 

foraging theory. The results of these hybrid foraging studies cast new light on the ways in which 

prior selection history guides subsequent visual search in general.

Imagine you are cleaning up a child’s room. Yes, of course, they should do it themselves, but 

what are you going to do? You are looking for laundry that needs to be washed, stuffed 

animals that go on the bed, building blocks that should be in their box, and those library 

books that are now three weeks overdue. This is a “hybrid foraging” task (Wolfe, Aizenman, 

Boettcher, & Cain, 2016). In hybrid foraging tasks, observers are searching for multiple 

instances of several types of target at the same time. Such tasks are a routine aspect of daily 

life; for example, driving: Find restaurants, parking places, and traffic signs. Hybrid foraging 

can also be part of important expert search tasks; for example, in a medical image perception 

task in radiology where the clinician might have several specific targets to look for plus a 

general requirement to note any clinically significant “incidental findings” (Lumbreras, 

Donat, & Hernández-Aguado, 2010; Wolfe, 2017).

The term “hybrid foraging” is an extension of “hybrid search”. In a simple hybrid search 

task, observers search for one instance of any of several possible targets in a display 
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containing distractor items. Schneider and Shiffrin (1977) used the name “hybrid search” for 

this combination of a visual search though the display and a memory search through the set 

of possible targets. A wide range of hybrid search tasks produce similar results. Response 

time (RT) increases linearly with the number of items in the visual display and 

logarithmically with the number of items in the memory display (Wolfe, 2012). This is true 

for specific objects in specific poses as well as for categories of objects (Cunningham & 

Wolfe, 2014) and words (Boettcher & Wolfe, 2015).

In standard laboratory visual search, there is typically one target or no target in a search 

display and the search is over when the target is found or when the searcher concludes that 

there is no target to be found. However, in many important real-world search tasks, including 

those described above, there are likely to be multiple instances of the target(s). Searches for 

multiple instances, especially if the number of instances is unknown, fall into the category of 

foraging tasks. Long studied in the animal behavior literature (Pyke, Pulliam, & Charnov, 

1977; Stephens & Krebs, 1986), foraging has more recently become a topic of interest in 

cognitive science (Hills & Dukas, 2012; Hills, et al., 2015) including, unsurprisingly, 

information foraging on the internet (Pirolli, 2007; Pirolli & Card, 1999). In human visual 

foraging, much of the interest to date has focused on the moment when observers decide to 

stop foraging in the current ‘patch’ (or screen) and move to the next patch (Ehinger & 

Wolfe, 2016; Wolfe, 2013; Zhang, Gong, Fougnie, & Wolfe, 2017)1. Predictions based on 

Charnov’s (1976) Marginal Value Theorem (MVT) work quite well, at least on average data. 

MVT proposes that foragers should leave for a new patch when the current yield from the 

current patch falls below the average yield for the task as a whole. Thus, you should move to 

the next blueberry bush when your rate of berry acquisition from the current bush drops 

below the rate you have established in the field. MVT works well for tasks where there are a 

large number of targets. It is less well-suited to tasks where targets are found more 

intermittently. When should you stop looking for missile launchers in the current satellite 

image and move to the next? There may be multiple targets, but it is likely that there will be 

relatively long periods where nothing is found and where the instantaneous rate of success 

drops to zero. Under such circumstances, it would not make sense to abandon search as 

simple MVT would suggest. However, MVT can be reformulated in a more Bayesian 

manner to say that the forager should leave when the expected value of staying falls below 

the expected value of leaving (“potential value theory” Cain, Vul, Clark, & Mitroff, 2012; 

McNamara & Houston, 1985, Olsson & Brown, 2006).

Hybrid foraging introduces a new degree of complexity. If you are foraging for any of 

several types of target, how should you structure your search within a patch? Should you 

search for each target type in turn, switching to a new target type when the rate of acquiring 

the current target type falls below some level? Should you collect items at random from 

within the target set? This topic has been the subject of considerable research in the animal 

behavior literature, typically with a memory set size of just two. The problem is usually 

1The animal foraging literature discusses when an animal leaves one food ‘patch’ to move to another. In the present work, each screen 
is the equivalent of a patch and we are interested in when observers chose to finish with one screen and move to the next. We will use 
the term ‘patch’ here in order to preserve this connection to the foraging literature (and because ‘screen’ introduces other ambiguities 
into the prose.
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framed around a predator with two available forms of prey; for instance, a bird, hunting for 

moths of two varieties (Bond, 2007; Bond & Kamil, 2002; Dukas, 2002) or pecking for 

different sorts of seeds. When targets are relatively hard to find – when they are “cryptic” in 

the language of the animal literature – birds tend to pick the more common item at a rate 

higher than that item’s prevalence in the population. Only when the common item becomes 

rarer and harder to find does the bird switch the less common item. If the items are relatively 

conspicuous, birds switch more readily (Bond, 1983).

Humans show similar behavior (Bond, 1982). In a more recent experiment, Kristjansson et 

al. (2014) showed observers an iPad screen with four types of items. In the simple color 

feature condition, items could be red, green, blue, or yellow and observers were asked to 

touch all of the items showing either of two colors (e.g. red and green). Like pigeons 

pecking at conspicuous seeds, the observers switched back and forth between items of the 

two colors. In a second condition, the items were defined by conjunctions of color and 

shape. Observers were asked to collect red circles and green squares and to ignore green 

circles and red squares. In this case, the targets do not pop-out of the display. Observers 

tended to pick all of the items of one type before switching to the other type. This 

perseverance on one type of target is similar to, but more extreme than, what is seen when 

birds hunt for ‘cryptic’ prey. The difference may have been influenced by the instructions 

given to the human observers. Kristjansson’s human observers were asked to search 

exhaustively. They had to select every red circle. In more typical foraging tasks, observers 

are allowed to move on to the next patch (or screen) when they wish. Neither of these 

approaches is the “right” way to do the task. They capture aspects of different real-world 

search tasks. When foraging for food, the animal is generally free to move to the next bush 

when the current bush becomes unsatisfactory. In contrast, a radiologist ‘foraging’ for cancer 

metastases might be under an obligation to find everything before moving to the next 

patient.

Wolfe et al (2016) had observers memorize between 8 and 64 photographs of objects and 

then perform a hybrid foraging task in which they searched through displays (henceforth 

“patches”) that contained multiple instances of those target types. Each patch contained 

examples of 3–5 of those target types. Observers collected items by ‘clicking’ on them with 

a computer mouse. They could leave the patch whenever they wished by clicking on a 

“next” button. This produced a new patch about five seconds later with a new set of 3–5 

target types present. The observers’ goal was to collect a designated number of targets as 

quickly as possible. They were not required to be exhaustive in their search. To thwart 

systematic strategies (‘reading’ from top-left to bottom-right for example), all items were in 

continuous movement around the screen.

Observers in this task did not pick randomly among available targets. Instead, observers 

tended to collect items in runs of one target type. RT data indicated that searching again for 

the same item was more efficient than searching for any of the other targets held in memory. 

