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To assess differences and trends in personal chemical exposure,

volunteers from 14 communities in Africa (Senegal, South

Africa), North America (United States (U.S.)) and South

America (Peru) wore 262 silicone wristbands. We analysed

wristband extracts for 1530 unique chemicals, resulting in

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.181836&domain=pdf&date_stamp=2019-02-06
mailto:kim.anderson@oregonstate.edu
https://dx.doi.org/10.6084/m9.figshare.c.4375811
https://dx.doi.org/10.6084/m9.figshare.c.4375811
http://orcid.org/
http://orcid.org/0000-0003-0326-4477
http://orcid.org/0000-0001-7128-044X
http://orcid.org/0000-0003-4696-5396
http://orcid.org/0000-0002-5258-2925
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R

2
400 860 chemical data points. The number of chemical detections ranged from 4 to 43 per wristband,

with 191 different chemicals detected, and 1339 chemicals were not detected in any wristband. No

two wristbands had identical chemical detections. We detected 13 potential endocrine disrupting

chemicals in over 50% of all wristbands and found 36 chemicals in common between chemicals

detected in three geographical wristband groups (Africa, North America and South America). U.S.

children (less than or equal to 11 years) had the highest percentage of flame retardant detections

compared with all other participants. Wristbands worn in Texas post-Hurricane Harvey had the

highest mean number of chemical detections (28) compared with other study locations (10–25).

Consumer product-related chemicals and phthalates were a high percentage of chemical detections

across all study locations (36–53% and 18–42%, respectively). Chemical exposures varied among

individuals; however, many individuals were exposed to similar chemical mixtures. Our

exploratory investigation uncovered personal chemical exposure trends that can help prioritize

certain mixtures and chemical classes for future studies.
.Soc.open
sci.6:181836
1. Introduction
1.1. Personal exposure to chemical mixtures
People are exposed to complex chemical mixtures, rather than to a single chemical or an individual

chemical class [1–3]. Yet, toxicological and epidemiological studies often focus on one chemical or

chemical class. Chemical mixtures may result in significantly different toxicities compared with

individual chemical components, with the potential for additive, synergistic or antagonistic effects [1].

In certain circumstances, assessing health risks by individual chemicals may underestimate actual

risks because the combined effect of two chemicals is greater than the sum of both independent

effects [2]. To better understand the link between real-world chemical exposure and health effects,

simple personal monitoring methods are necessary to capture exposures from multiple chemical

classes [3,4].

Certain chemical exposures are associated with adverse health outcomes. Briefly, exposure to certain

polycyclic aromatic hydrocarbons (PAHs) has been associated with cancer [5], self-regulatory capacity

issues [6], low birth weight [7] and respiratory distress [8]. Exposure to specific flame retardants has

been associated with cancer [9,10], neurotoxicity [9,11] and cardiotoxicity [12]. Exposure to endocrine-

disrupting chemicals (EDCs) has been linked to health effects such as low semen quality, adverse

pregnancy outcomes and endocrine-related cancers [13,14]. Simultaneously assessing personal

exposure to multiple chemical classes, such as PAHs, flame retardants, pesticides, phthalates and

EDCs, may help researchers better connect chemical exposure to health.

There is a need to characterize common EDC mixtures because EDCs span several chemical classes and

have the potential to create significant health effects by altering hormone activities. The 2017 National

Academies of Science Endocrine Report proposed that the EPA develops a low-dose EDC exposure

surveillance programme, which would include the collection of personal exposure data [15]. A 2015

research study on EDCs highlights the lack of personal exposure information for EDC mixtures [16].

A 2012 report from the World Health Organization states that ‘more comprehensive assessments

of. . .exposures to diverse mixtures of EDCs are needed’ [17]. To assess personal exposure to low-dose

EDCs, the 2017 National Academies Report recommended that researchers use external chemical

exposure data in the absence of biomonitoring data, and suggested that silicone wristbands could be

used to assess individuals’ chemical exposure [15]. Silicone wristbands are a novel application of

passive sampling that O’Connell et al. first described in 2014 [18]. Wristbands have been identified as an

‘unprecedented measurement platform’ that provides individualized chemical exposure data [19],

which can be applied to many different types of environmental epidemiological studies [20].

1.2. Wristbands to assess personal exposure to chemical mixtures
In this study, we use silicone wristbands to assess personal exposure to chemical mixtures. Since 2014,

researchers have deployed wristbands around the world to evaluate personal chemical exposure. To

date, researchers have used wristbands to detect chemical exposure in communities ranging from

preschoolers in Oregon, U.S. to farming families in Senegal, Africa, and wristband results are

described in 14 peer-reviewed manuscripts [18,21–33].
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Although O’Connell et al. first reported using wristbands for passive sampling in 2014, researchers

have used passive sampling methods for over two decades to sample the bioavailable fraction of

organic chemicals in air, sediment and water [34–38]. Unbound volatile organic compounds (VOCs)

and semivolatile organic compounds (SVOCs) in the environment diffuse into the lipophilic

membrane of passive sampling polymers [24,34], which results in passive samplers reflecting the

bioavailable fraction of chemical exposure [35,39–41].

