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Stochasticity is a key characteristic of intracellular processes such as gene

regulation and chemical signalling. Therefore, characterizing stochastic

effects in biochemical systems is essential to understand the complex

dynamics of living things. Mathematical idealizations of biochemically react-

ing systems must be able to capture stochastic phenomena. While robust

theory exists to describe such stochastic models, the computational chal-

lenges in exploring these models can be a significant burden in practice

since realistic models are analytically intractable. Determining the expected

behaviour and variability of a stochastic biochemical reaction network

requires many probabilistic simulations of its evolution. Using a biochemical

reaction network model to assist in the interpretation of time-course data

from a biological experiment is an even greater challenge due to the intract-

ability of the likelihood function for determining observation probabilities.

These computational challenges have been subjects of active research for

over four decades. In this review, we present an accessible discussion of

the major historical developments and state-of-the-art computational tech-

niques relevant to simulation and inference problems for stochastic

biochemical reaction network models. Detailed algorithms for particularly

important methods are described and complemented with Matlabw

implementations. As a result, this review provides a practical and accessible

introduction to computational methods for stochastic models within the life

sciences community.
1. Introduction
Many biochemical processes within living cells, such as regulation of gene

expression, are stochastic [1–5]; that is, randomness or noise is an essential com-

ponent of living things. Internal and external factors are responsible for this

randomness [6–9], particularly within systems where low copy numbers of cer-

tain chemical species greatly affect the system dynamics [10]. Intracellular

stochastic effects are key components of normal cellular function [11] and

have a direct influence on the heterogeneity of multicellular organisms [12].

Furthermore, stochasticity of biochemical processes can play a role in the

onset of disease [13,14] and immune responses [15]. Stochastic phenomena,

such as resonance [16], focusing [17] and bistability [18–20], are not captured

by traditional deterministic chemical rate equation models. These stochastic

effects must be captured by appropriate theoretical models. A standard

approach is to consider a biochemical reaction network as a well-mixed popu-

lation of molecules that diffuse, collide and react probabilistically. The

stochastic law of mass action is invoked to determine the probabilities of reac-

tion events over time [21,22]. The resulting time-series of biochemical

populations may be analysed to determine both the average behaviour and

variability [23]. This powerful approach to modelling biochemical kinetics

can be extended to deal with more biologically realistic settings that include
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spatial heterogeneity with molecular populations being

well-mixed only locally [24–27].

In practice, stochastic biochemical reaction network

models are analytically intractable meaning that most

approaches are entirely computational. Two distinct, yet

related, computational problems are of particular importance:

(i) the forwards problem that deals with the simulation of the

evolution of a biochemical reaction network forwards in time

and (ii) the inverse problem that deals with the inference of

unknown model parameters given time-course observations.

Over the last four decades, significant attention has been

given to these problems. Gillespie et al. [28] describe the

key algorithmic advances in the history of the forwards pro-

blem and Higham [29] provides an accessible introduction

connecting stochastic approaches with deterministic counter-

parts. Recently, Schnoerr et al. [23] provide a detailed review

of the forwards problem with a focus on analytical methods.

Golightly & Wilkinson [30], Toni et al. [31] and Sunnåker et al.
[32] review techniques relevant to the inverse problem.

Given the relevance of stochastic computational methods

to the life sciences, the aim of this review is to present an acces-

sible summary of computational aspects relating to efficient

simulation for both the forwards and inverse problems. Prac-

tical examples and algorithmic descriptions are presented and

aimed at applied mathematicians and applied statisticians

with interests in the life sciences. However, we expect the tech-

niques presented here will also be of interest to the wider life

sciences community. Electronic supplementary material pro-

vides clearly documented code examples (available from

GitHub https://github.com/ProfMJSimpson/Warne2018)

using the Matlabw programming language.
2. Biochemical reaction networks
We provide an algorithmic introduction to stochastic

biochemical reaction network models. In the literature, rigor-

ous theory exists for these stochastic modelling approaches

[33]. However, we focus on an informal definition useful

for understanding computational methods in practice.

Relevant theory on the chemical master equation, Markov

processes and stochastic differential equations is not discus-

sed in any detail (see [22,34,35] for accessible introductions

to these topics).

Consider a domain, for example, a cell nucleus, that con-

tains a number of chemical species. The population count for a

chemical species is a non-negative integer called its copy
number. A biochemical reaction network model is specified

by a set of chemical formulae that determine how the chemical

species interact. For example, X þ 2Y! Z þW states ‘one X
molecule and two Y molecules react to produce one Z molecule

and one W molecule’. If a chemical species is involved in a reac-

tion, then the number of molecules required as reactants or

produced as products are called stoichiometric coefficients. In

the example, Y has a reactant stoichiometric coefficient of

two, and Z has a product stoichiometric coefficient of one.

2.1. A computational definition
Consider a set of M reactions involving N chemical species

with copy numbers X1(t), . . ., XN(t) at time t. The state

vector is an N � 1 vector of copy numbers, X(t) ¼ [X1(t), . . .,

XN(t)]T. This represents the state of the population of chemi-

cal species at time t. When a reaction occurs, the copy
numbers of the reactants and products are altered according

to their respective stoichiometric coefficients. The net state

change caused by a reaction event is called its stoichiometric

vector. If reaction j occurs, then a new state is obtained by

adding its stoichiometric vector, nj, that is,

X(t) ¼ X(t�)þ n j, (2:1)

where t2 denotes the time immediately preceding the reac-

tion event. The vectors n1, . . ., nM are obtained through

n j ¼ nþj � n�j , where n�j and nþj are, respectively, vectors of

the reactant and product stoichiometric coefficients of the

chemical formula of reaction j. Equation (2.1) describes how

reaction j affects the system.

Gillespie [21,33] presents the fundamental theoretical

framework that provides a probabilistic rule for the occur-

rence of reaction events. We shall not focus on the details

here, but the essential concept is based on the stochastic

law of mass action. Informally,

P(Reaction j occurs in [t, tþ dt))/ dt

� no. of possible reactant combinations: (2:2)

The tacit assumption is that the system is well mixed with

molecules equally likely to be found anywhere in the

domain. The right-hand side of equation (2.2) is typically

expressed as aj(X(t))dt, where aj(X(t)) is the propensity function
of reaction j. That is,

a j(X(t)) ¼ constant� total combinations

in X(t) for reaction j, (2:3)

where the positive constant is known as the kinetic rate par-
ameter.1 Equations (2.1)–(2.3) are the main concepts needed

to consider computational methods for the forwards pro-

blem. Importantly, equations (2.1) and (2.2) indicate that

the possible model states are discrete, but state changes

occur in continuous time.
2.2. Two examples
We now provide some representative examples of biochemi-

cal reaction networks that will be used throughout this

review.
2.2.1. Mono-molecular chain
Consider two chemical species, A and B, and three reactions

that form a mono-molecular chain,

;�!k1 A|fflfflffl{zfflfflffl}
external production

of A molecules

, A�!k2 B|fflfflffl{zfflfflffl}
decay of A molecules

into B molecules

and B�!k3 ;|fflfflffl{zfflfflffl}
external consumption

of B molecules

, (2:4)

with kinetic rate parameters k1, k2 and k3. We adopt the

convention that ; indicates the reactions are part of an open

system involving external chemical processes that are not

explicitly represented in equation (2.4). Given the state

vector, X(t) ¼ [A(t), B(t)]T, the respective propensity

functions are

a1(X(t))¼ k1, a2(X(t))¼ k2A(t) and a3(X(t))¼ k3B(t), (2:5)

and the stoichiometric vectors are

n1 ¼
1
0

� �
, n2 ¼

�1
1

� �
and n3 ¼

0
�1

� �
: (2:6)

https://github.com/ProfMJSimpson/Warne2018
https://github.com/ProfMJSimpson/Warne2018


royalsoc

3
This mono-molecular chain is interesting since it is a part of a

general class of biochemical reaction networks that are ana-

lytically tractable, though they are only applicable to

relatively simple biochemical processes [36].
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2.2.2. Enzyme kinetics
A biologically applicable biochemical reaction network

describes the catalytic conversion of a substrate, S, into a pro-

duct, P, via an enzymatic reaction involving enzyme, E. This

is described by Michaelis–Menten enzyme kinetics [37,38],

Eþ S�!k1 C|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
enzyme and substrate molecules

combine to form a complex

, C�!k2 Eþ S|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
decay of a complex

and C�!k3 Eþ P|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
catalytic conversion

of substrate to product

,

(2:7)

with kinetic rate parameters, k1, k2 and k3. This particular

enzyme kinetic model is a closed system. Here, we have the

state vector X(t) ¼ [E(t), S(t), C(t), P(t)]T, propensity functions

a1(X(t)) ¼ k1E(t)S(t), a2(X(t)) ¼ k2C(t) and

a3(X(t)) ¼ k3C(t),
(2:8)

and stoichiometric vectors

n1 ¼

�1
�1
1
0

2
664

3
775, n2 ¼

1
1
�1
0

2
664

3
775 and n3 ¼

1
0
�1
1

2
664

3
775: (2:9)

Since the first chemical formula involves two reactant mol-

ecules, there is significantly less progress that can be made

without computational methods.

See MonoMolecularChain.m and MichaelisMen-

ten.m for example code to generate useful data structures

for these biochemical reaction networks. These two biochemi-

cal reaction networks have been selected to demonstrate two

stereotypical problems. In the first instance, the mono-

molecular chain model, the network structure enables progress

to be made analytically. The enzyme kinetic model, however,

represents a more realistic case in which computational

methods are required. The focus on these two representative

models is done so that the exposition is clear.
3. The forwards problem
Given a biochemical reaction network with known kinetic

rate parameters and some initial state vector, X(0) ¼ x0, we

consider the forwards problem. That is, we wish to predict

the future evolution. Since we are dealing with stochastic

models, all our methods for dealing with future predictions

will involve probabilities, random numbers and uncertainty.