Results were generally consistent with optimal foraging theory and observers tended to leave 

25–33% of targets uncollected when moving to the next screen/patch.
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In a subsequent paper, Wolfe, Cain, and Alaoui-Soce (2018) manipulated the value and 

prevalence of items in a similar foraging task. Observers always held four items 

(photographic objects) in memory. In the foraging portion of the task, 20–30% of 60–105 

items were targets. These could be equally distributed amongst the four possibilities or they 

could vary in prevalence (7%, 13%, 27%, and 53% of total target items, respectively). Items 

could also vary in their value (in points) to the forager (2, 4, 8, or 16 points). In the condition 

where value and prevalence varied, they varied inversely so that a common but less valued 

target type represented as many points as a valuable but scarce item. Value and prevalence 

had strong and interacting effects on foraging behavior. Unsurprisingly, foragers tended to 

favor more valuable items. Interestingly, when values were uneven, they tended to leave 

patches sooner. This makes sense in the MVT context because, once the valuable items are 

picked, the rate of return tends to drop more quickly in these conditions. Moreover, uneven 

value introduced more variability between observers. Some observers tended to collect only 

valuable items and then move to the next screen/patch. Others did not leave patches so 

precipitously. On average, foragers tended to abandon patches too soon, in MVT terms, 

when both prevalence and value were uneven.

As in the other foraging search tasks described above, the item foraged next depended on the 

item foraged previously (The “selection history”; Awh, Belopolsky, & Theeuwes, 2012; 

Theeuwes, 2018). This tendency for collection to go in runs longer than predicted by 

random selection among targets is seen in the animal literature as well (Bond, 1982). In the 

present paper, we examine the reasons for this tendency for target types to be picked in 

‘runs’. There are several hypotheses that can be tested:

1) Selection goes in runs because the previous selections perceptually prime the next 

selection on the basis of shared basic features (e.g. if you picked red last time, you 

will be guided to red the next time).

2) Selection goes in runs because the previous selections semantically prime the next 

selection (e.g. if you picked a tool last time, you are more likely to pick a tool the 

next time, even if that tool shares no more features with the previous selection than 

does another type of target).

3) Selection goes in runs because one target type is in the focus of attention (perhaps 

in working memory) at any given time and, regardless of whether there is semantic or 

perceptual priming, there is a cost associated with switching a new item into the focus 

of attention

These hypotheses are not mutually exclusive. Here we report qualified evidence for feature 

guidance (Hypothesis #1), good evidence for switch costs (#3), but no evidence for semantic 

guidance (#2).

Experiment 1: Near replication of Kristjansson, Johannesson, & Thornton 

(2014)

In Experiment 1, we perform a near-replication of Kristjansson, Johannesson, & Thornton 

(2014). Recall that they had observers forage for two colors in a four-color display or for 
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two mutually exclusive conjunctively defined targets. They found strong evidence for runs in 

the conjunction case. Like Kristjansson, we had feature and conjunction search conditions. 

We added a letter search condition, designed to be ‘unguided’. Targets were the lower-case 

characters p & d among b and q distractors. Here the targets are semantically distinct, in the 

sense that “b” has a different meaning or identity than “d”, but no basic features can be used 

to guide attention to a specific target type. Unlike Kristjansson, our observers were allowed 

to leave the current patch at will and to proceed to the next patch. This turns out to be a 

critical factor in shaping the pattern of responses.

Methods

Participants—Twenty-four naïve observers (16 females), ages 18 to 47 years (M = 29.7 

years, SD = 12.3 years) participated in the experiment. All participants had normal or 

corrected-to-normal vision and passed the Ishihara Color Test (Ishihara, 1980). Participants 

provided oral informed consent and were paid $10/hr for their participation. All procedures 

were approved by the Partners Healthcare Corporation Institutional Review Board. The 

sample size was determined by the sample size required to see important RT and RT × set 

size effects in visual search experiments [Wolfe, 1998 #4526]. Twenty-four observers are 

adequate to detect a 1.5× change in slope with power of 0.95 and 0.01 chance of a Type 1 

error.

Stimuli and apparatus—The experiments were written in Matlab 7.10 (The Mathworks, 

Natick, MA) using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997, Kleiner et al, 

2007) version 3. Stimuli presented on a 55-inch TV (Sony XBR55) with an infrared 

multitouch detection overlay. Observers responded by touching stimuli on the screen. An 

item was considered to be selected if the touch fell inside a circle with a diameter of 28 

pixels (approximately 0.8 degrees of visual angle) centered on the item. If a touch was 

ambiguous between a target and a distractor item, the target item was collected. Since some 

experiments involved a touchscreen and others involved response via computer mouse. We 

will refer to items as being “collected” or “clicked”, using “clicked” in a generic sense to 

include touch responses.

Observers were placed at a viewing distance slightly less than arm’s length from the screen. 

There were three stimulus conditions, cartooned in Figure 1. In all cases, individual stimuli 

subtended approximately 0.75 deg. They were initially placed randomly in cells of a 15 × 15 

grid. However, immediately upon the start of the trial, the items began to drift in a random 

manner within a 40 × 25 deg region of the screen. Items moved at a constant velocity of 44 

pixels/second (approximately 1.2 degrees of visual angle per second), changing directions at 

pseudo-random intervals. It is useful to have stimuli that move in foraging experiments of 

this sort to avoid having observers simply “read” a display from, say, top left to bottom right; 

a reasonable search strategy but not a very interesting one for present purposes (Wolfe, et al., 

2016).

In the Feature Condition, stimuli were red, yellow, green, or blue squares. Half of the 

Observers foraged for blue and green items; the other half, for red and yellow. In the 

Conjunction Condition, half foraged for green squares and blue circles among blue squares 
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and green circles while targets and distractors were reversed for the other half. Finally, in the 

letter condition, half searched for p & d among q & b distractors while the other half 

searched for q & b among p & d. Displays contained 60,100, 140, or 180 total items to start. 

Of those items, 20–30% were target items.

Procedure—At the start of each condition, observers were tested to assure that they knew 

their two targets. They were shown each of the types of item for the condition and asked to 

identify them as target or distractor. Next, they briefly practiced foraging for those targets. 

Targets were collected by touching it on the touchscreen. Target items disappeared once 

touched and gave a reward of 2 points. Distractors also disappeared when touched and gave 

a penalty of −1 point, but they were rarely selected. This small penalty was introduced so 

that observers would not adopt a strategy of simply clicking everything as quickly as 

possible. A new screen with a new set of items could be generated at any time by clicking on 

the “Next” button at the center of the display. In each condition, observers needed to collect 

100 points (i.e., 50 targets, assuming no distractor clicks) in the practice period and 1000 

points (500 targets) in the experimental block. They were not explicitly told that they needed 

to collect items of both target types, but everyone did so. Observers could view as many 

screens as they wished in the process of collecting the required number of points. The block 

ended when the point goal had been reached. In the practice period, observers were shown 

the locations of all remaining targets after they clicked on the Next button. They were not 

given this feedback during the experimental period. Response times were recorded and 

erroneous clicks were tabulated.