Wristbands have been compared with other personal exposure assessment methodologies, including

organophosphate flame retardants (OPFRs) in hand wipes and urine [23] and PAHs in air monitoring

backpacks and urine [29]. In these two studies, chemical concentrations in wristbands and paired

metabolites in urine samples were highly correlated, providing further evidence that wristbands are a

biologically relevant surrogate of chemical exposure [23,29].

Because the silicone polymer sequesters a broad range of organic chemicals [14], wristbands are

especially suitable for analysis of several chemical classes concurrently. The wristband’s ability to

capture and retain VOCs and SVOCs is detailed in Anderson et al. [22]. Researchers can easily archive

wristbands and/or wristband extracts to re-analyse for additional chemicals as analysis methods

expand and additional study questions arise.

Wristbands detect chemicals in an individual’s external environment, incorporating both inhalation

and dermal exposure [29]. This is an asset for emerging research focused on the exposome and

measuring the totality of personal exposure to chemicals [42,43]. Wristbands sample chemicals in the

gaseous phase and many SVOCs exist in this phase in concentrations relevant to human health. Both

low- and high-molecular-weight PAHs have been found in the gaseous phase [7,44–46] and can be

major contributors to PAH-associated adverse health effects [47]. Polybrominated diphenyl ethers

(PBDEs) and OPFRs in the gaseous phase have been reported to be just as critical to assess for

inhalation and dermal exposure as when associated with a particulate matter [10,48,49].
1.3. Study objectives
We used silicone wristbands collected in 14 unique communities and analysed 262 wristband extracts

for the presence–absence of 1530 organic chemicals. The objectives of this work were: (i) to

demonstrate the use of wristbands as a screening tool for population exposures to organic chemicals,

(ii) to investigate individual and community exposures to 1530 chemicals including over 400 potential

EDCs and (iii) to compare chemical detections between various demographic and geographical

variables. We hypothesized that comparing chemical detections between different communities would

reveal chemical exposure patterns that could inform future toxicology and epidemiology research.
2. Material and methods
2.1. Study participants and design
To represent as many chemical exposures as possible, this exploratory, retrospective study includes 262

wristbands worn by 246 volunteers on three continents from multiple prior wristband studies (table 1).

The research ethics section of this paper includes details on all Institutional Review Board (IRB) approval

and informed consent. Volunteer gender, age, population density and community for each wristband are

included in the electronic supplementary material. Volunteers wore the wristband for the entire study

period and were asked not to alter their daily activities.
2.2. Wristband methodology

2.2.1. Preparation and deployment

We purchased silicone wristbands from 24hourwristbands.com (Houston, TX, USA). We initially rinsed

wristbands with deionized water to remove potential surface particulates and then conditioned

wristbands to remove chemicals of interest from the silicone which is described in O’Connell et al. [18],

Donald et al. [25] and Anderson et al. [22]. Prepared wristbands were stored in airtight metal containers

at 48C. For deployment, wristbands were individually packaged in airtight polytetrafluoroethylene

(PTFE) bags (Welch Fluorocarbon, Dover, NH, USA) and labelled according to study protocols.
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Before deployment, we collected blank wristbands from each group of conditioned wristbands and

we analysed the blank wristbands using gas chromatography–mass spectrometry (GC–MS) with

perylene-d12 (500 ng) as an internal standard. To ensure the removal of oligomers that can adversely

impact analytical sensitivity, we verified that (i) there were less than four discrete peaks over 15 times

the response of our internal standard in the total ion chromatogram of each extract and (ii) that the

total mass reduction of conditioned wristbands compared with pre-conditioned wristbands was

greater than 3%. To reduce unnecessary sample loss, we also verified that wristbands retained

elasticity. Wristbands were not deployed unless these criteria were met.

2.2.2. Cleaning and extraction

After deployment, wristbands were returned in airtight PTFE bags to Oregon State University (OSU) for

analysis. To remove surface fouling and particulates, deployed wristbands were cleaned twice with

18 MV cm water and once with isopropanol, and then stored in amber jars at 2208C until extraction

[18,21,22,25].

All 262 wristbands were solvent extracted as reported in O’Connell et al. [18]. We added extraction

surrogates and then extracted chemicals from wristbands with two rounds of ethyl acetate (100 ml) at

room temperature. We quantitatively concentrated the ethyl acetate using TurboVapw evaporators

(Biotage LLC, Charlotte, NC, USA). Wristband extracts were stored at 2208C until analysis. For 35%

of wristbands, we conducted solid-phase extraction (SPE) after solvent extraction. For SPE, we added

3 ml of acetonitrile to each sample, which were then loaded onto pre-rinsed C18 SPE cartridges at

1.8 ml min21 (Supelco, Bellefonte, PA, USA; O’Connell et al. [18] and Kile et al. [24]). Samples were

eluted at 3 ml min21 with 9 ml of acetonitrile (Rapid Trace, automated SPE workstation, Biotage,

Uppsala, Sweden) [18,24]. SPE further cleans samples containing high levels of fats (e.g. fatty acid

esters and chains) and/or oils in personal care products that might interfere with chemical analyses.