We rely on standard code libraries2 for generating samples

from uniform (i.e. all outcomes equally likely), Gaussian

(i.e. the bell curve), exponential (i.e. time between events)

and Poisson distributions (i.e. number of events over a time

interval) and do not discuss algorithms for generating

samples from these distributions. This enables the focus

of this review to be on algorithms specific to biochemical

reaction networks.

There are two key aspects to the forwards problem: (i) the

simulation of a biochemical reaction network that replicates

the random reaction events over time and (ii) the calculation

of average behaviour and variability among all possible
sequences of reaction events. Relevant algorithms for dealing

with both these aspects are reviewed and demonstrated.

3.1. Generation of sample paths
Here, we consider algorithms that deal with the simulation of

biochemical reaction network evolution. These algorithms are

probabilistic, that is, the output of no two simulations, called

sample paths, of the same biochemical reaction network will be

identical. The most fundamental stochastic simulation algor-

ithms (SSAs) for sample path generation are based on

the work of Gillespie [21,39,40], Gibson & Bruck [41] and

Anderson [42].

3.1.1. Exact stochastic simulation algorithms
Exact SSAs generate sample paths, over some interval t [

[0, T ], that identically follow the probability laws of the fun-

damental theory of stochastic chemical kinetics [33]. Take a

sufficiently small time interval, [t, t þ dt), such that the prob-

ability of multiple reactions occurring in this interval is zero.

In such a case, the reactions are mutually exclusive events.

Hence, based on equations (2.2) and (2.3), the probability of

any reaction event occurring in [t, t þ dt) is the sum of the

individual event probabilities,

P(Any reaction occurs in [t, tþ dt))
¼ P(Reaction 1 occurs in [t, tþ dt))
þ � � � þ P(Reaction M occurs in [t, tþ dt))
¼ a0(X(t)) dt,

where a0(X(t)) ¼ a1(X(t)) þ . . . þ aM(X(t)) is the total reaction

propensity function. Therefore, if we know that the next reac-

tion occurs at time s [ [t, t þ dt), then we can: (i) randomly

select a reaction with probabilities a1(X(s))/a0(X(s)), . . .,

aM(X(s))/a0(X(s)) and (ii) update the state vector according

to the respective stoichiometric vector, n1, . . ., nM.

All that remains for an exact simulation method is to

determine the time of the next reaction event. Gillespie [21]

demonstrates that the time interval between reactions, Dt,
may be treated as a random variable that is exponentially dis-

tributed with rate a0(X(t)), that is, Dt � Exp(a0(X(t))).
Therefore, we arrive at the most fundamental exact SSA,

the Gillespie direct method:

(1) initialize, time t ¼ 0 and state vector X ¼ x0;

(2) calculate propensities, a1(X), . . ., aM(X), and a0(X) ¼

a1(X) þ . . . þ aM(X);

(3) generate random sample of the time to next reaction,

Dt � Exp(a0(X));

(4) if t þ Dt . T, then terminate the simulation, otherwise go

to step 5;

(5) randomly select integer j from the set f1, . . ., Mg with

P(j ¼ 1) ¼ a1(X)=a0(X), . . . , P(j ¼M) ¼ aM(X)=a0(X);

(6) update state, X ¼ X þ nj, and time t ¼ t þ Dt, then go to

step 2.

An example implementation, GillespieDirect-

Method.m, and example usage, DemoGillespie.m, are

provided. Figure 1 demonstrates sample paths generated by

the Gillespie direct method for the mono-molecular chain

model (figure 1a) and the enzyme kinetic model (figure 1b).

A mathematically equivalent, but more computationally

efficient, exact SSA formulation is derived by Gibson &

Bruck [41]. Their method independently tracks the next
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Figure 1. Examples of exact sample paths of the mono-molecular chain model using the (a) Gillespie direct method and (c) modified next reaction method; similarly
exact sample paths of the enzyme kinetics model using the (b) Gillespie direct method and (d ) modified next reaction method. Approximate sample paths may be
computed with less computational burden using the tau-leaping method with t ¼ 2, at the expense of accuracy: (e) the mono-molecular chain model and
( f ) the enzyme kinetics model. Every sample path will be different; as demonstrated by four distinct simulations of (g) the mono-molecular chain model
and (h) the enzyme kinetics model. However, trends are revealed when 100 simulations are overlaid to reveal states of higher probability density using
(i) the mono-molecular chain model and ( j ) the enzyme kinetics model. The mono-molecular chain model simulations are configured with parameters k1 ¼ 1.0,
k2 ¼ 0.1, k3 ¼ 0.05, and initial state A(0) ¼ 100, B(0) ¼ 0. The enzyme kinetics model simulations are configured with parameters k1 ¼ 0.001, k2 ¼ 0.005,
k3 ¼ 0.01, and initial state E(0) ¼ 100, S(0) ¼ 100, C(0) ¼ 0, P(0) ¼ 0. (Online version in colour.)
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reaction time of each reaction separately. The next reaction to

occur is the one with the smallest next reaction time, therefore

no random selection of reaction events is required. It should,

however, be noted that the Gillespie direct method may also

be improved to yield the optimized direct method [43] with

similar performance benefits. Anderson [42] further refines

the method of Gibson and Bruck by scaling the times of

each reaction so that the scaled times between reactions

follow unit-rate exponential random variables. This scaling

allows the method to be applied to more complex biochemi-

cal reaction networks with time-dependent propensity

functions; however, the recently proposed Extrande method

[44] is computationally superior. In Anderson’s approach,

scaled times are tracked for each reaction independently with

tj being the current time at the natural scale of reaction j. This

results in the modified next reaction method:
(1) initialize, global time t ¼ 0, state vector X ¼ x0 and scaled

times t1 ¼ t2 ¼ . . . ¼ tM ¼ 0;

(2) generate M first reaction times, s1, . . ., sM � Exp(1);

(3) calculate propensities, a1(X), . . ., aM(X);

(4) rescale time to next reaction, Dtj ¼ (sj 2 tj)/aj(X) for j ¼ 1,

2, . . ., M;

(5) choose reaction k, such that Dtk ¼minfDt1, . . ., DtMg;
(6) if t þ Dtk . T terminate simulation, otherwise go to

step 7;

(7) update rescaled times, tj ¼ tj þ aj(X)Dtk for j ¼ 1, . . ., M,

state X ¼ X þ nk and global time t ¼ t þ Dtk;

(8) generate scaled next reaction time for reaction k, Dsk �
Exp(1);
(9) update next scaled reaction time sk ¼ sk þ Dsk, and go to

step 3.

An example implementation, ModifiedNextReac-

tionMethod.m, and example usage, DemoMNRM.m, are

provided. Figure 1 demonstrates sample paths generated by

the modified next reaction method for the mono-molecular

chain model (figure 1c) and the enzyme kinetic model

(figure 1d ). Note that the sample paths are different from

those generated using the Gillespie direct method, despite

the random number generators being initialized the same

way. However, both represent exact sample paths, that

is, sample paths that exactly follow the dynamics of the

biochemical reaction network.

While the Gillespie direct method and the more efficient

modified next reaction method and optimized direct

method represent the most fundamental examples of exact

SSAs, other advanced methods are also available to further

improve the computational performance for large and com-

plex biochemical reaction networks. Particular techniques

include partial-propensity factorization [45], rejection-based

methods [46,47] and composition-rejection [48] methods.

We do not discuss these approaches, but we highlight them

to indicate that efficient exact SSA method development is

still an active area of research.

3.1.2. Approximate stochastic simulation algorithms
Despite some computational improvements provided by the

modified next reaction method [41,42], all exact SSAs are

computationally intractable for large biochemical popu-

lations and with many reactions, since every reaction event
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is simulated. Several approximate SSAs have been introduced

in an attempt to reduce the computational burden while

sacrificing accuracy.

The main approximate SSA we consider is also developed

by Gillespie [39] almost 25 years after the development of the

Gillespie direct method. The key idea is to evolve the system

in discrete time steps of length t, hold the propensity func-

tions constant over the time interval [t, t þ t) and count the

number of reaction events that occur. The state vector is

then updated based on the net effect of all the reaction

events. The number of reaction events within the interval

can be shown to be a random variable distributed according

to a Poisson distribution with mean aj(X(t))t. If Yj denotes the

number of reaction j events in [t, t þ t) then Yj � Po(aj(X(t))t).

The result is the tau-leaping method:

(1) initialize, time t ¼ 0 and state Z ¼ x0;

(2) if t þ t . T then terminate simulation, otherwise

continue;

(3) calculate propensities, a1(Z), . . ., aM(Z);

(4) generate reaction event counts, Yj � Po(aj(Z)t) for j ¼
1, . . ., M;

(5) update state, Z ¼ Z þ Y1n1 þ . . .YMnM, and time t ¼ t þ t;

(6) go to step 2.

Note that we use the notation Z(t) to denote an approxi-

mation of the true state X(t). An example implementation,

TauLeapingMethod.m, and example usage, DemoTau-

Leap.m, are provided. Figure 1 demonstrates sample paths

generated by the tau-leaping method for the mono-molecular

chain model (figure 1e) and the enzyme kinetic model

(figure 1f ). Note that there is a visually obvious difference

in the noise patterns of the tau-leaping method sample

paths and the exact SSA sample paths (figure 1a–d ).