Results & Discussion

Our first interest is in whether the pattern of runs deviates from what would be predicted by 

chance selection of items from the set of all available targets. A selection is part of a “run” if 

the target selected is the same as the previous target selected. Runs are not held to continue 

between screens. Thus, the first trial on a screen is not considered to be a run or a switch 

trial. Errors (e.g. clicking on a distractor) ended runs. The selection after an error was not 

coded as a run or a switch trial.

Table One gives overall numbers of patches, targets per patch, and runs per patch as a 

function of condition. It can be seen that observers changed patch somewhat more quickly in 

the Letter condition. There are obvious variations in the numbers of runs per patch. When do 

these deviate from the chance distribution of runs? That is, with two targets in memory and 

present on screen, it would be expected that the same target type would sometimes be picked 

on successive selections. That chance distribution of runs is difficult to compute because it 

changes dynamically during foraging from a patch. That is, if a patch started with 20 red and 

20 green targets, the probability of picking one or the other color would be 50%, but as soon 

as one target is selected, the probabilities change, and continue to change from selection to 

selection. Moreover, the total number of selections from a single screen/patch varies from 

trial to trial and observer to observer. Accordingly, it was more straight-forward to simulate 

random selection. Stimuli were generated with the same mix of targets and distractors as in 

the real experiment. The number of simulated selections for a specific screen was drawn 

from the distribution of actual numbers of selections produced by human observers. For both 
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real and simulated data, the numbers of runs of different length were tabulated. The resulting 

proportions are tabulated in Figure 2.

Data were compared to the random selection function using a Kolmogorov-Smirnov test. 

Pooling all the data, each condition is significantly different from random selection (all 

p<0.001). The deviations are largest for the conjunction condition and minimal for the letter 

condition. If we look at individual observers using an alpha of 0.001 to correct for multiple 

comparisons, in the feature condition, 4 of 24 observers’ individual functions reject the null 

hypothesis of random selection (9 observers would reject the null hypothesis with p<0.01). 

In the conjunction condition, 23 of 24 observers’ functions reject the null hypothesis of 

random selection at p < 0.001). In the letter condition, none of 24 observers’ functions reject 

the null hypothesis of random selection (4 observers would reject at p < 0.01).

Green circles show the observed distribution averaged across all 24 observers. Red squares 

show the results of the simulation of random selection. The two functions are compared 

point-by-point by 1-sample t-tests. Circles with black outlines show points where the 

functions are statistically different (p<0.001 for all significant points except those near the 

crossover between the two functions. The significant points near the crossover have p < 0.01, 

not corrected for multiple comparisons). Significance was not calculated for runs > 10 

because the chance probability is extremely low. It is clear in the Feature condition and, even 

more so, in the Conjunction condition, that humans produce longer runs than would be 

predicted by chance. Runs of length one and two are significantly under-represented and 

longer runs are significantly over-represented.

For the Letter condition, visual inspection shows that the results from the human observers 

are much closer to the results of the simulation of chance performance. The two functions 

deviate significantly for runs of length 2 with a lower proportion than expected by chance. 

However, there is no difference for lengths of 1, 3, 4, or 5. There is a significant effect at the 

higher run lengths. These effects are probably the result of observers occasionally making a 

volitional decision to search for just one item in a screen/patch.

This pattern of results indicates that guidance by basic feature information (Wolfe & 

Horowitz, 2017) is an important factor in shaping the distribution of runs. After you pick one 

type of target, it is likely that the next pick will share the same features. This applies to the 

Feature and Conjunction conditions. In the Letter condition, all of the items have the same 

basic features and, perhaps as a consequence, there is very little evidence that the letter 

identity of the current pick primes the selection of the next item. Why does the effect appear 

to be larger in the Conjunction condition than in the Feature condition? In both cases, basic 

feature information is available to guide attention to the next item. Indeed, guidance by a 

single basic feature like color is typically more effective than guidance by a conjunction of 

features (Wolfe, 1998). One possibility is that it is easier to switch from blue to green in the 

Feature condition than it is to switch from blue circle to green square in the Conjunction. An 

alternative account of the color search results would be that observers can maintain two 

color templates2 at the same time [Hollingworth, 2016 #12813; Gilchrist, 2011 #10925; 

Berggren, 2016 #12948], though there seems to be some cost for doing so [Grubert, 2014 

#11872; Stroud, 2017 #13431]. These hypotheses can be tested by looking at the response 
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times (RTs) defined as the times between successive selections. RTs can be classified as 

“run” RTs or “switch” RTs depending on whether the preceding selection was the same or 

different from the current selection. The first RTs in a patch are coded separately and 

excluded from this analysis. They are typically relatively long.

Figure 3 shows run and switch RTs for each of the three conditions as a function of the 

“Effective Set Size”. For this analysis, RTs were removed if they were less than 200 msec or 

greater than 7000 msec. In visual search experiments, RTs are typically analyzed as a 

function of the set size because, as a general rule, it is harder to find a target among a larger 

number of distractors than among a smaller number. The slope of the RT × set size function 

is a standard measure of the efficiency of a visual search (for a recent argument about this, 

see Kristjansson, 2015; Kristjánsson, 2016; Wolfe, 2016). In foraging tasks like those 

studied here, the Effective Set Size can be defined as the number of items on the screen 

divided by the number of targets. Thus, the search task is assumed to be roughly the same if 

one is looking for a single “p” or “d” among 12 other letters or for any of four instances of 

“p” and “d” among 48 letters. One could define a different effective set size as the number of 

items on the screen divided by the number of one specific target type (e.g. just the “d”s) but 

here we are treating all visible targets (“p”s and “d”s) as the denominator. Note that 

Effective Set Size increases as foraging progresses in a patch because the number of targets 

decreases proportionally more quickly than the total number of items on the screen.

Figure 3 shows RT as a function of Effective Set Size for run and switch trials. The number 

of trials per data point decreases as the Effective Set Size (EffSS) increases from more than 

40 repeat trials and more than 14 switch trials per observer at EffSS=4 to 6–11repeat trials 

and just 3–5 run trials at EffSS=12. The figure shows the expected differences between 

conditions. As in standard search tasks, feature searches are more efficient than conjunction 

searches. Those, in turn, are more efficient than spatial configuration tasks like the letter 

search (Wolfe, Palmer, & Horowitz 2010). An ANOVA with Condition, Run/Switch, and 

Effective Set Size as factors shows very large main effects of Condition (F(2,46)=337.0, 

p<0.00001, ηG
2 = 0.68) and Effective Set Size (F(8,184)=20.3, p<0.00001, ηG

2 = 0.10). The 

interaction of Condition and Effective Set Size, reflecting the fact that the difference in the 

slopes of the RT × Effective Set Size functions across conditions is also very robust (F(16, 

368)=8.5, p<0.00001, ηG
2 = 0.08). The average slope for feature searches (12 msec/item, 

sd=11) is less than the average for conjunction search (27 msec/item, sd=21, t(23)=3.3, 

p<0.005). The conjunctions slopes are much shallower than the letter slopes (164 msec/item, 

sd=120, t(23)=5.6, p<0.0001)

The main effect of the Run/Switch variable is significant (F(1,23)=65.8, p<0.00001, 

ηG
2 = 0.10). Two-way ANOVAs on each of the conditions separately show that there is a Run/

Switch effect in each condition (all F(1,23)>10.5, all p <0.004, all ηG
2 > 0.03). However, it is 

clear that the switch costs are much bigger in the Conjunction condition than in either the 

2We use the term “template” to refer to some internal representation that can guide attention to a target’s features (color, size, etc). A 
template that is the internal representation of identity (this is the letter, “B”; this is a cat) might or might not be the same template. For 
purposes of this paper, we are using the term to refer to a template’s role in guidance.
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Feature or Letter condition. This is reflected in a significant interaction of the Run/Switch 

and Condition in the three-way ANOVA (F(2,46)=20.1, p<0.00001, ηG
2 = 0.07).