2.2.3. Chemical analysis

We used an Agilent 7890A GC interfaced with an Agilent 5975C MS detector to analyse all wristband

extracts for the presence–absence of 1530 organic chemicals (GC–MS control parameters listed in

electronic supplementary material, table S1; Bergmann et al. [31]). An Agilent DB-5MS column

(30 m � 0.25 mm) was used in the GC and the inlet pressure was retention-time locked to chlorpyrifos

[31]. This high-throughput screen uses an automated mass spectral deconvolution and identification

system (AMDIS v. 2.66, National Institute of Standards and Technology) paired with deconvolution

reporting software (DRS, Agilent) to identify the presence–absence of 1530 chemicals. These chemicals

were selected because they may influence human health. This target list includes 76 consumer

product-related chemicals, 124 flame retardants, 185 industrial-related chemicals, 98 PAHs, 260 PCBs/

dioxins/furans, 773 pesticides and 14 phthalates. A list of target chemicals is available at http://fses.

oregonstate.edu/1530. Bergmann et al. [31] report limits of quantitation for all 1530 chemicals in the

analytical method used in this paper, which range from 40 to 500 pg ml21 depending on the chemical.

We manually reviewed chemicals with a greater than or equal to 60% match to library spectra in a

process which protects against false positives. We evaluated each individual chromatogram processed

with AMDIS according to our data quality objectives (DQOs) [31]. If the following criteria were not

met, the peak was excluded from our analysis: retention time shifts must be less than 45 s, peak

responses must be greater than a 3 : 1 signal-to-noise ratio and the peak shape of AMDIS extracted

ions must match the sample’s extracted peak shape. Chemists also looked for missing or extra m/z
peaks on each extracted spectrum in comparison with the corresponding AMDIS library spectrum,

which can also lead to peak exclusion [31].

2.2.4. Quality control summary

Quality control (QC) steps were included to ensure data quality. We collected and analysed blank

wristbands that travelled to and from study locations. We also analysed solvent that went through the

entire extraction process without a wristband. We analysed instrument blanks and calibration

verifications (CVs) every 10–15 samples. To meet our DQOs, all target chemicals were below the

instrument detection limits in the ethyl acetate or hexane instrument blanks. Prior to instrumental

analysis, we positively identified greater than 80% of target chemicals in the CVs. If a CV did not

meet our DQOs, we verified our standards and, if needed, performed instrument maintenance before

http://fses.oregonstate.edu/1530
http://fses.oregonstate.edu/1530
http://fses.oregonstate.edu/1530
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re-running samples. Our series of QC throughout wristband conditioning, travelling, cleaning, extraction

and analytical processes allowed us to account for any potential chemical contamination. For more QC

results on specific projects, we refer to the related wristband manuscripts [21,24–26,29,30].

We have analysed several hundred blank wristbands and found all target chemicals below detection

limits with the exception of a few phthalates. Blank wristbands can contain some of the 1530 target

chemicals and pass our DQOs if the amounts in blank wristbands are at least 100 times lower in

concentration than deployed wristbands. The phthalates we regularly identify in blank wristbands are

typically 100–10 000 times lower in concentration than deployed wristbands, which we track and

monitor during the chemical analysis process [31].
/journal/rsos
R.Soc.open

sci.6
2.2.5. Chemicals and solvents

We purchased chemical standards from Accustandard (New Haven, CT, USA), Sigma-Aldrich (St. Louis,

MO, USA), TCI America (Portland, OR, USA), Santa Cruz Biotechnology (Dallas, TX, USA) and Chiron

(Trondheim, Norway). All solvents were Optima-grade or equivalent (Fisher Scientific, Pittsburgh, PA,

USA). All of the tools and glassware were baked for 12 h at 4508C and/or solvent-rinsed before use.

For processes requiring 18 MV cm water, the water was filtered through a D7389 purifier (Barnstead

International, Dubuque, IA, USA).
:181836
2.3. Data analysis
We assigned each community an urban or rural classification. An urban classification includes both

urban and suburban communities—settlements with medium to high population density. A rural

classification includes areas with low population density and small settlements. We acknowledge that

there can be large differences in the human-made surroundings between rural (or urban) communities

depending on the country and socio-economic class.

We categorized participant age into five groups: under 11, 11–20, 21–40, 41–60 and over 60. These

age groups are similar to what is used by the U.S. National Health and Nutrition Examination Survey

(NHANES) [50], although we further divided the NHANES 20–59-year-old group into two groups to

look for additional chemical detection patterns.