The tau-leaping method is the only approximate SSA

that we will explicitly discuss as it captures the essence

of what approximations try to achieve; trading accuracy

for improved performance. Several variations of the tau-

leaping method have been proposed to improve accuracy,

such as adaptive t selection [49,50], implicit schemes [51]

and the replacement of Poisson random variables with

binomial random variables [52]. Hybrid methods that

combine exact SSAs and approximations that split reac-

tions into different time scales are also particularly

effective for large scale networks with reactions occurring

on very different time scales [53–55]. Other approximate

simulation approaches are, for example, based on a con-

tinuous state chemical Langevin equation approximation

[40,56,57] and employ numerical schemes for stochastic

differential equations [35,58].
3.2. Computation of summary statistics
Owing to the stochastic nature of biochemical reaction net-

works, one cannot predict with certainty the future state of

the system. Averaging over n sample paths can, however,

provide insights into likely future states. Figure 1g,h shows

that there is considerable variation in four independent

sample paths, n ¼ 4, of the mono-molecular chain and

enzyme kinetic models. However, there is still a qualitative

similarity between them. This becomes more evident for

n ¼ 100 sample paths, as in figure 1i,j. The natural extension

is to consider average behaviour as n! 1.
3.2.1. Using the chemical master equation
From a probability theory perspective, a biochemical reaction

network model is a discrete-state, continuous-time Markov

process. One key result for discrete-state, continuous-time

Markov processes is, given an initial state, X(t) ¼ x0, one

can describe how the probability distribution of states

evolves. This is given by the chemical master equation [33],3

dP(x, t j x0)

dt
¼
XM
j¼1

a j(x� n j)P(x� n j, t j x0)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
probability increase from events

that cause state change to x

�P(x, t j x0)
XM
j¼1

a j(x)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
probability decrease from events

that cause state change from x

, (3:1)

where P(x, tjx0) is the probability that X(t) ¼ x given X(0) ¼ x0.

Solving the chemical master equation provides an explicit

means of computing the probability of being in any state at

any time. Unfortunately, solutions to the chemical master

equation are only known for special cases [36,59].

However, the mean and variance of the biochemical

reaction network molecule copy numbers can sometimes be

derived without solving the chemical master equation. For

example, for the mono-molecular chain model equation

(2.4), one may use equation (3.1) to derive the following

system of ordinary differential equations (see the electronic

supplementary material):

dMa(t)
dt

¼ k1 � k2Ma(t), (3:2)

dMb(t)
dt

¼ k2Ma(t)� k3Mb(t), (3:3)

dVa(t)
dt

¼ k1 þ k2Ma(t)� 2k2Va(t), (3:4)

dVb(t)
dt

¼ k2Ma(t)þ k3Mb(t)þ 2k2Ca,b(t)� k3Vb(t) (3:5)

and
dCa,b(t)

dt
¼ k2Va(t)� k2Ma(t)� (k2 þ k3)Ca,b(t), (3:6)

where Ma(t) and Va(t) (Mb(t) and Vb(t)) are the mean and

variance of the copy number A(t) (B(t)) over all possible

sample paths. Ca,b(t) is the covariance between A(t) and

B(t). Equations (3.2)–(3.6) are linear ordinary differential

equations that can be solved analytically and the solution is

plotted in figure 2a superimposed with a population of

sample paths.

The long time limit behaviour of a biochemical reaction net-

work can also be determined. For the mono-molecular chain,

as t!1 we have: Ma(t)! k1/k2; Va(t)! k1/k2; Mb(t)! k1/

k3; Vb(t)! k1/k3; and Ca,b(t)! 0. We can approximate the

long time steady-state behaviour, called the stationary distri-
bution, of the mono-molecular chain model as two

independent Gaussian random variables. That is, as t!1,

A(t)! A1 with A1 � N (k1=k2, k1=k2). Similarly, B(t)! B1

with B1 � N (k1=k3, k1=k3). This approximation is shown in

figure 2b against histograms of sample paths generated using

large values of T (see example code, DemoStatDist.m).

In the case of the mono-molecular chain model, the

chemical master equation is analytically tractable [36,59].

However, the solution is algebraically complicated and non-

trivial to evaluate (see the electronic supplementary

material). The full chemical master equation solution in
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Figure 2. (a) The chemical master equation mean (black dashed) + two standard deviations (black dots) of copy numbers of A (blue) and B (red) chemical species
are displayed over simulated sample paths to demonstrate agreement. (b) The stationary distributions of A and B computed using: long running, T ¼ 1000, simu-
lated sample paths (blue/red histograms); Gaussian approximation (blue/red dashed) using long time limits of chemical master equation mean and variances;
and the long time limit of the full chemical master equation solution (blue/red dots). Transient chemical master equation solution at times (c) t ¼ 5,
(d ) t ¼ 20 and (e) t ¼ 60. ( f ) Chemical master equation solution stationary distribution. The parameters are k1 ¼ 1.0, k2 ¼ 0.1, k3 ¼ 0.05, and initial
state is A(0) ¼ 100, B(0) ¼ 0. (Online version in colour.)
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figure 2c–e and the true stationary distribution of two

independent Poisson distributions is shown in figure 2f.
The true stationary distribution is also compared with the

Gaussian approximation in figure 2b; the approximation is

reasonably accurate. However, we could have also reasonably

surmised the true stationary distribution by noting that, for a

Poisson distribution, the mean is equal to the variance.
3.2.2. Monte Carlo methods
The chemical master equation can yield insight for special

cases; however, for practical problems, such as the enzyme

kinetic model, the chemical master equation is intractable

and numerical methods are required. Here, we consider

numerical estimation of the mean state vector at a fixed

time, T.

In probability theory, the mean of a distribution is defined

via an expectation,

E[X(T)] ¼
X
x[V

xP(x, T j x0), (3:7)

where V is the set of all possible states. It is important to note

that the methods we describe here are equally valid for a

more general expectations of the form E[f(X(T))] where f is

some function that satisfies certain conditions [60].

We usually cannot compute equation (3.7) directly since

V is typically infinite and the chemical master equation is

intractable. However, exact SSAs provide methods for

sampling the chemical master equation distribution, X(T ) �
P(x, Tjx0). This leads to the Monte Carlo estimator

E[X(T)] � X̂(T) ¼ 1

n

Xn

i¼1

X(T)(i), (3:8)
where X(T )(1), . . ., X(T )(n) are n independent sample paths of

the biochemical reaction network of interest (see example

implementation MonteCarlo.m).

Unlike equation (3.7), the Monte Carlo estimates, such as

equation (3.8), are random variables for finite n. This incurs a

probabilistic error. A common measure of the accuracy of a

Monte Carlo estimator, m̂(T), of some expectation, E[m(T)],

is the mean-square error that evaluates the average error

behaviour and may be decomposed as follows:

E[(m̂(T)� E[m(T)])2]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mean-square error

¼ Var[m̂(T)]|fflfflfflfflfflffl{zfflfflfflfflfflffl}
estimator variance

þ E[m̂(T)]� E[m(T)]|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
estimator bias

0
@

1
A2

:

(3:9)

Equation (3.9) highlights that there are two sources of error in

a Monte Carlo estimator, the estimator variance and bias, and

much of the discussion that follows deals with how to bal-

ance both these error sources in a computationally efficient

manner.

Through analysis of the mean-square error of an estima-

tor, the rate at which the mean-square error decays as n
increases can be determined. Hence, we can determine how

large n needs to be to satisfy the conditionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[(m̂(T)� E[m(T)])2]

q
� ch, (3:10)

where c is a positive constant and h is called the error
tolerance.

Since E[X̂(T)] ¼ E[X(T)], the bias term in equation (3.9) is

zero and we call X̂(T) an unbiased estimator of E[X(T)]. For an

unbiased estimator, the mean-square error is equal to the esti-

mator variance. Furthermore, Var[X̂(T)] ¼ Var[X(T)]=n, so

the estimator variance decreases linearly with n, for
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sufficiently large n. Therefore, h/ 1=
ffiffiffi
n
p

. That is, to halve h,

one must increase n by a factor of four. This may be prohibi-

tive with exact SSAs, especially for biochemical reaction

networks with large variance. In the context of the Monte

Carlo estimator using an exact SSA, equation (3.8), for n suf-

ficiently large, the central limit theorem (CLT) states that

X̂(T) � N (E[X(T)], Var[X(T)]=n) (see Wilkinson [22] for a

good discussion on the CLT).

Computational improvements can be achieved by using

an approximate SSA, such as the tau-leaping method,

E[X(T)] � E[Z(T)] � Ẑ(T) ¼ 1

n

Xn

i¼1

Z(T)(i), (3:11)

where Z(T )(1), . . ., Z(T )(n) are n independent approximate

sample paths of the biochemical reaction network of interest

(see the example implementation MonteCarloTauLeap.m).

Note that E[Ẑ(T)] ¼ E[Z(T)]. Since E[Z(T)] = E[X(T)] in

general, we call Ẑ(T) a biased estimator. Even in the limit of

n! 1, the bias term in equation (3.9) may not be zero,

which incurs a lower bound on the best achievable error tol-

erance, h, for fixed t. However, it has been shown that the

bias of the tau-leaping method decays linearly with t

[61,62]. Therefore, to satisfy the error tolerance condition

(equation (3.10)) we not only require n/ 1/h2 but also t/

h. That is, as h decreases, the performance improvement of

Monte Carlo with the tau-leaping method reduces by a

factor of t, because the computational cost of the tau-

leaping method is proportional to 1/t. In figure 3a, the

decay of the computational advantage in using the tau-

leaping method for Monte Carlo over the Gillespie direct

method is evident, and eventually the tau-leaping method

will be more computationally burdensome than the

Gillespie direct method. By the CLT, for large n, we have

Ẑ(T) � N (E[Z(T)], Var[Z(T)]=n).