Another way to look at switches and what drives them is to examine the distance between 

targets. As can be seen in Figure 4, for all three conditions, the first click in a run (i.e., the 

switch click) is very near to the previous target, and subsequent clicks get further away 

(Feature: F(1,23)=28.78, p<.001, ηG
2 = 0.56; Conjunction: F(1,23)=51.67, p<.001, ηG

2 = 069; 

Letter: F(1,23)=18.68, p<.001, ηG
2 = 0.45). For all conditions, post-hoc t-tests confirmed that 

the last click in the run was significantly further away from the previous target location than 

were any of the previous clicks (Feature: all t>3.5, all p<.001; Conjunction: all t>4.5, all p<.

001; Letter: all t>3.0, all p<.005).

These results suggest that there are two factors at play in the tendency of items to be 

collected in runs in these tasks. First, selection of a target type primes the features of that 

target type, giving other items with those features priority in subsequent search (Failing & 

Theeuwes, 2017; Theeuwes, 2013). Both the Feature and Conjunction conditions would 

produce this type of guidance by priming. The letter search is a “spatial configuration 

search” (Wolfe, 1998) with no guidance beyond that which directs attention to items in the 

search array and not blank space or objects elsewhere in the room. Second, in line with task 

switching costs, more generally (Altmann & Gray, 2008; Monsell, 2003), switching the 

target template can be costly in visual search (Wolfe, Horowitz, Kenner, Hyle, & Vasan, 

2004). There are costs associated with switching between two colors (Ort, Fahrenfort, & 

Olivers, 2017) but these are fairly small (Grubert & Eimer, 2014; Liu & Jigo, 2017) and, as 

noted above, it could be that two color templates can be active at the same time. The cost is 

more dramatic in conjunction search (Wolfe, et al., 2004). Thus, in the conjunction foraging 

condition, observers are least likely to want to switch to a new target and, as a result, the 

evidence for more and longer runs of responses is clearest in the Conjunction condition. In 

the letter search, there is no switch of a feature-based attentional set from item to item 

during the search. Attention is deployed to the next item, more or less at random, and that 

item is identified as either one of the two targets or as a distractor. Even though there may 

not be feature guidance in the letter condition, RTs are still faster when target type is 

repeated. This probably represents the effects of response priming (repetition and/or 

semantic priming). It is faster to make the same response again than to make a different 

response and, thus, switch responses are longer than run responses [Krinchik, 1974 #7750; 

Farah, 1989 #2252

The distance data are consistent with this account. Switches become more likely when 

available targets of the current type are relatively far away. At that point, it is worth ‘paying’ 

the switch cost in order to collect a nearby target of the other type.

What is left behind?—In this experiment, observers are free to move to the next screen/

patch whenever they wish. Recall that this method differs from the Kristjansson et al (2014) 

paradigm in which observers were required to collect all targets before moving to the next 

screen. This leads to interesting question about the targets that are left on screen when the 

observer chooses to move to the next screen. The targets that are left behind should not be 
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thought of as errors since observers were told to leave each patch whenever they wished. 

Indeed, as the next section will discuss, Optimal Foraging Theory predicts that items will be 

left behind (Charnov, 1976).

Figure 5 shows the percentages of items left behind in each of the three conditions of the 

experiment for each observer. The observers are ordered by the percentage left behind in the 

Letter condition. Several trends are visible. First, the left behind rate is lowest for Feature 

search and highest for the Letter search. Second, as more items are left behind, the 

variability across and within observers increases. Observers seem to adopt very different 

strategies with some observers leaving fewer than 10% of letters, on average, while others 

leave as many as 60% of letters. Sometimes, observers fail to collect any instances of one 

type of target from a screen. Faster picking is associated with more items left on screen, but 

the relationship between the percentage left behind and the rate of picking is weak (Feature: 

r2=.20, p=0.03, Conjunction: r2=0.08, p=0.17, Letter, r2=.15, p=0.06). A more convincing 

analysis of these points would require a design with greater statistical power. Finally, 

individuals have a relatively consistent tendency to leave items behind. The percentage of 

items left behind in the Letter condition is correlated with the Conjunction condition (r2 = 

0.62, p<0.0001) and the Feature condition (r2 = 0.47, p<0.0005).

Is Foraging Optimal?—Optimal foraging theory (Charnov, 1976) makes predictions 

about when observers should leave the current patch. Specifically, Charnov’s (1976) 

Marginal Value Theorem (MVT) says that observers should leave a patch when the current 

rate of collection from the patch falls below the average rate for the task as a whole. The 

average rate is reduced by the time between patches when nothing can be collected. This is 

known as the “travel time” in the foraging literature; the time, for example, that a bee might 

spend flying to the next flower. The longer that travel time, the lower the average rate and 

the longer the bee should continue collecting from the current flower. MVT is not the best 

model for search tasks where target acquisition is intermittent because, under those 

conditions, the current rate can drop to zero (Cain, et al., 2012; Ehinger & Wolfe, 2016) but 

in tasks like the ones used here, where observers are picking rapidly and continuously, it has 

proven to be a good fit to average data, even if it is violated in some specific situations 

(Wolfe, 2013; Zhang, et al., 2017). Is MVT appropriate to this hybrid foraging task? It 

would not be a good model for the Kristjansson version of this task because their observers 

were required to search exhaustively. In Experiment 1, the interesting complication is that 

there are two types of target in each patch. As the rate of collection drops, our observers can 

choose between switching patches and switching target types. Under these circumstances, is 

the overall behavior still consistent with MVT?

In fact, MVT is not a good predictor of the patch leaving time for the current data. This is 

shown in Figure 6. Rate of selection is plotted as a function of “reverse click”. The use of 

reverse clicks as the independent measure allows the data to be aligned to the end of 

foraging in the current patch rather than the aligning to the start of foraging. Thus, reverse 

click #1 is the last item selected in a patch. Reverse click #2 is the penultimate click, and so 

forth. MVT predicts that the penultimate click should be near the average rate (shown as a 

dashed horizontal line for each task). The rate for the final click then falls below the average 

rate, triggering patch leaving, according to MVT. In the present data, it is clear that 
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observers continue picking longer than MVT predicts the Feature and Conjunction 

conditions. The rates for each of the last three clicks in those conditions fall below the 

average rate (all 6 t(23)>3.2, all p < 0.005). The letter condition conforms more closely to 

the MVT prediction. The penultimate rate is not different from the average rate (t(23)=1.8, 

p=0.09). The next, final click is at a significantly lower rate (t(23)=2.2, p=0.04). 