Each chemical was assigned one of seven primary categories: (i) consumer product-related chemicals;

(ii) flame retardants; (iii) industrial-related chemicals; (iv) PAHs; (v) PCBs, dioxins and furans; (vi)

pesticides and (vii) phthalates. We acknowledge most chemicals fit in more than one category. For

example, triphenyl phosphate (TPP) is not only a flame retardant but also an industrial-related

chemical (used as a plasticizer). For this study, we assigned TPP to the flame retardant category.

Potential EDCs were categorized according to the Endocrine Disruptor Exchange List (https://

endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-

list; accessed September 2017). There are 432 potential EDCs in our analytical method.

We used sigma.js software to conduct a network analysis on co-occurring chemical detections. The

outline of the proportional Venn diagrams for three sets was created using eulerAPE software as

developed by Micallef & Rodgers [51]. Two wristband groups in the Venn diagrams for the 30% most

commonly detected chemicals included one additional chemical in the Venn to account for ties in

chemical detection numbers. We created boxplots and tree maps with JMP Pro, v. 13.2.1. We used

Tukey–Kramer honestly significant difference (HSD) tests to compare differences between all possible

pair of means for more than two wristband groups and Student’s t-tests to compare differences

between means for two groups. Statistical significance was set at a ¼ 0.05 for all analyses. South

Africa wristband data (n ¼ 2) were excluded from Tukey–Kramer HSD tests on regional and

geographical density differences. The 11–20 age bin in Africa (n ¼ 1) was also excluded for tests on

age bin differences. Each section of the tree maps (e.g. Ohio, Africa rural and South American female)

includes the seven pre-determined chemical categories. The size of each coloured box reflects the

percentage of chemical detections for that specific chemical category. Principal component analysis

(PCA) was applied to the presence–absence data for the 191 unique chemicals detected in this study,

with presence indicated numerically as 1 and absence as 0 (using Primer-E, v.6). Pearson correlations

underlie this PCA. A given vector points in the direction of increasing density of 1s corresponding to

the associated chemical. Principal component (PC) pairs ranging from PC1 to PC5 were considered,

with PC1 versus PC2 displayed.

https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list
https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list
https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list
https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list
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3. Results
We analysed 262 wristbands from 246 volunteers. We have geographical information for all volunteers,

including the country, the region within the country, and rural or urban designations. Because some

volunteers wore more than one wristband, we will refer to groups of wristbands rather than groups of

volunteers throughout the results section. We have participant-identified gender for 80% of wristbands

and age for 71% of wristbands. Volunteer ages ranged between 3 and 86, with a median age of 34. The

sample sizes for different demographic and geographical variables are summarized in table 1.
3.1. Wristband chemical detections
No two wristbands had the same chemical detection profile. Overall, chemical detections ranged from 4

to 43 per wristband, with an average of 20. One hundred and ninety-one chemicals were detected at least

once. These chemicals, along with the additional 1339 chemicals that were not detected in any wristband,

are visually represented in a heat map in figure 1. We detected 14 chemicals in over 50% of all

wristbands, 13 of which are potential EDCs (table 2).

Detections of potential EDCs ranged from 4 to 30 per wristband, with an average of 14. Of the 191

chemicals we detected once, 96 are classified as potential EDCs (figure 2a,b) and 95 are not (figure 2c).
3.1.1. Venn diagrams

We detected 36 chemicals in common between wristbands worn in three continent-based wristband

groups: (i) North America, (ii) South America and (iii) Africa (figure 3a and table 3). Of the 30% most

commonly detected chemicals in wristbands worn in North America, South America and Africa, there

were 13 chemicals in common (figure 3b and table 3). North American volunteers had (i) the highest

number of chemicals detected compared with South America and Africa and (ii) the highest number
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Figure 2. Heat map of (a) all 432 potential endocrine disrupting chemicals (EDCs) tested for in the wristbands, (b) all 96 potential
EDCs detected at least once in the wristbands and (c) all 95 chemicals that are not potential EDCs and detected at least once in the
wristbands. Black indicates a chemical was detected in a wristband while white indicates a chemical was not detected.

Table 2. Detection frequencies for chemicals found in greater than 50% of wristbands.

chemical
frequency of detection
out of 262 wristbands (%)

potential endocrine
disruptor chemical primary chemical category

diethyl phthalate 95 yes phthalate

galaxolide 94 yes consumer product-related

di-n-butyl phthalate 93 yes phthalate

diisobutyl phthalate 85 yes phthalate

bis(2-ethylhexyl)phthalate 84 yes phthalate

di-n-nonyl phthalate 82 yes phthalate

butylated hydroxytoluene 79 yes consumer product-related

tonalide 76 yes consumer product-related

lilial 75 yes consumer product-related

benzyl salicylate 73 yes consumer product-related

butyl benzyl phthalate 66 yes phthalate

benzophenone 64 yes industrial-related

triphenyl phosphate 52 yes flame retardant

n,n-diethyl-m-toluamide 52 no pesticide
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of chemicals detected unique to just one continent (figure 3, chemicals listed in electronic supplementary

material, tables S2 and S3).