The utility of the tau-leaping method for accurate (or

exact) Monte Carlo estimation is identified by Anderson &

Higham [63] through extending the idea of multilevel

Monte Carlo (MLMC) originally proposed by Giles for sto-

chastic differential equations [60,64]. Consider a sequence of

L þ 1 tau-leaping method time steps t0, t1, . . ., tL, with t‘ ,

t‘21 for ‘ ¼ 1, . . ., L. Let Z‘(T ) denote the state vector of a

tau-leaping method approximation using time step t‘.
Assume tL is small enough that E[ZL(T)] is a good approxi-

mation of E[X(T)]. Note that for large t‘ (small ‘), sample

paths are cheap to generate, but inaccurate; conversely,

small t‘ (large ‘) results in computationally expensive, but

accurate sample paths.

We can write

E[X(T)] � E[ZL(T)]|fflfflfflfflffl{zfflfflfflfflffl}
low bias

approximation

¼ E[ZL�1(T)]|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
slightly biased

approximation

þ E[ZL(T)� ZL�1(T)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bias correction

¼ E[ZL�2(T)]|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
slightly more biased

approximation

þ E[ZL�1(T)� ZL�2(T)]þ E[ZL(T)� ZL�1(T)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
two bias corrections

..

.

¼ E[Z0(T)]|fflfflfflfflffl{zfflfflfflfflffl}
very biased

approximation

þ
XL

‘¼1

E[Z‘(T)� Z‘�1(T)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L bias corrections

: (3:12)

Importantly, the final estimator on the right of equation (3.12),

called the multilevel telescoping summation, is equivalent in

bias to E[ZL(T)]. At first glance, equation (3.12) looks to have

complicated the computational problem and inevitably

decreased performance of the Monte Carlo estimator. The

insight of Giles [64], in the context of stochastic differential

equation models for financial applications, is that the bias

correction terms may be computed using Monte Carlo

approaches that involve generating highly correlated sample

paths in estimation of each of the correction terms, thus redu-

cing the variance in the bias corrections. If the correlation is

strong enough, then the variance decays such that few of the

most accurate tau-leaping method sample paths are required;

this can result in significant computational savings.

A contribution of Anderson & Higham [63] is an efficient

method of generating correlated tau-leaping method sample

path pairs (Z‘(T ), Z‘21(T )) in the case when t‘ ¼ t‘21/d for

some positive integer scale factor d. The algorithm is based
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on the property that the sum of two Poisson random vari-

ables is also a Poisson random variable. This enables the

sample path with t‘21 to be constructed as an approximation

to the sample path with t‘ directly. Figure 3b demonstrates

tau-leaping method sample paths of B(t) in the mono-

molecular chain model with t ¼ 2, 4, 8 generated directly

from a tau-leaping method sample path with t ¼ 1. The algor-

ithm can be thought of as generating multiple approximations

of the same exact biochemical reaction network sample path.

The algorithm is the correlated tau-leaping method:

(1) initialize time t ¼ 0, and states Z‘, Z‘21 corresponding to

sample paths with t ¼ t‘ and t ¼ t‘21, respectively;

(2) if t þ t‘ . T, then terminate simulation, otherwise

continue;

(3) calculate propensities for path Z‘, a1(Z‘), . . ., aM(Z‘);

(4) if t/t‘ is not an integer multiple of d, then go to step 6,

otherwise continue;

(5) calculate propensities for path Z‘21, a1(Z‘21), . . .,

aM(Z‘21), initialize intermediate state �Z ¼ Z‘�1;

(6) for each reaction j ¼ 1, . . ., M;

6.1 calculate virtual propensities, bj,1 ¼minfaj(Z‘),

aj(Z‘21)g, bj,2 ¼ aj(Z‘) 2 bj,1 and bj,3 ¼ aj(Z‘21) 2 bj,1;

6.2 generate virtual reaction event counts, Yj,1 �
Po(bj,1t‘), Yj,2 � Po(bj,2t‘) and Yj,3 � Po(bj,3t‘);

(7) set, Z‘ ¼ Z‘ þ (Y1,1 þ Y1,2)n1 þ . . . þ (YM,1 þ YM,2)nM;

(8) set, �Z ¼ �Zþ (Y1,1 þ Y1,3)n1 þ � � � þ (YM,1 þ YM,3)nM;

(9) if (t þ t‘)/t‘ is an integer multiple of d, then set

Z‘�1 ¼ �Z;

(10) update time t ¼ t þ t‘, and go to step 2.

See example implementation, CorTauLeaping-

Method.m, and example usage, DemoCorTauLeap.m.

Given the correlated tau-leaping method, Monte Carlo

estimation can be applied to each term in equation (3.12)

to give

ẐL(T) ¼ 1

n0

Xn0

i¼1

Z0(T)(i)

þ
XL

‘¼1

1

n‘

Xn‘
i¼1

[Z‘(T)(i) � Z‘�1(T)(i)], (3:13)

where Z0(T)(1), . . . , Z0(T)(n0) are n0 independent tau-leaping

method sample paths with t ¼ t0, and (Z‘(T )(1),

Z‘�1(T)(1)), . . . , (Z‘(T)(n‘), Z‘�1(T)(n‘)) are n‘ paired correlated

tau-leaping method sample paths with time steps t ¼ t‘, t ¼

t‘21 and t‘21 ¼ dt‘ for each bias correction ‘ ¼ 1, 2, . . ., L.

Given an error tolerance, h, it is possible to calculate an optimal

sequence of sample path numbers n0, n1, . . ., nL such that the

total computation time is optimized [63–65]. The results are

shown in figure 3a for a more computationally challenging

parameter set of the mono-molecular chain model. See the

example implementation, MultilevelMonteCarlo.m and

DemoMonteCarlo.m, for the full performance comparison.

As formulated here, MLMC results in a biased estimator,

though it is significantly more efficient to reduce the bias

of this estimator than by direct use of the tau-leaping

method. If an unbiased estimator is required, then this can

be achieved by correlating exact SSA sample paths with

approximate SSA sample paths. Anderson & Higham [63]

demonstrate a method for correlating tau-leaping method

sample paths and modified next reaction method sample

paths, and Lester et al. [65] demonstrate correlating tau-

leaping method sample paths and Gillespie direct method
sample paths. Further refinements such as adaptive and

non-nested t‘ steps are also considered by Lester et al. [66],

a multilevel hybrid scheme is developed by Moraes et al.
[67] and Wilson & Baker [68] use MLMC and maximum

entropy methods to generate approximations to the chemical

master equation.
3.3. Summary of the forwards problem
Significant progress has been made in the study of compu-

tational methods for the solution to the forwards problem.

As a result, forwards problem is relatively well understood,

particularly for well-mixed systems, such as the biochemical

reaction network models we consider in this review.

An exact solution to simulation is achieved though the

development of exact SSAs. However, if Monte Carlo

methods are required to determine expected behaviours,

then exact SSAs can be computationally burdensome.

While approximate SSAs provide improvements is some

cases, highly accurate estimates will still often become bur-

densome since very small time steps will be required to

keep the bias at the same order as the estimator standard

deviation. In this respect, MLMC methods provide

impressive computational improvements without any

loss in accuracy. Such methods have become popular in

financial applications [60,69]; however, there have been

fewer examples in a biological setting.

Beyond the Gillespie direct method, the efficiency of

sample path generation has been dramatically improved

through the advancements in both exact SSAs and approxi-

mate SSAs. While approximate SSAs like the tau-leaping

method provide computational advantages, they also intro-

duce approximations. Some have noted that the error in

these approximations is likely to be significantly lower than

the modelling error compared with the real biological sys-

tems [57]. However, there is no general theory or guidelines

as to when approximate SSAs are safe to use for applications.

We have only dealt with stochastic models that are well-

mixed, that is, spatially homogeneous. The development of

robust theory and algorithms accounting for spatial hetero-

geneity is still an active area of research [23,28,70]. The

model of biochemical reaction networks, based on the chemi-

cal master equation, can be extended to include spatial

dynamics through the reaction–diffusion master equation [26].

However, care must be taken in its application because the

kinetics of the reaction–diffusion master equation depend

on the spatial discretization and it is not always guaranteed

to converge in the continuum limit [24–26,70,71]. We refer

the reader to Gillespie et al. [28] and Isaacson [26] for useful

discussions on this topic.

State-of-the-art Monte Carlo schemes, such as MLMC

methods, have the potential to significantly accelerate the

computation of summary statistics for the exploration of

the range of biochemical reaction network behaviours.

However, these approaches are also known to perform

poorly for some biochemical reaction network models [63].

An open question is related to the characterization of

biochemical reaction network models that will benefit from

an MLMC scheme for summary statistic estimation. Further-

more, to our knowledge, there has been no application of the

MLMC approach to the spatially heterogeneous case. The

potential performance gains make MLMC a promising

space for future development.
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4. The inverse problem
When applying stochastic biochemical reaction network

models to real applications, one often wants to perform stat-

istical inference to estimate the model parameters. That is,

given experimental data, and a biochemical reaction network

model, the inverse problem seeks to infer the kinetic rate par-

ameters and quantify the uncertainty in those estimates. Just

as with the forwards problem, an enormous volume of the lit-

erature has been dedicated to the problem of inference in

stochastic biochemical reaction network models. Therefore,

we cannot cover all computational methods in detail.

Rather we focus on a computational Bayesian perspective.

For further reading, the monograph by Wilkinson [22] con-

tains very accessible discussions on inference techniques in

a systems biology setting, also the monographs by Gelman

et al. [72] and Sisson et al. [73] contain a wealth of information

on Bayesian methods more generally.

4.1. Experimental techniques
Typically, time-course data are derived from time-lapse

microscopy images and fluorescent reporters [57,74,75].

Advances in microscopy and fluorescent technologies are

enabling intracellular processes to be inspected at unprece-

dented resolutions [76–79]. Despite these advances, the

resulting data never provide complete observations since:

(i) the number of chemical species that may be observed con-

currently is relatively low [57]; (ii) two chemical species

might be indistinguishable from each other [30]; and

(iii) the relationships between fluorescence levels and actual

chemical species copy numbers may not be direct, in particu-

lar, the degradation of a protein may be more rapid than that

of the fluorescent reporter [75,80]. That is, inferential methods

must be able to deal with uncertainty in observations.