Alternatively, we can ask where the instantaneous function crosses the average rate. MVT 

predicts that intercept at about reverse click 2. The next click is then at too slow a rate and 

the observer leaves the patch. We calculated these crossing points from a linear regression 

on reverse clicks 1–7 (a roughly linear range). The intercepts were: Feature: 4.8, 

Conjunction 5.6, Letter 6.5. All of these values are significantly greater than 2 (all t(23) > 

5.2, all p < 0.0001, which would survive correction for multiple comparison). By this test, 

all conditions violate the predictions of MVT.

Why are observers staying too long in a patch (at least, from the MVT vantage point)? 

Looking at the internal structure of foraging within a patch can provide an answer because 

the observer’s time in each patch can be thought of as a succession of smaller foraging 

episodes. Just as observers need to decide when to leave a patch, they also need to decide 

when to leave a run. If an observer is collecting green squares in the Conjunction task, they 

need to decide if it is worth switching to the blue circle target. The switch costs within a 

patch are akin to the “travel costs” between patches that drive down the average rate. Thus, 

we can look at the rate as a function of position of a click relative to the end of a run just the 

way we would look at the rate relative to the patch leaving time. This is shown in Figure 7. 

Rather than plotting Reverse Clicks from the last click in the patch, the rates (1/RT) in 

Figure 7 are plotted relative to the last click in the run. Results are averaged over runs with 

length longer than 2 because the first trial in each run is a “switch trial”. These trials are 

much slower (rate is lower) and in Figure 7 are plotted as larger, outlined symbols.

As in the patch as a whole, the rate drops during a run as the local population of targets of 

that type is depleted. When the observer decides to switch to a new target, that “switch trial” 

is markedly slower for Feature and Conjunction conditions. Notice that the effective rate 

when making a switch trial is lower than the average rate for the task. If the observer 

followed the usual MVT rules and left the patch when the current rate dropped below the 

average rate, they would tend to move to a new patch rather than switching to the other 

target. Perhaps to avoid this, observers only leave the entire patch when the current rate is 

below the rate for switch trials. Notice that this effect is small for the Letter condition. The 

switch costs are smaller, perhaps reflecting the random selection of one or the other letter 

(see Figure 1).

Experiment 2: Replication with complex conjunction stimuli

Experiment 1 found strong evidence that targets were foraged in runs when the target types 

were differentiated from each other by basic ‘guiding’ features. Notably, when the targets 

were conjunctions of color and shape, observers were most likely to continue picking one 

target type (e.g. blue circle) rather than changing both basic features in order to select the 

other (green squares). In Experiment 2, we replicated this basic result using stimuli defined 
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by conjunctions of several fundamental features in order to vary the number of features 

shared between different target types.

Method

Twenty-six observers (18 females), ages 19 to 55 years (M = 28.4 years, SD = 10.58) were 

tested. All observers passed the Ishihara color test and had or were corrected to at least 

20/25 vision. Of these, 13 were tested using a touch screen while the other 13 responded 

with a mouse click. Data from one observer was corrupted, leaving 25. Consent was 

obtained as approved by the Partners Healthcare Corporation Institutional Review Board.

The target types are shown in Figure 8. Items are conjunctions of 4 features: color, 

orientation, curvature (Wolfe, Yee, & Friedman-Hill, 1992), and the presence or absence of a 

hole (Chen, 2005). The four items shown were the target types. The distractor set consisted 

of 124 items created from all the combination of 8 colors × 4 orientations × straight vs 

curved × hole vs no hole (128 – 4 targets = 124). The distractor set included colors and 

orientations not present in any target. Each patch started with 60, 80, 100, or 120 items on 

screen. Of these, 20–30% were target items, divided pseudo randomly amongst the four 

target types. All four targets were present in 74% of patches. In 24% of patches, three target 

types were present. Only two types were present in 2% of patches. This meant that the 

observers could not be assured that a specific target type would be present in a display. In 

any given patch, a set of distractors was chosen from the remaining 120 types of item in the 

full set. Distractors were chosen so that the number of instances of a specific distractor type 

was comparable to the number of instances of target types. On average, there were 18 

distractor types in the display with a range from 13 to 23. As in Experiment 1, all items 

moved randomly about the screen in order to thwart systematic strategies (e.g. reading the 

display from top left to bottom right).

Methods were otherwise similar to those of Experiment 1. Observers learned the four 

targets. They were tested to confirm that memory using a short recognition memory test. 

They then collected targets in a series of screens/patches. After a brief practice block, 

observers collected 2000 points in each of 2 blocks. Observers received 2 points for a correct 

response and lost 1 point for any false positive click on a distractor item. These were rare, so 

observers averaged 1013 targets per block. Observers could move to the next patch at will. 

In practice, they visited an average of 53 patches per block, collecting an average of 19 

targets per patch. Each experimental block took an average of 25 minutes. Observers were 

instructed to reach the point goal as quickly as possible.

Results & Discussion

Half of participants responded with a touchscreen and half with a standard computer mouse. 

We compared data from the two response modalities and found no broad differences 

between them. In particular there were no difference in mean collection time (touch 

M=1.50s, mouse M=1.40s, t(17.82)=0.61, p=.547, d=.25), time to first collection (touch 

M=2.16s, mouse M=1.84s, t(22.62)=1.40, p=.175, d=.56), response time for last collection 

in a display (touch M=2.47s, mouse=2.78, t(14.47)=0.544, p=.594, d=.22), or points earned 
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per second (touch M=1.13, mouse=1.31, t(17.76)=1.48, p=.157, d=.60). Given the lack of 

difference between modalities, groups were combined for all further analyses.

On average, a patch had 22 targets at the start. Observers left an average of 3.4 (15%) target 

items uncollected when they moved to the next patch. On average, observers collected at 

least one of every available type of target in 80% of patches.

Of most interest in this experiment is the sequence of target selections within a patch. To 

determine if observers were picking randomly among the items, we calculated the 

percentages of each type of target for selections 2–10 in a patch. We restricted this analysis 

to the first half of the selections in a patch in order to avoid situations where one or more 

targets were entirely depleted, but the pattern of results reported below is similar if all trials 

are included. We then tested whether any types of selection were more or less likely than 

predicted by random selection. Given four target types, there were 16 conditional 

probabilities for the chance of picking target A given that target B had been picked 

immediately previously. The first selection was eliminated from the analysis because, of 

course, it has no preceding selection in the patch.