At the intersection of five population-density wristband groups: (i) U.S. urban, (ii) U.S. rural, (iii) Peru

urban, (iv) Peru rural and (v) Senegal and South Africa, there were 28 chemicals in common (figure 3c
and table 3). Twenty chemicals were found in common between four groups, 27 chemicals between three

groups and 40 chemicals between two groups (chemicals listed in electronic supplementary material,

table S4). When comparing the 30% most commonly detected chemicals between the five population-

density groups mentioned above, there were 13 chemicals in common (figure 3d and table 3).

Notably, these same 13 chemicals in common were at the intersection of the three other Venn

diagrams (table 3). Of these 13 chemicals, 11 of them (benzophenone, benzyl salicylate, bis(2-

ethylhexyl)phthalate, butylated hydroxytoluene, di-n-butyl phthalate, di-n-nonyl phthalate, diethyl
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phthalate, diisobutyl phthalate, galaxolide, n,n-diethyl-m-toluamide and tonalide) were also detected in

over 50% of all wristbands. In figure 4d, five chemicals were found in common between four groups,

three chemicals were found in common between three groups and eight chemicals were found in

common between two groups (chemicals listed in electronic supplementary material, table S5).

3.1.2. Network analysis

The same chemical pairs were often detected together in a wristband. Thirty-five different chemical pairs

occurred in 20 or more wristbands in this study (electronic supplementary material, figure S1). Fourteen

of those pairs include TPP, 10 include b-ionone and nine include benzothiazole. For example, TPP and

b-ionone co-occurred in 65 wristbands. TPP and tris(1-chloro-2-propyl) phosphate (TCPP) co-occurred

in 57 wristbands. Cinnamal and benzothiazole co-occurred in 31 wristbands.

3.2. Geographical and demographic differences
We examined differences in the number of chemicals detected and primary chemical categories for

geographical and demographic variables (figure 4). The majority of chemicals detected were consumer

product-related chemicals and phthalates, regardless of region, population density, age and gender.

Specifics regarding chemical detection means and Tukey–Kramer HSD results are included in

electronic supplementary material, tables S5–S8.
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Figure 4. The number of chemical detections per wristband and the distribution of chemical categories are displayed for several
variables: geographical region (a,b), population density (c,d ), age (e,f ) and gender (g,h). On the box plots, blue dots (top) represent
the total of all chemicals detected and orange dots (bottom) represent the total of potential endocrine disrupting chemicals. Black
triangles represent the mean number of chemical detections. For each group of boxplots, letters represent significance results;
wristband group means not connected by the same letter are significantly different (Tukey – Kramer HSD, p , 0.05). For the
tree maps, each primary chemical category (consumer product, flame retardant, industrial, PAH, PCB/dioxin/furan, pesticide and
phthalate), is represented by a different colour. The size of each coloured box reflects the percentage of chemical detections for
that specific category.
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3.2.1. Region

The mean number of total chemicals detected between Africa (10.6), North America (22.5) and South

America (17.8) was all significantly different from one another (Tukey–Kramer HSD, p , 0.0001). In

figure 4a, Texas had the highest mean number of total chemicals detected (28.2) and the highest mean

number of potential EDCs detected (19) compared with all other regions (electronic supplementary

material, table S6). The mean number of total chemicals detected in Texas was significantly higher

than the mean for Oregon, New York, Alto Mayo, Washington, DC, Ohio and Senegal (Tukey–

Kramer HSD, p ¼ 0.01 to ,0.0001, figure 4a). We found similar results for potential EDCs detected

(figure 4a). The mean number of total chemicals detected in Senegal (10.0) was significantly lower

than the means for all other regions (Tukey–Kramer HSD, p , 0.0001), which was also true for the

mean number of potential EDCs detected.

Texas had a high percentage of pesticide detections (19%) compared with the contribution of

pesticide detections in other regions (3–15%; figure 4b). Both North Carolina and Oregon had higher

percentages of flame retardants detected (10% and 12%, respectively) than the percentages in other

regions (0–8%, figure 4b). Phthalates were a high percentage of Senegal’s total chemical detections

(42%; figure 4b). For all regions, phthalate detections were 18–42% of total chemical detections and

consumer product-related chemical detections were 36–53% of total chemical detections (figure 4b).

A comparison of PC1 versus PC2 reveals similarities between wristbands worn in many different

regions (figure 5). This PCA also highlights wristbands that are less similar. Many of the wristbands

worn in Peru and Senegal clustered farthest to the left. In the direction of the Peru and Senegal

cluster, chemical vectors suggest a lower density of certain chemical detections (such as personal care

product-related chemicals like cinnamal, lilial and butylated hydroxytoluene) and higher density of

bis(2-ethylhexyl)phthalate detections (presence–absence gradient shown in electronic supplementary

material, figure S2). Several wristbands worn in Texas clustered as well. In the direction of the

Texas cluster, chemical vectors suggest a higher density of n,n-diethyl-m-toluamide, amyl cinnamal,

TCPP, butyl benzyl phthalate, TPP, permethrin and PBDE 47 detections.