For the purposes of this review, we consider time-course

data. Specifically, we suppose the data consist of nt

observations of the biochemical reaction network state

vector at discrete points in time, t1, t2, . . . , tnt . That is,

Yobs ¼ [Y(t1), Y(t2), . . . , Y(tnt )], where Y(t) represents an

observation of the state vector sample path X(t). To model

observational uncertainty, it is common to treat observations

as subject to additive noise [23,30,31,74], so that

Y(t) ¼ AX(t)þ j, (4:1)

where A is a K � N matrix and j is a K � 1 vector of indepen-

dent Gaussian random variables. The observation vectors,

Y(t), are K � 1 vectors, with K � N, reflecting the fact that

only a sub-set of chemical species of X(t) are generally

observed, or possibly only a linear combination of chemical

species [30]. The example code, GenerateObserva-

tions.m, simulates this observation process (equation (4.1))

given a fully specified biochemical reaction network model.

4.1.1. Example data
The computation examples given in this review are based on

two synthetically generated data sets, corresponding to the

biochemical reaction network models given in §2. This

enables the comparison between inference methods and the

accuracy of inference.

The data for inference on the mono-molecular chain

model (equation (2.4)) are taken as perfect observations,

that is, K ¼ N, A ¼ I and P(j ¼ 0) ¼ 1. A single sample
path is generated for the mono-molecular chain model with

true parameters, utrue ¼ [1.0, 0.1, 0.05], and initial condition

A(0) ¼ 100 and B(0) ¼ 0 using the Gillespie direct method.

Observations are made using equation (4.1) applied at nt ¼ 4 dis-

crete times, t1 ¼ 25, t2 ¼ 50, t3 ¼ 75 and t4 ¼ 100. The resulting

data are given in the electronic supplementary material.

The data for inference on the enzyme kinetic model

equation (2.7) assumes incomplete and noisy observations.

Specifically, only the product is observed, so K ¼ 1, A ¼ [0,

0, 0, 1]. Furthermore, we assume that there is some measure-

ment error, j � N (0, 4); that is, the error standard deviation is

two product molecules. The data are generated using the

Gillespie direct method with true parameters utrue ¼ [0.001,

0.005, 0.01] and initial condition E(0) ¼ 100, S(0) ¼ 100,

C(0) ¼ 0 and P(0) ¼ 0. Equation (4.1) is evaluated at nt ¼ 5

discrete times, t1 ¼ 0, t2 ¼ 20, t3 ¼ 40, t4 ¼ 60 and t5 ¼ 80

(including an observation of the initial state), yielding the

data in the electronic supplementary material.

4.2. Bayesian inference
Bayesian methods have been demonstrated to provide a

powerful framework for the design of experiments, model

selection and parameter estimation, especially in the life

sciences [81–88]. Given observations, Yobs, and a biochemical

reaction network model parametrized by the M � 1 real-

valued vector of kinetic parameters, u ¼ [k1, k2, . . ., kM]T, the

task is to quantify knowledge of the true parameter values

in light of the data and prior knowledge. This is expressed

mathematically through Bayes’ theorem,

p(u j Yobs) ¼
p(Yobs j u)p(u)

p(Yobs)
: (4:2)

The terms in equation (4.2) are interpreted as follows:

p(ujYobs) is the posterior distribution, that is, the probability4

of parameter combinations, u, given the data, Yobs; p(u) is

the prior distribution, that is, the probability of parameter

combinations before taking the data into account; p(Yobsju)

is the likelihood, that is, the probability of observing the data

given a parameter combination; and p(Yobs) is the evidence,

that is, the probability of observing the data over all possible

parameter combinations. Assumptions about the parameters

and the biochemical reaction network model are encoded

through the prior and the likelihood, respectively. The evi-

dence acts as a normalization constant, and ensures the

posterior is a true probability distribution.5

First, consider the special case Y(t) ¼ X(t), that is, the bio-

chemical reaction network state can be perfectly observed at

time t. In this case, the likelihood is

p(Yobs j u) ¼
Ynt

i¼1

P(Y(ti), ti � ti�1 j Y(ti�1)), (4:3)

where the function P is the solution to the chemical master

equation (3.1) and t0 ¼ 0 [89,90]. It should be noted that,

due to the stochastic nature of X(t), this perfect observation

case is unlikely to recover the true parameters. Regardless

of this issue, since the likelihood depends on the solution to

the chemical master equation, the exact Bayesian posterior

will not be analytically tractable in any practical case. In

fact, even for the mono-molecular chain model, there are pro-

blems since the evidence term is not analytically tractable.

The example code, DemoDirectBayesCME.m, provides an

attempt at such a computation, though this code is not
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practical for an accurate evaluation. Just as with the

forwards problem, we must defer to sampling methods and

Monte Carlo.
 lsocietypublishing.org/journal/rsif
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4.3. Sampling methods
For this review, we focus on the task of estimating the

posterior mean,

E[u j Yobs] ¼
ð
Q

u p(u j Yobs) du, (4:4)

where Q is the space of possible parameter combinations.

However, the methods presented here are applicable

to other quantities of interest. For example, the posterior

covariance matrix,

C[u j Yobs]¼
ð
Q

(u� E[u j Yobs])(u� E[u j Yobs])
Tp(u j Yobs) du,

(4:5)

is of interest as it provides an indicator of uncertainty associ-

ated with the inferred parameters. Marginal distributions are

extremely useful for visualization: the marginal posterior

distribution of the jth kinetic parameter is

p(k j j Yobs) ¼
ð
Q j

p(u j Yobs)
Y
i=j

dki, (4:6)

where Qj , Q is the parameter space excluding the jth
dimension.

Just as with Monte Carlo for the forwards problem, we

can estimate posterior expectations (shown here for equation

(4.4), but the method may be similarly applied to equations

(4.5) and (4.6)) using Monte Carlo,

E[u j Yobs] � û ¼ 1

m

Xm

i¼1

u(i), (4:7)

where u (1), . . ., u (m) are independent samples from the pos-

terior distribution. In the remainder of this section, we

focus on computational schemes for generating such samples.

We assume throughout that it is possible to generate samples

from the prior distribution.

It is important to note that the sampling algorithms we

present are not directly relevant to statistical estimators that

are not based on expectations, such as maximum-likelihood esti-
mators or the maximum a posteriori. However, these samplers

can be modified through the use of data cloning [91,92] to

approximate these effectively. Estimator variance and confi-

dence intervals may also be estimated using bootstrap

methods [93,94].
4.3.1. Exact Bayesian sampling
Assuming the likelihood can be evaluated, that is, the chemi-

cal master equation is tractable, a naive method of generating

m samples from the posterior is the exact rejection sampler:

(1) initialize index i ¼ 0;

(2) generate a prior sample u* � p(u);

(3) calculate acceptance probability a ¼ p(Yobsju*);

(4) with probability a, accept u (iþ1) ¼ u* and i ¼ i þ 1;

(5) if i ¼ m, terminate sampling, otherwise go to step 2.

Unsurprisingly, this approach is almost never viable as

the likelihood probabilities are often extremely small. In the
code example, DemoExactBayesRejection.m, the

acceptance probability is never more than 9 � 10215.

The most common solution is to construct a type of

stochastic process (a Markov chain) in the parameter space

to generate mn steps, u(0), . . . , u(mn). An essential property of

the Markov chain used is that its stationary distribution is

the target posterior distribution. This approach is called

Markov chain Monte Carlo (MCMC), and a common

method is the Metropolis–Hastings method [95,96]:

(1) initialize n ¼ 0 and select starting point u (0);

(2) generate a proposal sample, u* � q(uju (n));

(3) calculate acceptance probability

a ¼ min 1,
p(Yobs j u�)p(u�)q(u(n) j u�)

p(Yobs j u(n))p(u(n))q(u� j u(n))

 !
;

(4) with probability a, set u (nþ1) ¼ u*, and with probability

1 2 a, set u (nþ1) ¼ u (n);

(5) update time, n ¼ n þ 1;

(6) if n . mn, terminate simulation, otherwise go to step 2.

The acceptance probability is based on the relative likeli-

hood between two parameter configurations, the current

configuration u (n) and a proposed new configuration u*, as

generated by the user-defined proposal kernel q(uju (n)). It is

essential to understand that since the samples,

u(0), . . . , u(mn), are produced by a Markov chain we cannot

treat the mn steps as mn independent posterior samples.

Rather, we need to take mn to be large enough that the mn

steps are effectively equivalent to m independent samples.

One challenge in MCMC sampling is the selection of a

proposal kernel such that the size of mn required for the

Markov chain to reach the stationary distribution, called the

mixing time, is small [97]. If the variance of the proposal is

too low, then the acceptance rate is high, but the mixing is

poor since only small steps are ever taken. On the other

hand, a proposal variance that is too high will almost

always make proposals that are rejected, resulting in many

wasted likelihood evaluations before a successful move

event. Selecting good proposal kernels is a non-trivial exer-

cise and we refer the reader to Cotter et al. [98], Green et al.
[99] and Roberts & Rosenthal [100] for detailed discussions

on the wide variety of MCMC samplers including proposal

techniques. Other techniques used to reduce correlations in

MCMC samples include discarding the first mb steps, called

burn-in iterations, or sub-sampling the chain by using only

every mhth step, also called thinning. However, in general,

the use of thinning decreases the statistical efficiency of the

MCMC estimator [101,102].