Figure 8B shows the results of this analysis as percentage deviation from the chance 

prediction. Green indicates positive deviations while increasing negative deviations are 

colored from yellow to red. It is clear from the green diagonal that the likelihood of 

repeating the selection of a target type is higher than would be expected by chance. This is 

evidence, as in Experiment 1, that responses go in runs. If you are picking blue crescents, 

you are more likely than chance to continue to do so. This was true for each of the four 

targets. We can reject the hypothesis that the percentage of repeat targets is the same as 

would be expected by chance (all four t(24) > 12, all p<10−10). When observers did move to 

another target type, was that shift influenced by the number of features shared with the 

previous selection? There are significant differences between transitions to items sharing 0, 

1, or 2 features with the preceding item (all t(24)>2.2, all p < 0.04, not corrected for multiple 

comparison). However, these are not particularly strong effects and, with these particular 

stimuli, observers are less likely to choose an item that shares two features with the 

preceding selection. This may be a function of the specific stimuli. The objects that share 

two features are a red vertical crescent with a hole and a green vertical rectangle with no 

hole. It is possible that different sets of shapes would yield different results. In these data, 

there is little or no evidence that switches were anything but random among the possible 

target types. For instance, if we compare switches where the shape remained the same 

(crescent to crescent, rectangle to rectangle) to those where the shape changed, there is 

essentially no difference (t(24)=0.02, p=0.98).

As in Experiment 1, switch trials are slower than repeat trials (1039 vs 2033 msec, 

t(24)=12.7, p<0.00001). Within the set of switch trials, targets that share 1 feature with the 

previous selection are slightly faster than targets sharing 2 or 0 features. As noted above, this 

post-hoc result is hard to explain and would not be statistically reliable if multiple 

comparisons are considered. We calculated the Effective Set Size as the number of available 

targets divided by the number of items on the screen. There were an average of at least 50 

repeat and 30 switch trials at Effective Set Sizes 4–10. Calculating the slope of the RT × 
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Effective Set Size function over set sizes 4–10, we find that searches for the same item are 

more efficient than searches for a new type of target (50 msec/item vs 104 msec item, 

t(24)=4.5, p<0.0002). Targets collected on switch trials were also farther away from the 

previous target than targets collected as part of a run (553 pixels vs 658 pixels, t(24)=6.1, 

p<0.00001).

The results of Experiment 2 suggest that observers are simultaneously searching for all four 

of the target types. This agrees with the conclusion of work on simple hybrid search for a 

single target in a display (Wolfe, 2012; Wolfe, Drew, & Boettcher, 2014). Selection history 

(Awh, et al.,2012, Theeuwes, 2018), notably feature priming, biases search in favor of the 

most recently collected item. Thus, if you have just selected a blue crescent, you are likely to 

pick another one. However, if that other one is relatively far away, you may find a different 

type of target before you can confirm another blue crescent. That is the moment when a run 

ends and you switch to collecting the new target type. Note that, in this case, “simultaneous” 

means that the observer is not searching for all of one type, then all of the next type, and so 

forth. These data do not tell us if all four targets were simultaneously active in working 

memory.

Experiment 3: Forcing Runs and Switches

In the two experiments reported thus far, observers repeat targets in runs more often than 

would be predicted by chance. RTs on those run trials are faster than the RTs for switch 

trials. Does that mean that selecting items in runs of the same type of target is an inherently 

more efficient way to perform these hybrid foraging tasks? Perhaps runs are simply a default 

strategy and switching would be just as fast if observers could be persuaded to make that the 

default. In Experiment 3 we tested this hypothesis by requiring that observers switch target 

types as often as possible. We compared this to a condition where they were instructed not to 

switch as often as possible. This experiment addresses a second issue as well. In Experiment 

2, there is no evidence that selection of a new type is anything but random amongst the set of 

possible targets. Perhaps we would see more evidence of non-random switching if we forced 

observers to switch target types. Thus, Experiment 3 was essentially the same as Experiment 

2 with one critical change in the instructions. Observers searched for the same four 

conjunction stimuli, shown in Figure 8. In Experiment 3, there were two blocks. The Run 

block, observers were given points only if they selected the same target as the previous 

selection. They lost a point if they switched. Observers needed 900 points to complete the 

task. In the Switch block, observers were given points only if they selected a target that was 

different from the previous selection. They lost a point if they repeated the previously 

selected target. Observers needed 750 points to complete this task. The different point counts 

roughly equalize the duration of the two blocks. All responses were made by mouseclick in 

Experiment 3.

Twelve observers (8 females), ages 18 to 43 years (M = 11.5, SD = 4.4) were tested. All had 

at least 20/25 acuity with correction and could pass the Ishihara color test. All were paid for 

their participation. Consent was obtained as approved by the Partners Healthcare 

Corporation Institutional Review Board.
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Results & Discussion

The core manipulation worked as intended. In the Run condition, 87% of selections were 

repeats of the target type selected immediately previously. Of course, targets of one type 

could be completely depleted in a display, at which point an observer needed to switch or 

move to the next display. In the Switch condition, just 3% of selections were repeats of the 

previous target type. We can easily reject the hypothesis that forcing observers to switch as 

often as possible would make switching as easy as continuing to select the same target. 

Target collections on forced run trials were markedly faster than on forced switches (M=910 

vs 1506 msec, t(11)=16.3, p<0.00001, Cohen’s d=4.1) and markedly more efficient over 

effective set sizes of 4–10 (14 msec/item vs 70 msec/item, t(11)=5.3, p<0.0001, Cohen’s 

d=2.7). Switch costs in hybrid foraging are not simply the by-product of a default preference 

for runs. It would be more correct to say that runs are the default because switching is 

expensive.

The second hypothesis in Experiment 3 is that forcing observers to switch as often as 

possible would provide evidence for a preference to switch between target types that shared 

more basic features. Individual observers do sometimes appear to prefer some transitions 

over others. For example, some observers seemed to prefer to switch to a target of the same 

orientation, choosing the target with matching orientation twice as often as either of the 

other targets. However, on average there is no reliable pattern. Given selection of a particular 

target on one selection, the probability of selecting one of three other targets on the next 

selection does not systematically deviate from random selection. The strongest effect is that 

after picking a horizontal orange rectangle, observers were somewhat more likely to pick a 

horizontal blue crescent than to pick either of the other two targets. However, the statistical 

probabilities of 0.03 and 0.05 would not survive correction for multiple comparison. 

Observers were not more likely to pick items that shared two features with the prior 

selection than those that shared one feature (t(11)=1.02, p=0.33) or no features (t(11)=1.36, 

p=0.19). While some observers favored items of the same shape or orientation, these effects 

were not reliable in aggregate. Thus, while individuals may have specific strategies for 

finding the next target when forced to find something new, there is no evidence for a general 

strategy across observers. Experiment 1 showed that observers foraged in runs when basic 

features like color and shape distinguished different types of targets. When the two targets 

were “p” and “d”, observers chose between them almost at random. Experiment 2 replicated 

the finding with different conjunction stimuli. However, Experiments 2 and 3 fail to find 

evidence for effects of selection history when the match between the previous selection and 

the current selection is not perfect. While selecting a blue horizontal crescent may prime the 

subsequent selection of a blue horizontal crescent, it did not give any advantage to items that 

were merely horizontal or merely crescent-shaped. It is possible that another blue target 

would have received some benefit but the current experiments were not designed to detect 

color-specific effects.