3.2.2. Population density

The mean number of total chemicals detected between wristbands worn in rural (16.4) and urban (22.6)

communities was significantly different from one another (Student’s t-test, p , 0.0001). Within North

America, the mean number of chemicals detected in urban wristbands (23.1) was significantly higher than

the mean number of chemicals detected in rural wristbands (19.9, Tukey–Kramer HSD, p¼ 0.02, figure 4c).

For South America, the mean number of chemicals detected for urban wristbands (19) was slightly higher

than rural wristbands (17.3); however, this difference was not statistically significant (Tukey–Kramer HSD,

p . 0.05; electronic supplementary material, table S7). The mean number of potential EDCs detected did not

significantly differ between rural and urban groups for either North or South America (Tukey–Kramer HSD,

p . 0.05). The mean number of chemicals detected for wristbands from rural Africa (10) was significantly

lower than all other wristbands in figure 4c (17.3–23.1, Tukey–Kramer HSD, p , 0.0001). Although we did
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not calculate statistics (because n¼ 2 in the Africa urban group, i.e. South Africa), there was a higher mean

number of chemicals in the Africa urban group (19) compared with the Africa rural group (10).

Wristbands in the South America rural group had a higher percentage of PAHs (15%) and pesticides (13%)

detected compared with wristbands in the South America urban group (4% and 10%, respectively; figure 4d).

Chemical categories appear to be similar between North America rural and urban groups, with the exception

of a few PCB, dioxin and furan detections in the North American urban group (0.26%). Flame retardant

detections were higher contributors to total chemical detections in both North America rural and urban

groups (8%) than in all other groups (0–4%). There were more pesticide detections (10%) and fewer

industrial-related chemical detections (4%) contributing to the total percentage of chemical detections in

the Africa rural group compared with the Africa urban group (3% and 8%, respectively).

3.2.3. Age

Comparing all age groups, the mean number of total chemicals detected between wristbands worn by

volunteers under 11 years old (24.6) and over 60 years old (24.3) was significantly higher than the

mean number for all other age groups (16.5–18.9; Tukey–Kramer HSD, p , 0.04 to ,0.0001). Within

each continent, the mean number of chemicals detected for each age group was not significantly

different (Tukey–Kramer HSD, p . 0.05, figure 4e). Similar to other variables, age groups in Africa

had significantly lower mean numbers of chemicals detected than all age groups in North America

and several age groups in South America (Tukey–Kramer HSD, p ¼ 0.04 to ,0.00001; electronic

supplementary material, table S8).

Flame retardants were present in all age groups in North America and South America (figure 4f ).

Flame retardant detections contributed more to the total percentage of chemical detections in

wristbands worn by North Americans under age 11 (15%) compared with flame retardant detections

in other age groups in North Americans (5%, 7% and 10%; figure 4f ). Common flame retardants in

these children’s wristbands included TCPP, tributyl phosphate, PBDE 47, TPP and tris(2-ethylhexyl)

phosphate. Flame retardants were not detected in wristbands worn by volunteers of any age in Africa.

Consumer product-related chemicals and phthalates were a high percentage of chemicals detected in all

age groups for each continent (10–48% for consumer product-related chemicals, and 21–50% for

phthalates; figure 4f ). In Africa and North America, the highest percentage of consumer product-related

chemicals was for volunteers between 21 and 40 years old. In North America and South America,

pesticide detections contributed more to the total percentage of chemical detections in wristbands worn

by volunteers over 60 compared with wristbands worn by younger volunteers (figure 4f ).

3.2.4. Gender

The mean number of total chemicals detected between wristbands worn by females (20.3) and males (18.9)

was not significantly different from one another (Student’s t-test, p ¼ 0.14). Additionally, within each

continent, there were no significant differences found between the mean total number of chemicals

detected for males and females (Tukey–Kramer HSD, p . 0.05, figure 4g; electronic supplementary

material, table S9). North American males had a higher mean number of chemicals detected (24.5) than

North American females (21.7), even if not a significant difference (Tukey–Kramer HSD, p ¼ 0.07). South

American females had a higher mean number of chemical detections (18.6) than South American males

(16.8), but this was not a significant difference (Tukey–Kramer HSD, p ¼ 0.74). When looking at the

mean number of potential EDCs detected, there was a significantly higher mean for North America

males (16.7) than North America females (14.8, Tukey–Kramer HSD, p ¼ 0.04).

The chemical category profiles for each gender are similar within each continent (figure 4h). For

North and South America, there were slightly higher consumer product-related chemical detections

for females (45% and 40%) than males (40% and 33%).
4. Discussion
We demonstrate that wristbands are an excellent screening tool for population exposures to organic

chemicals. Wristbands are lightweight, easy to transport [22,25], do not require batteries or

maintenance, and offer a unique opportunity to investigate components of the personal exposome on

a global scale. Our investigation revealed that chemical exposure profiles are different between

individuals and we detect significant chemical detection differences based on geography, population
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density, age and gender variables. To our knowledge, this is the first study to report chemical mixture

profiles for individuals on three continents and for the presence–absence of over 1500 organic chemicals.