Alternative approaches for exact Bayesian sampling can

also be based on importance sampling [22,103]. Consider a

random variable that cannot be simulated, X � p(x), but sup-

pose that it is possible to simulate another random variable,

Y � q(y). If X, Y [ V and p(x) ¼ 0 whenever q(y) ¼ 0, then

E[X] ¼
ð
V

xp(x) dx ¼
ð
V

x
p(x)

q(x)
q(x) dx � 1

m

Xm

i¼1

p(Y(i))

q(Y(i))
Y(i),

(4:8)

where Y(1), . . ., Y(m) are independent samples of q(Y ).

Using equation (4.8), one can show that if the distributions

of the target, p(x), and the proposal, q(y), are similar, then a

collection of samples, Y(1), . . ., Y(m), can be used to generate
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m approximate samples from p(x). This is called importance
resampling:

(1) generate samples Y(1), . . ., Y(m) � q(y);

(2) compute weights w(1) ¼ p(Y(1))/q(Y(1)), . . ., w(m) ¼

p(Y(m))/q(Y(m)); for i ¼ 1, 2, . . ., m;

(3) generate samples fX(1), . . ., X(m)g by drawing from fY(1),

. . ., Y(m)g with replacement using probabilities

P(X ¼ Y(i)) ¼ w(i)=
Pm

i¼1 w(i).

In Bayesian applications, the prior is often very different

from the posterior. In such a case, importance resampling

may be applied using a sequence of intermediate distri-

butions. This is called sequential importance resampling and is

one approach from the family of sequential Monte Carlo
(SMC) [104] samplers. However, like the Metropolis–Hast-

ings method, these methods also require explicit

calculations of the likelihood function in order to compute

the weights, thus all of these approaches are infeasible for

practical biochemical reaction networks. Therefore, we only

present more practical forms of these methods later.

More recently, it has been shown that the MLMC

telescoping summation can accelerate the computation of

posterior expectations when using MCMC [105,106] or SMC

[107]. The key challenges in these applications is the develop-

ment of appropriate coupling strategies. We do not cover

these technical details in this review.

4.3.2. Likelihood-free methods
Since exact Bayesian sampling is rarely tractable, due to

the intractability of the chemical master equation, alterna-

tive, likelihood-free sampling methods are required. Two

main classes of likelihood-free methods exist: (i) so-called

pseudo-marginal MCMC and (ii) approximate Bayesian com-

putation (ABC). The focus of this review is ABC methods,

though we first briefly discuss the pseudo-marginal

approach.

The basis of the pseudo-marginal approach is to use a

MCMC sampler (e.g. Metropolis–Hastings method), but

replace the explicit likelihood evaluation with a likelihood

estimate obtained through Monte Carlo simulation of the

forwards problem [108]. For example, a direct unbiased

Monte Carlo estimator is

p(Yobs j u)¼
ð
Vnt

Ynt

i¼1

p(Y(ti) jX(ti))P(X(ti), ti� ti�1 jX(ti�1))dX(ti)

� 1

n

Xn

j¼1

Ynt

i¼1

p(Y(ti) jX(ti)
(j)),

where [X(t1)(j), . . . , X(tnt )
(j)]T for j ¼ 1, 2, . . ., n are independent

sample paths of the biochemical reaction network of interest

observed discretely at times t1, t2, . . . , tnt . The most successful

class of pseudo-marginal techniques, particle MCMC [109],

apply a SMC sampler to approximate the likelihood and

inform the MCMC proposal mechanism. The particle mar-

ginal Metropolis–Hastings method is a popular variant

[30,109]. However, the recent model based proposals variant

also holds promise for biochemical reaction networks

specifically [110].

A particularly nice feature of pseudo-marginal methods is

that they are unbiased,6 that is, the Markov chain will still

converge to the exact target posterior distribution. This prop-

erty is sometimes called an ‘exact approximation’ [22,30].
Unfortunately, the Markov chains in these methods typically

converge more slowly than their exact counterparts. How-

ever, computational improvements have been obtained

through application of MLMC [111].

Another popular likelihood-free approach is ABC

[73,112–114]. ABC methods have enabled very complex

models to be investigated, that are otherwise intractable

[32]. Furthermore, ABC methods are very intuitive, leading

to wide adoption within the scientific community [32]. Appli-

cations are particularly prevalent in the life sciences,

especially in evolutionary biology [112,113,115–117], cell

biology [118–120], epidemiology [121], ecology [122,123]

and systems biology [31,90].

The basis of ABC is a discrepancy metric r(Yobs, Sobs) that

provides a measure of closeness between the data, Yobs, and

simulated data Sobs generated through stochastic simulation

of the biochemical reaction network with simulated measure-

ment error. Thus, acceptance probabilities are replaced with a

deterministic acceptance condition, r(Yobs, Sobs) � e, where e

is the discrepancy threshold. This yields an approximation to

Bayes’ theorem,

p(u j Yobs) � p(u j r(Yobs, Sobs) � e)

¼ p(r(Yobs, Sobs) � e j u)p(u)

p(r(Yobs, Sobs) � e)
:

(4:9)

The key insight here is that the ability to produce sample

paths of a biochemical reaction network model, that is, the

forwards problem, enables an approximate algorithm

for inference, that is, the inverse problem, regardless of the

intractability or complexity of the likelihood. In fact, a

formula for the likelihood need not even be known.

The discrepancy threshold determines the level of

approximation; however, under the assumption of model

and observation error, equation (4.9) can be treated as exact

[124]. As e ! 0 then p(ujr(Yobs, Sobs) � e)! p(ujYobs)

[125,126]. Using data for the mono-molecular chain model,

we can demonstrate this convergence, as shown in figure 4.

The marginal posterior distributions are shown for each par-

ameter, for various values of e and compared with the exact

marginal posteriors. The discrepancy metric used is

r(Yobs, Sobs) ¼
Xnt

i¼1

(Y(ti)� S(ti))
2

" #1=2

, (4:10)

where S(t) is simulated data generated using the Gillespie

direct method and equation (4.1). The example code,

DemoABCConvergence.m, is used to generate these mar-

ginal distributions.

For any e . 0, ABC methods are biased, just as the

tau-leaping method is biased for the forwards problem.

Therefore, a Monte Carlo estimate of a posterior summary

statistic, such as equation (4.7), needs to take this bias into

account. Just like the tau-leaping method, the rate of conver-

gence in mean-square of ABC-based Monte Carlo is degraded

because of this bias [125,126]. Furthermore, as the dimension-

ality of the data increases, small values of 1 are not

computationally feasible. In such cases, the data dimensional-

ity may be reduced by computing lower dimensional

summary statistics [32]; however, these must be sufficient
statistics in order to ensure the ABC posterior still converges

to the correct posterior as e ! 0. We refer the reader to

Fearnhead & Prangle [126] for more detail on this topic.
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4.3.3. Samplers for approximate Bayesian computation
We now focus on computational methods for generating

m samples, u(1)
e , . . . , u(m)

e , from the ABC posterior equation

(4.9) with e . 0 and discrepancy metric as given in equation

(4.10). Throughout, we denote s(Sobs; u) as the process for

generating simulated data given a parameter vector; this pro-

cess is identical to the processes used to generate our

synthetic example data.

In general, the ABC samplers are only computationally

viable if the data simulation process is not computatio-

nally expensive, in the sense that it is feasible to generate

millions of sample paths. However, this is not always

realistic, and many extensions exist to standard ABC in an

attempt to deal with these more challenging cases. The lazy
ABC method [127] applies an additional probability rule

that terminates simulations early if it is likely that r(Yobs,

Sobs) . e. The approximate ABC method [128,129] uses a

small set of data simulations to construct an approximation

to the data simulation process.
The most notable early applications of ABC samplers are

Beaumont et al. [115], Pritchard et al. [112] and Taveré et al.
[113]. The essential development of this early work is that

of the ABC rejection sampler:

(1) initialize index i ¼ 0;

(2) generate a prior sample u* � p(u);

(3) generate simulated data, S�obs � s(Sobs; u
�);

(4) if r(Yobs, S�obs) � e, accept u(iþ1)
e ¼ u� and set i ¼ i þ 1,

otherwise continue;

(5) if i ¼ m, terminate sampling, otherwise go to step 2.

There is a clear connection with the exact rejection sam-

pler. Note that every accepted sample of the ABC posterior

corresponds to at least one simulation of the forwards pro-

blem as shown in figure 5. As a result, the computational

burden of the inverse problem is significantly higher than

the forwards problem, especially for small e. The example

code, ABCRejectionSampler.m, provides an implemen-

tation of the ABC rejection sampler.
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Unfortunately, for small e, the computational burden of

the ABC rejection sampler may be prohibitive as the accep-

tance rate is very low (this is especially an issue for

biochemical reaction networks with highly variable

dynamics). For example in figure 4, m ¼ 100 posterior samples

takes approximately one minute for e ¼ 25, but nearly ten

hours for e ¼ 12.5. However, for e ¼ 12.5 the marginal ABC

posterior for k3 has not yet converged.

Marjoram et al. [130] provide a solution via an ABC modi-

fication to the Metropolis–Hastings method. This results in a

Markov chain with the ABC posterior as the stationary distri-

bution. This method is called ABC Markov chain Monte

Carlo (ABCMCMC):

(1) initialize n ¼ 0 and select starting point u(0)
e ;

(2) generate a proposal sample, u� � q(u j u(n)
e );

(3) generate simulated data, S�obs � s(Sobs; u
�);

(4) if r(Yobs, S�obs) . e, then set u(nþ1)
e ¼ u(n)

e and go to step 7,

otherwise continue;

(5) calculate acceptance probability

a ¼ min 1,
p(u�)q(u(n)

e j u�)
p(u(n)

e )q(u� j u(n)
e )

 !
;

(6) with probability a, set u(nþ1)
e ¼ u�, and with probability

1 2 a, set u(nþ1)
e ¼ u(n)

e ;

(7) update time, n ¼ n þ 1;
(8) if n . mn, terminate simulation, otherwise go to step 2.
An example implementation, ABCMCMCSampler.m, is

provided.