Experiment 4: Amnesic foraging

Experiments 1–3 show that, all else being equal, observers prefer to pick the same type of 

target again over switching to a new one. They are faster and more efficient when they repeat 
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the preceding selection. Perhaps the act of search for the blue crescent creates a priority map 

(Fecteau & Munoz, 2006; Serences & Yantis, 2006) that favors “blue” and “crescent” across 

the field. This would make other blue crescents more salient and would predispose observers 

to select another blue crescent. Alternatively, the selection of a blue crescent might establish 

a blue crescent search template (Ort, et al., 2017) so that, having found one instance, the 

system is configured to keep looking for this type of target. These hypotheses sound very 

similar but they are differentiable. Suppose that, at the moment of selection of one item, 

contents of all remaining item locations were scrambled. That will reset the current priority 

map. If runs were based directly on topography of the priority map, then scrambling should 

eliminate excess runs. On the other hand, if runs were based on the current search template, 

scrambling should not alter that template. It will take a moment for the template to generate 

a new priority map to guide attention, but the preference for the preceding target should 

remain. Experiment 4 tests this hypothesis.

Methods

The task was similar to the task used in Experiment 2. The “Normal” blocks in Experiment 4 

were identical to the Experiment 2 task. Twelve observers (6 female), ages 18–51 years (M = 

10.3, SD = 13.8) were tested. Observers memorized the same four conjunction targets and 

selected them as fast as they could in an effort to collect 900 points (2 points for a correct 

selection, −1 point for a false positive selection). In the “Amnesic” condition, the task was 

the same, however, each item swapped locations with another item on the screen when a 

target was collected. Thus, if a second target had been located before the click on the most 

recent target, that information would not be useful. Observers ran a brief, 100-point practice 

block with feedback before running the four experimental blocks without feedback. Those 

blocks were run either in the order (Normal – Amnesic – Amnesic – Normal) or (Amnesic – 

Normal-Normal – Amnesic). The starting visual set sizes were 60, 100, 140 and 180. Targets 

constituted 20–30% of the set at the start. Items disappeared when selected. Twelve 

observers were tested (7 female, mean age = 29 yrs). All observers had at least 20/25 acuity, 

normal color vision, and gave informed consent. In this experiment, all data were collected 

by mouse click.

Results and Discussion

RTs as a function of the Effective Set Size (targets remaining / all items remaining) are 

shown in Figure 9 for Effective Set Sizes between 4 and 10. The first selection in each patch 

is removed as it is neither a repeat or switch trial. Correct RTs between 150 and 10,000 

msecs are included in the analysis. The upper limit on RTs was extended to 10 seconds 

because amnesic RTs can be quite long.

The figure makes it clear that repositioning the items after each selection has a very 

substantial effect on RT. Amnesic RTs are greater than Normal RTs at all Effective Set Sizes 

for run clicks (all t(11) > 6.5, all p < 0.00001) and for switch clicks (all t(11) > 3.8, all p < 

0.0030). Switch click RTs are greater than Run click RTs at all Effective Set Sizes (all t(11) 

4.2, all p < 0.0015). The effect of the random location swapping manipulation appears to be 

roughly additive. The slopes appear to be similar for Normal and Amnesic blocks. Amnesic 

Run trials yield a somewhat larger slope but the difference is, at best, marginal (t(11)=2.14, 

Wolfe et al. Page 16

Atten Percept Psychophys. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p=0.06, not corrected for multiple comparisons). Amnesic Switch trial slopes do not differ 

significantly from Normal Switch trial slopes (t(11)=.48, p=0.64).

Figure 10 shows that, as in the previous experiments, observers tended to respond in runs. 

The probability that the next selection will be the same as the previous selection is higher 

than would be predicted by the frequency of those targets in the displays. This is true for all 

target types in the Normal and Amnesic conditions (all t(11) > 3.5, all p < 0.005). Runs 

appear to be a little less prevalent in the Amnesic condition but this is a statistically weak 

effect (t(11)=2.1, p=0.06).

The results of Experiment 4 show that shuffling all of the items after each click slows 

foraging. This makes it clear that, in the Normal condition, observers are searching for the 

next target before they make the motor response to collect the current target. Other than this 

overall slowing, there is no notable difference between the Normal and Amnesic conditions. 

This suggests that the excess of runs is not produced by a persistent priority map. The 

priority map would be flattened or, potentially, worse than useless in the Amnesic condition. 

The excess of runs is, perhaps, better attributed to the persistent of the current target as a 

search template in memory.

Discussion

The results reported here, together with those already in the literature, support an account of 

hybrid foraging, illustrated in Figure 11. For the basic task, used in Experiments 2–4, the 

observer is holding four items in Activated Long Term Memory (ALTM; Cowan, 1995). 

These serve as the search templates for hybrid search. It is common to argue that search 

templates reside in Working Memory (Olivers, Peters, Houtkamp, & Roelfsema, 2011) but 

we know, from prior work, that can’t be true for hybrid search. First, hybrid search can 

involve search for, literally, hundreds of target types at the same time (Cunningham & 

Wolfe, 2014), far in excess of the capacity of working memory. Moreover, loading working 

memory does not cripple hybrid search (Drew, Boettcher, & Wolfe, 2015). It is better to 

think of the search templates as being held in a portion of LTM that is relevant to the current 

task. That is the definition of ALTM. We do not know if there is a limit on the capacity of 

ALTM. If picture recognition experiments are considered to make use of ALTM, the 

capacity would be in the thousands of items (Brady, et al; 2008).

Working memory must play some role in search since there is a vast literature showing 

interactions of working memory and search (e.g. Downing & Dodds, 2004; Hollingworth & 

Luck, 2009; Hutchinson & Turk-Browne, 2012; Luria & Vogel, 2011). Interestingly, many 

of those interactions look like the priming / selection history effects described here (for a 

recent example, see Dowd, Pearson, & Egner, 2017). That is, the contents of working 

memory bias the deployment of attention in search and other tasks. When we tried to block 

hybrid search by loading working memory, what we found, instead, was that the search task 

seemed to commandeer the equivalent of one “slot” in working memory (Drew, et al., 2015). 

We propose that finding a target in a search task, places that target in working memory. Once 

there, it guides attention to other items that share its basic features. In classic search, this 

guidance will increase the fluency of search. In hybrid search tasks and, even more, in 
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hybrid foraging tasks, it will bias search to repeat the selection of another instance of the 

previously selected item. As can be seen in the data presented here, this bias is only a bias, 

not a requirement to continue selecting the same item. Searches for all the target types are 

active and an instance of any one of them might be found but, all else being equal, search for 

the previously selected item will be more fluent. One corollary of this account is that only 

targets in working memory act to prime subsequent selection. Otherwise, imagine the 

consequences of attending to an oblique green rectangle. It is not a target. If it primed other 

oblique green rectangles, that would actively slow search. There is no evidence that this is 

happening. Indeed, the evidence suggests that features of the distractors are inhibited (Lamy 

et al, 2008). Presumably, in foraging tasks like those reported here, distractor inhibition must 

be weaker than the target priming or the distractor inhibition might be expected to 

completely eliminate the tendency for runs (see figure 10 of Wolfe et al, 2003).