Although wristbands worn by volunteers detected different chemicals, we identified notable patterns.

For example, 14 chemicals were detected in over 50% of wristbands, 13–36 chemicals were found in

common between different groups of wristbands and several co-occurring pairs of chemicals were

identified. Our results reveal common chemical mixtures across several communities that can be

prioritized for future toxicology and epidemiology studies [4,52]. Toxicologists can investigate health

effects resulting from the common mixtures we report. In addition, if there is a certain chemical of

concern (e.g. ‘chemical Y’), toxicologists can recreate a mixture of the common chemicals reported in the

study plus ‘chemical Y’ to investigate potential non-additive interactions. Exposure scientists can also use

these mixtures from our extensive chemical screen to begin to assess the relative concentrations of these

mixtures in different populations.

When considering the estimated 140 000 chemicals synthesized worldwide since 1950 [53], research

can be hindered by the possible number of chemical mixtures that need to be investigated. Yet, it is

unlikely that people are exposed to a mixture of all 140 000 chemicals. For example, we screened for

1530 priority chemicals, but only detected 191 different chemicals. It is likely that not all chemicals

reach bioactive sites because physical-chemical properties can limit chemical bioavailability. Previous

research has demonstrated that passive samplers, including wristbands, reflect the bioavailable

fraction of chemicals [23,29,35,40]. Thus, investigating all factorial combinations of chemical mixtures

could be simplified by focusing on patterns that are detected in multiple populations using passive

sampling technology.

There are several approaches for studying chemical mixtures, including the ‘sufficiently similar’ mixture

approach proposed by the U.S. Environmental Protection Agency [54]. In an attempt to balance practicality

and limited scope issues present with other mixture assessment methodologies, like whole mixture and

component-based approaches [55], a sufficiently similar mixture is where proportions between chemical

components match the real-world mixture [54]. Such methodologies could be applied moving forward

with the common chemicals reported in this study. For example, Geier et al. applied this approach and

constructed a fixed-ratio, environmentally relevant PAH mixture with the top 10 most prevalent PAHs

from a Superfund site and used zebrafish to assess developmental and neurotoxicological hazards [55].

Researchers can use wristband data to prioritize and create sufficiently similar mixtures for investigating

the effect of chemical exposures on human health outcomes.

To our knowledge, this is the first study to screen for personal exposure to 432 potential EDCs in

samplers worn by volunteers on three continents. A 2015 review on EDCs summarizes different ways to

classify EDCs, such as (i) those that occur naturally versus synthesized [56] and (ii) those with different

origins, including natural and artificial hormones, drugs with hormonal side effects, industrial and

household chemicals and side products of industrial and household processes [13,57]. Here, we detected

13 potential EDCs in over 50% of wristbands. Since these 13 potential EDCs are common and

bioavailable, this is a potential new EDC category to prioritize in future studies. The baseline EDC

exposure data we report may help researchers link emerging health issues with EDC exposure.

4.1. Chemical detection comparisons between geographic and demographic variables
Because phthalates and consumer product-related chemicals make up a large percentage of personal

chemical exposure, regardless of a person’s age, gender or location, these chemical categories may be

a high priority for future toxicology and epidemiology studies. Phthalates are plasticizers, some of

which are known EDCs (54). Human exposure to certain phthalates has been associated with adverse

male reproductive outcomes and impaired behavioural development [58–61]. Owing to health

concerns, the U.S. federal government passed legislature in 2008 banning the use of di-n-butyl

phthalate, bis(2-ethylhexyl)phthalate and butyl benzyl phthalate in concentrations of more than 0.1%

in children toys and certain child care articles [62], which we detected in this study in 92%, 84% and

66% of wristbands, respectively. Additional wristband studies can help assess phthalate exposure

temporal trends.

Our results also indicate that personal PCB exposure is not common for inhalation and dermal routes

at concentrations above our detection limits. Notably, there are 260 PCBs/dioxins/furans in our

analytical method, but PCBs were only detected eight times in wristbands worn in either New York

or Oregon. PCB exposure has been linked to many health issues such as cancer [63] and immune

system issues [64], leading to the phase-out of these chemicals under the Toxic Substances Control Act

in the U.S. and Stockholm Convention [65].
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4.1.1. Region

Although we found common chemical exposures, there are also distinct differences between wristbands

worn in different regions. For example, wristbands worn by people near Houston, Texas within a month

after Hurricane Harvey landfall (i) had a significantly higher mean number of chemical detections than

several other geographical regions, (ii) had a relatively higher number of pesticide detections than other

regions and (iii) clustered during PCA. In communities affected by disasters, personal chemical exposure

is probably unique and wristbands can assess exposure during critical time windows.