Just as with the Metropolis–Hastings method, the efficacy

of the ABCMCMC rests upon the non-trivial choice of the

proposal kernel, q(u j u(n)
e ). The challenge of constructing

effective proposal kernels is equally non-trivial for

ABCMCMC as for the Metropolis–Hastings method.

Figure 6 highlights different Markov chain behaviours for

heuristically chosen proposal kernels based on Gaussian

random walks with variances that we alter until the

Markov chain seems to be mixing well.

For the mono-molecular chain model (figure 6a–c),

ABCMCMC seems to be performing well with the Markov

chain state moving largely in the regions of high posterior

probability. However, for the enzyme kinetics model

(figure 6d– f ), the Markov chain has taken a long excursion

into a region of low posterior probability (figure 6f ) where

it is a long way from the true parameter value of k3 ¼ 0.01

for many steps. Such an extended path into the low prob-

ability region results in significant bias in this region and

many more steps of the algorithm are required to compensate

for this [131,132]. Just as with exact MCMC, burn-in samples

and thinning may be used to reduce correlations but may not

improve the final Monte Carlo estimate.
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To avoid the difficulties in ensuring efficient ABCMCMC

convergence, Sisson et al. [132] developed an ABC variant of

SMC. Alternative versions of the method are also designed

by Beaumont et al. [131] and Toni et al. [31]. The fundamental

idea is to use sequential importance resampling to propagate

mp samples, called particles, through a sequence of R þ 1 ABC

posterior distributions defined through a sequence of discre-

pancy thresholds, e0, e1, . . ., eR with er . erþ1 for r ¼ 0, 1, . . .,

R 2 1 and e0 ¼1 (that is, p(ue0
j Yobs) is the prior). This

results in ABCSMC:

(1) initialize r ¼ 0 and weights w(i)
r ¼ 1=m p for i ¼ 1, . . ., mp;

(2) generate mp particles from the prior, u(i)
er
� p(u), for i ¼ 1,

2, . . ., mp;

(3) set index i ¼ 0;

(4) randomly select integer, j, from the set f1, . . ., mpg with

P( j ¼ 1) ¼ w(1)
r , . . . , P( j ¼ m p) ¼ w(m p)

r ;

(5) generate proposal, u� � q(u j u(j)
er

);

(6) generate simulated data, S�obs � s(Sobs; u
�);

(7) if r(Yobs, S�obs) . erþ1, go to step 4, otherwise continue;

(8) set u(iþ1)�
erþ1

¼ u�, w(iþ1)�
rþ1 ¼ p(u�)=[

Pm p

j¼1 w(j)
r q(u�ju(j)

er
)] and

i ¼ i þ 1;

(9) if i , mp, go to step 4, otherwise continue;

(10) set index i ¼ 0;

(11) randomly select integer, j, from the set f1, . . ., mpg with

P( j ¼ 1) ¼ w(1)�
rþ1, . . . , P(j ¼ m p) ¼ w(m p)�

rþ1 ;

(12) set uiþ1
rþ1 ¼ u

(j)�
rþ1 and i ¼ i þ 1;

(13) if i , mp, go to step 11, otherwise continue;

(14) set w(i)
rþ1 ¼ 1=[

Pm p

j¼1 w(j)�
rþ1] and r ¼ r þ 1;

(15) if r , R, go to step 3, otherwise terminate simulation.

An implementation of the ABCSMC method is provided in

ABCSMCSampler.m.

The ABCSMC method avoids some issues inherent in

ABCMCMC such as strong sample correlation and long

excursions into low probability regions. However, it is still

the case that the number of particles, mp, often needs to be

larger than the desired number of independent samples, m,

from the ABC posterior with eR. This is especially true

when there is a larger discrepancy between two successive

ABC posteriors in the sequence. Although techniques exist

to adaptively generate the sequence of acceptance thresholds

[133]. Also note that ABCSMC still requires a proposal kernel

to mutate the particles at each step and the efficiency of the

method is affected by the choice of proposal kernel. Just as

with ABCMCMC, the task of selecting an optimal proposal

kernel is non-trivial [134].

The formulation of ABCSMC using a sequence of

discrepancy thresholds hints that MLMC ideas could also

be applicable. Recently, a variety of MLMC methods for

ABC have been proposed [135–137]. All of these approaches

are similar in their application of the multilevel telescoping

summation to compute expectations with respect to ABC

posterior distributions,

E[ueL j Yobs] ¼ E[ue0
j Yobs]þ

XL

‘¼1

E[ue‘ � ue‘�1
j Yobs], (4:11)

where e0, e1, . . ., eL is a sequence of discrepancy thresholds

with e‘ . e‘þ1 for all ‘ ¼ 0, 1, . . ., L 2 1.

Unlike the forwards problem, no exact solution has been

found for the generation of correlated ABC posterior pairs,

(ue‘ , ue‘�1
), with ‘ ¼ 1, . . ., L. Several approaches to this
problem have been proposed: Guha & Tan [135] use a

sequence of correlated ABCMCMC samplers in a similar

manner to Dodwell et al. [105] and Efendiev et al. [106];

Jasra et al. [136] apply the MLSMC estimator of Beskos et al.
[107] directly to equation (4.11); and Warne et al. [137]

develop a MLMC variant of ABC rejection sampler through

the introduction of an approximation based on the empirical

marginal posterior distributions.

The coupling scheme of Warne et al. [137] is the simplest

to present succinctly. The scheme is based on the inverse

transform method for sampling univariate distributions.

Given random variable X � p(x), the cumulative distribution

function is defined as

F(z) ¼ P(X � z) ¼
ðz

�1

p(x) dx:

Note that 0 � F(z) � 1. If F(z) has an inverse function, F21(u),

and U(1), U(2), . . ., U(m) are independent samples of U(0, 1),

then independent samples from p(x) can be generated using

X(1) ¼ F21(U(1)), X(2) ¼ F21(U(2)), . . ., X(m) ¼ F21(U(m)).

Given samples, u1
e‘

, u2
e‘

, . . . , um‘
e‘

, an estimate for the

posterior marginal cumulative distribution functions can be

obtained using

F‘,j(z) � F̂‘,j(z) ¼ 1

m‘

Xm‘

i¼1

1z(k(i)
e‘ ,j),

where k(i)
e‘ ,j is the jth component of u(i)

e‘
for all j ¼ 1, . . ., M, and

1z(x) ¼ 1 if x � z and 1z(x) ¼ 0 otherwise. Assuming we

already have an estimate of the posterior marginal cumulat-

ive distribution functions for acceptance threshold e‘21,

then we apply the transform k(i)
e‘�1,j ¼ F̂�1

‘�1,j(F̂‘,j(k
(i)
e‘ ,j)).

This results in a coupled marginal pair (ke‘ ,j, ke‘�1,j)
(i) since

it is equivalent to using the inverse transform method to

generate k(i)
e‘ ,j and k(i)

e‘�1,j using the same uniform sample

U(i) � U(0, 1). These approximately correlated samples can

be obtained using:

(1) generate sample from level ‘ ABC posterior

ue‘ � p(ue‘ j Yobs) using the ABC rejection sampler;

(2) set ke‘�1,j ¼ F̂�1
‘�1,j(F̂‘,j(ke‘ ,j)) for j ¼ 1, 2, . . ., M;

(3) set ue‘�1 ¼ [ke‘�1,1, ke‘�1,2, . . . , ke‘�1,M].

Thus, the ABC multilevel Monte Carlo (ABCMLMC) [137]

method proceeds though computing the Monte Carlo

estimate to equation (4.11),

ûe‘ ¼
1

m0

Xm0

i¼1

u(i)
e0
þ
XL

‘¼1

1

m‘

Xm‘

i¼1

u(i)
e‘
� u(i)

e‘�1

h i
, (4:12)

where u(1)
e0

, . . . , u(m0)
e0

are m0 independent samples using ABC

rejection sampler and (u(1)
e‘

, u(1)
e‘�1

), . . . , (u(m‘)
e‘

, u(m‘)
e‘�1

) are m‘

independent sample pairs using the approximately correlated

ABC rejection sampler for ‘ ¼ 1, 2, . . ., L. It is essential that

each bias correction term in equation (4.12) be estimated in

ascending order to ensure the marginal CDF estimates for

e‘21 are available for use in the coupling scheme for the ‘th

bias correction term. The complete algorithm is provided in

the electronic supplementary material and the example

code is provided in ABCMLMC.m. We refer the reader to

Warne et al. [137] for further details.