At the outset of this paper, we outlined three hypotheses. Now we can revisit them:

1) Selection goes in runs because the previous selections perceptually prime the next 

selection on the basis of shared basic features.

The evidence clearly shows that selection of a target, defined by one or more basic features, 

predisposes the observer to select another example of that type of target. In Experiment 1, 

those targets could be defined by a single color or by a color × shape conjunction. In 

Experiments 2–4, the targets were defined by conjunctions of four features. We did not find 

evidence that, following selection of an item whose definition included a specific feature, 

selection would be biased toward other items showing that feature. That is, in Experiment 2, 

selection of a red VERTICAL crescent with a HOLE did not convey any preference to the 

selection of a green VERTICAL rectangle with a HOLE, even though those items shared 

two features. This is a case where absence of evidence is not convincing evidence of 

absence. The experiment should be repeated with different stimuli. In particular, one 

suspects that color was the strongest guiding feature in this stimulus set and that a red 

vertical crescent with a hole might well prime other red targets if any had been in the target 

set.

2) Selection goes in runs because the identity or semantic content of the previous 

selection primes the next selection

The lack of strong evidence for runs in the search for d & p among d & q is evidence against 

the hypothesis that the subsequent selection is biased by the identity or semantic content of 

the targets. Here, when the stimuli are carefully chosen to have no distinguishing basic 

features, and, thus, elicit no guidance, selection between the two types of target appears to 

be random. This suggests that neither perceptual priming of the conjunction of shape and 

orientation nor semantic priming of letter meanings was affecting target selection. Of course, 

it is possible that other stimuli would produce different results though those stimuli would 

have to be carefully designed not to contain distinguishing features that could be primed.

3) Selection goes in runs because of the cost associated with switching the target type 

away from the type that is the current focus of attention.

All of the experiments in this series produce strong evidence for substantial switching costs 

(see also Kristjánsson & Kristjánsson, 2018). Even in the Letter condition of Experiment 1, 
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switch trials are slower than repeated trials. There appear to be different sorts of switch 

costs. This is perhaps most clearly seen in Experiment 1 where switch costs for the 

Conjunction condition are larger than the costs in the Letter or Feature conditions. One can 

imagine that those costs include the work required to set up new rules for guiding attention 

to a conjunction of basic features. Consistent with that thought, switch costs are very large in 

Experiments 2–4, all of which involve conjunction stimuli. Switch trials are a full second 

slower than repeated trials in Experiment 2. Similarly large costs are seen in Figure 9 for 

Experiment 4.

The results of these and related experiments hold out the promise that it should be possible 

to determine with some precision what item will be selected next in a hybrid foraging 

situation. There will be some bias due to prior selection history, some due to proximity, and 

some due to the prevalence and/or value of different target types (Wolfe, et al., 2018). Search 

will not be completely deterministic but we are developing enough of an understanding of 

the rule to make a good guess about where a searcher will go next and, as a consequence, we 

may be able to more effectively predict when a searcher will fail to find a target.
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Significance

Many interesting visual search tasks are “hybrid searches” for any of several possible 

types of target (“Are there guns, bombs, or knives in this bag?”). These combine search 

through memory with a search of the visible world. Other searches involve foraging for 

multiple instances of a target (e.g. picking berries). Combining these two, we get “hybrid 

foraging” tasks, where an observer searches for multiple instances of several types of 

target. In this paper, we ask how the rules of attentional guidance and priming, studied in 

simple search tasks, apply to hybrid foraging.
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Fig 1: 
Stimuli for Exp. 1. After starting in this rough grid, items moved about the screen to thwart a 

strategy of systematically selecting items from, say, top left to bottom right.
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Figure 2: 
Distributions of runs of different lengths. Green circles show the observed distribution. Red 

squares show the results of simulating random selection. Circles with black outlines show 

points where the functions are statistically different by 1-sample t-tests (p<0.01). 

Significance was not calculated for runs > 10 because the chance probability is extremely 

low.
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Figure 3: 
RT as a function of Effective Set Size for run and switch trials for each condition. Effective 

set size is the number of remaining items divided by the number of remaining targets. For 

graphing, effective set sizes are rounded to the nearest integer and averaged.
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FIGURE 4: 
Distances in pixels between successive target collections in each condition. Different lines 

represent runs of different lengths. Data are plotted in terms of reverse clicks, with 0 being 

the last click in a run before a switch, 1 being the penultimate click in the run, etc.
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Figure 5: 
Percentage of targets left on the screen when observers chose to move to the next screen. 

Each data point shows the percentage for one type of target (e.g. p or d) left on screen for 

each screen for each observer (many data points overlap). Dark bars show mean +/− 1 s.d. 

for each observer. Observers are sorted by the percentage left behind in the letter task.
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Figure 6: 
Rate of selection as a function of Reverse Click. Reverse Click #1 is the final click in the 

patch. #2 is the penultimate click and so forth. Horizontal lines are the average rate for the 

task as a whole. Shaded areas are +/1 s.e.m. around that average. Error bars are +/− 1 s.e.m.
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Figure 7: 
Rate (1/RT) as a function of reverse click position in a run within a patch. The first trial in a 

run is a “switch trial” and those lower rates are plotted as larger, outlined symbols. Dashed 

lines represent the average rates for the entire task.
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Figure 8: 
(A) Target types for Experiment 2. Targets can share 0, 1, 2, or 4 basic features with each 

other. (B) Percent deviation from baseline for selection of one type of target on the current 

click, given selection of one type of target with the previous click. Thus, for example, 

selection of the horizontal orange target twice in a row occurs 21% more often than would 

be expected given the prevalence of those targets in the display. Colors are simply a coarse 

coding of the deviation percentages.
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Figure 9: 
RT × Effective Set Size results for Normal and Amnesic conditions. Run and Switch clicks 

are plotted separately. The amnesic manipulation produces a substantial, additive increase in 

RT.
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Figure 10: 
Transition probabilities between each of the four types of targets in Normal (A) and 

Amnesic (B) conditions of Experiment 4. Results show the difference in the percentage of 

actual transitions and the percentage of possible transitions. Thus, if there were 25% blue 

crescents in the display but they were selected only 10% of the time following a green 

rectangle, the table would show a −15% difference. Results do not differ significantly 

between conditions. Colors coarsely code the percentages.
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Figure 11: 
A theoretical snapshot of hybrid foraging. The memory set resides in Activated Long-Term 

Memory (ALTM). The current object of attention is selected into Working Memory (WM) 

from the Stimulus. The WM representation is matched to the memory set in ALTM in order 

to determine if it is a target. If the item, represented in WM, is a target (as it is, in this case), 

its features prime subsequent selection of similar items in the stimulus.
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Table One:

Overall numbers of patches, targets per patch, and runs per patch

Condition Total # of patches per condition Average # of targets per patch Average # of runs per patch

Feature Search 20.1 25.5 9.0

Conjunction Search 21.0 24.5 5.6

Letter Search 27.8 19.5 8.2
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