Provided successive ABC posteriors are similar in

correlation structure, then the ABCMLMC method accelerates

ABC rejection sampler through reduction of the number of



Table 1. Comparison of ABC methods for the mono-molecular inference problem. Estimates of the posterior mean are given along with the 95% CIs. Signed
relative errors are shown for the confidence interval limits with respect to the true parameter values k1 ¼ 1, k2 ¼ 0.1, and k3 ¼ 0.05. Computations are
performed using an Intelw CoreTM i7-5600U CPU (2.6 GHz).

method posterior mean estimate relative error compute time

ABC rejection k̂1 ¼ 1:1690� 100 + 7:1130� 10�2 [9:8%, 24:0%] 7268 (s)

sampler k̂2 ¼ 1:1011� 10�1 + 4:5105� 10�3 [5:6%, 14:6%]

k̂3 ¼ 5:3644� 10�2 + 1:9500� 10�3 [3:4%, 11:2%]

ABCMCMC k̂1 ¼ 1:2786� 100 + 7:8982� 10�2 [20:0%, 35:8%] 8059 (s)

k̂2 ¼ 1:1269� 10�1 + 5:2836� 10�3 [7:4%, 18:0%]

k̂3 ¼ 5:5644� 10�2 + 2:0561� 10�3 [7:2%, 15:4%]

ABCSMC k̂1 ¼ 1:0444� 100 + 6:4736� 10�2 [�2:0%, 10:9%] 580 (s)

k̂2 ¼ 9:8318� 10�2 + 3:2527� 10�3 [�4:9%, 1:6%]

k̂3 ¼ 4:8685� 10�2 + 1:8032� 10�3 [�6:2%, 1:0%]

ABCMLMC k̂1 ¼ 1:1535� 100 + 4:8907� 10�2 [10:5%, 20:2%] 1327 (s)

k̂2 ¼ 1:0654� 10�1 + 4:8715� 10�3 [1:7%, 11:4%]

k̂3 ¼ 5:1265� 10�2 + 2:2210� 10�3 [�2:0%, 7:0%]

Table 2. Comparison of ABC methods for the enzyme kinetics model inference problem. Estimates of the posterior mean are given along with the 95% CIs.
Signed relative errors are shown for the confidence interval limits with respect to the true parameter values k1 ¼ 0.001, k2 ¼ 0.005 and k3 ¼ 0.01.
Computations are performed using an Intelw CoreTM i7-5600U CPU (2.6 GHz).

method posterior mean estimate relative error compute time

ABC rejection k̂1 ¼ 1:0098� 10�3 + 1:7011� 10�4 [�16:0%, 18:0%] 2037 (s)

sampler k̂2 ¼ 7:7203� 10�3 + 7:3490� 10�4 [39:7%, 69:1%]

k̂3 ¼ 1:5164� 10�2 + 2:1201� 10�3 [30:4%, 72:8%]

ABCMCMC k̂1 ¼ 3:0331� 10�4 + 7:5670� 10�5 [�77:2%, �62:1%] 2028 (s)

k̂2 ¼ 5:8106� 10�3 + 7:9993� 10�4 [0:2%, 32:2%]

k̂3 ¼ 3:3865� 10�2 + 3:0187� 10�3 [208:5%, 268:8%]

ABCSMC k̂1 ¼ 9:8972� 10�4 + 1:4630� 10�4 [�15:7%, 13:6%] 342 (s)

k̂2 ¼ 9:2680� 10�3 + 9:1997� 10�4 [67:0%, 103:8%]

k̂3 ¼ 1:3481� 10�2 + 1:3278� 10�3 [21:5%, 48:1%]

ABCMLMC k̂1 ¼ 1:0859� 10�3 + 6:7058� 10�5 [1:9%, 15:3%] 795 (s)

k̂2 ¼ 6:8111� 10�3 + 3:2107� 10�4 [29:9%, 42:6%]

k̂3 ¼ 1:3663� 10�2 + 1:0729� 10�3 [25:9%, 47:4%]
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mL samples required for a given error tolerance. However,

additional bias is introduced by the approximately correlated

ABC rejection sampler since the telescoping summation is not

strictly satisfied. In practice, this affects the choice of the

acceptance threshold sequence [137].

We provide a comparison of the ABC rejection sampler,

ABCMCMC, ABCSMC and ABCMLMC methods as pre-

sented here. Posterior means are computed for both

the mono-molecular model and enzyme kinetics model

inference problems along with the 95% CIs for each estimate7

(see electronic supplementary material). Computation

times and parameter estimates are provided in tables 1

and 2. Example code, DemoABCMethodsMonoMol.m and

DemoABCMethodsMichMent.m, is provided. Algorithm
configurations are supplied in the electronic supplementary

material.

Note that no extensive tuning of the ABCMCMC,

ABCSMC or ABCMLMC algorithms is performed, thus

these outcomes do not reflect a detailed and optimized

implementation of the methods. Such a benchmark would

be significantly more computationally intensive than the

comparison of Monte Carlo methods for the forwards pro-

blem (figure 3). The computational statistics literature

demonstrates that ABCMCMC [130], ABCSMC [131,132]

and ABCMLMC [135–137] can be tuned to provide very

competitive results on a given inference problem. However,

a large number of trial computations are often required to

achieve this tuning, or more complex adaptive schemes
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need to be exploited [100,133]. Instead, our comparisons rep-

resent a more practical guide in which computations are kept

short and almost no tuning is performed, thus giving a fair

comparison for a fixed, short computational budget.

For both inference problems, ABCSMC and ABCMLMC

produce more accurate parameter estimates in less compu-

tation time than ABC rejection sampler and ABCMCMC.

ABCSMC performs better on the mono-molecular chain

model and ABCMLMC performs better on the enzyme kin-

etic model. This is not to say that ABCMCMC cannot be

tuned to perform more efficiently, but it does indicate that

ABCMCMC is harder to tune without more extensive testing.

An advantage of ABCMLMC is that it has fewer components

that require tuning, since the sample numbers may be opti-

mally chosen, and the user need only provide a sequence of

acceptance thresholds [137]. However, the ability to tune

the proposal kernel in ABCSMC can be a significant advan-

tage, despite the challenge of determining a good choice for

such a proposal [133,134].

4.4. Summary of the inverse problem
Bayesian approaches for uncertainty quantification and par-

ameter inference have proven to be powerful techniques in

the life sciences. However, in the study of intracellular bio-

chemical processes, the intractability of the likelihood

causes is a significant computational challenge.

A crucial advance towards obtaining numerical solutions

in this Bayesian inverse problem setting has been the advent

of likelihood-free methods that replace likelihood evaluations

with stochastic simulation. Through such methods, especially

those based on ABC, a direct connection between the for-

wards and inverse problems is made explicit. Not only is

efficient forwards simulation key, but information obtained

through each new sample path must be effectively used.

While ABC rejection sampler ignores the latter, advanced

methods like ABCMCMC, ABCSMC and ABCMLMC all pro-

vide different mechanisms for incorporating this new

information. For a specific inverse problem, however, it will

often not be clear which method will perform optimally. In

general, significant trial sampling must be performed to get

the most out of any of these algorithms.

The application of MLMC methods to ABC-based sam-

plers is a very new area of research. There are many open

questions that relate to the appropriateness of various

approximations and coupling schemes for a given inference

problem. The method of Warne et al. [137] is conceptually

straightforward; however, it is known that additional

bias is incurred through the coupling scheme. Alternative

coupling approximations that combine MLMC and MCMC

[135] or SMC [136] may be improvements, or a hybrid

scheme could be derived through a combination of these

methods. Currently, it is not clear which method is the

most widely applicable.
5. Summary and outlook
Stochastic models of biochemical reaction networks are

routinely used to study various intracellular processes, such

as gene regulation. By studying the forwards problem, sto-

chastic models can be explored in silico to gain insight into

potential hypotheses related to observed phenomena and

inform potential experimentation. Models may be calibrated
and key kinetic information may be extracted from time-

course data through the inverse problem. Both the forward

and inverse problems are, in practice, reliant upon

computation.

Throughout this review, we deliberately avoid detailed

theoretical derivations in favour of practical computational

or algorithmic examples. Since all of our code examples are

specifically developed within the user friendly Matlabw pro-

gramming environment, our codes do not represent optimal

implementations. Certainly, there are software packages

available that implement some of these techniques and

others that we have not discussed. For example, stochastic

simulation is available in COPASI [138], StochKit

[139,140], StochPy [141] and STEPS [142], and ABC-based

inference is available in ABC-SysBio [143], abctools

[144] and ABCtoolbox [145].

Throughout this review, we have focused on two bio-

chemical reaction network models, the mono-molecular

chain model for which the chemical master equation can be

solved analytically, and the enzyme kinetics model with an

intractable chemical master equation. However, the majority

of our Matlabw implementations are completely general and

apply to an arbitrary biochemical reaction network model.

The biochemical reaction network construction functions,

MonoMolecularChain.m and MichaelisMenten.m,

demonstrate how to construct a biochemical reaction network

data structure that most of our scripts and functions may

directly use, with the only exceptions being those that relate

to the analytical solution to the chemical master equation of

the mono-molecular chain model. Therefore, our code may

be viewed as a useful collection of prototype implementations

that may be easily applied in new contexts.

The techniques we present here are powerful tools for

the analysis of real biological data and design of experi-

ments. In particular, these methods are highly relevant for

the reconstruction of genetic regulatory networks from

gene expression microarray data [146–148]. Cell signalling

pathways can also be analysed using mass spectroscopy

proteomic data [149,150]. Furthermore, Bayesian optimal

experimental design using stochastic biochemical reaction

networks is key to reliable characterization of light-induced

gene expression [151], a promising technique for external

genetic regulation in vivo [152,153].

This review provides researchers in the life sciences with

the fundamental concepts and computational tools required

to apply stochastic biochemical reaction network models in

practice. Through practical demonstration, the current state-

of-the-art in simulation and Monte Carlo methods will be

more widely and readily applied by the broader life sciences

community.
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Endnotes
1These are not ‘rates’ but scale factors on reaction event probabilities.
A ‘slow’ reaction with low kinetic rate may still occur rapidly, but the
probability of this event is low.
2We use the Statistics and Machine Learning Toolbox within the
Matlabw environment for generating random samples from any of
the standard probability distributions.
3In the theory of Markov processes, this equation is known as the
Kolmogorov forward equation.
4Since u and Yobs are real-valued, we are not really dealing with prob-
ability distribution functions, but rather probability density functions.
We will not continue to make this distinction. However, the main
technicality is that it no longer makes sense to say ‘the probability
of u ¼ u0’ but rather only ‘the probability that u is close to u0’. The
probability density function must be integrated over the region
‘close to u0’ to yield this probability.
5That is, the probability of an event that encompasses all possible
outcomes is one.
6Provided the method of estimating the likelihood is unbiased, or has
bias that is independent of u.
7We report the 95% CI as an accuracy measure for the Monte Carlo
estimate of the true posterior mean. This does not quantify parameter
uncertainty that would be achieved through posterior covariances
and credible intervals.
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