The significantly lower mean number of chemical detections in Senegal compared with other regions,

and cluster of Senegal wristbands in PCA, might be due to differences in behaviours and built

environment (human-made surroundings) compared with other regions. The absence of flame

retardants in both Senegal and South Africa wristbands may reflect a difference in flammability

protection standards [66], housing materials and/or furniture used in certain Africa communities

compared with other communities in North and South America. A 2016 review on exposure studies

in Africa states that PBDE flame retardants have been found in dust, soil, water and human breast

milk [67]. In Tanzania, PBDEs in breast milk were found in higher concentrations than Asia and

Europe, but it is noted that PBDEs were inconsistently detected in samples from Africa and few

samples have been reported from West Africa [67].

4.1.2. Age

North Americans in this study, especially those under 11 years old, have a higher percentage of flame

retardant detections compared with all other groups, highlighting priorities for future studies. PBDE

flame retardants are known to be neurotoxic, and children with higher exposure to PBDEs have been

associated with a greater risk of neurological issues such as negative social behaviours, reduced verbal

comprehension and working memory, and autistic-like behaviours [68,69]. Many PBDEs are no longer

used because of their persistence and concerns about their effect on children, leading to greater use of

OPFRs. However, there is evidence that OPFRs are also neurotoxic, potentially using the same

mechanisms as organophosphate pesticides [70].

Because of a higher contribution of consumer product-related chemical detections, North American

participants between the ages of 21 and 40 may have used more personal care products than other age

groups in this study. In addition, individuals over the age of 40 in this study may have handled more

pesticides to control pests around the home or for agricultural purposes. Pesticide exposure can result

in a variety of adverse health effects [71].

4.1.3. Population density

Prioritization of exposure assessment to certain chemical classes might be different between rural and urban

communities. For example, PAH detections were higher in South America rural than South America urban.

Differences in heating sources and other behaviours related to cooking, burning, smoking and vehicle

exhaust might contribute to those differences. Additionally, our definitions of rural and urban may have

influenced our results. For example, we did not have information available in this study if volunteers

were living in a rural area but spending large amounts of time in urban locations.

4.1.4. Gender

Males and females had similar mean numbers of chemicals detected within continents, which may

indicate similar behaviours and built environments. Future studies could focus on male EDC exposure

because we observe a significant increase in the mean number of potential EDC detections in males

compared with females in North America. Significant knowledge gaps exist, but researchers have

hypothesized that EDC exposure contributes to developmental genital anomalies and low semen

quality [72]. As of 2013, significant percentages of young men (up to 40% in some countries) were

reported to have low semen quality [72], further warranting additional research on male EDC exposure.

4.2. Additional considerations
While this is the first study to screen for the presence of 1530 organic chemicals in wristbands worn on

three continents, there are limitations worth noting. We relied on a convenience sample of volunteers and

did not randomly recruit participants in this study. Therefore, the chemical exposures we report may not
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be representative of all chemical exposures in the 14 communities included. Even so, these data are the

first exploration of organic chemical exposures detected by wristbands across diverse communities,

helping inform future research priorities. Additionally, our results do not reflect exposure from

particulate-bound chemicals or from ingestion because we use wristbands to sample organic chemicals

in the gaseous phase important to inhalation and dermal exposure routes. In the future, as the

number of studies using wristbands increase, it would be beneficial to standardize questionnaires and

IRBs so researchers can build a robust database to explore personal chemical exposure.

This is an exploratory, retrospective study, so wristband deployment length varied depending on the

specific project. In this study, we did not detect a difference in the number of chemicals detected based on

how long a participant wore a wristband (electronic supplementary material, figure S3).

We have communicated chemical exposure data to most volunteers included in this study. There are

many considerations when returning chemical results, with special care not to cause harm but rather to

increase knowledge about chemical exposure. Studies have shown that participants report benefits from

receiving their results even if exposure limits and health effects are uncertain [73–75]. Returning results

can give participants insight into the study they participated in and offer them the opportunity to make

their own decisions about their chemical exposures [73,76,77]. Brody et al. state that ‘for example,

participants may choose to reduce exposures as a precaution or to become engaged in public discourse

about chemical use and regulation’ [76]. We will continue to report chemical results to participants, and

we anticipate that we will incorporate the results from this study into participant reports.
181836
5. Conclusion
Wristbands sampled personal exposure to a wide range of consumer product-related chemicals, flame

retardants, industrial-related chemicals, PAHs, PCBs/dioxins/furans, pesticides and phthalates.

Owing to the innovation and applicability of wristbands in exposure science studies over the past few

years, we were able to compare chemical detection data between 14 different communities on three

continents, resulting in four primary conclusions:

(1) Not all synthesized chemicals are in the personal environment and bioavailable. Out of the 1530

chemicals in our chemical method, we detected 191 unique chemicals.

(2) Personal chemical exposure varies by individual. No two wristbands had identical chemical

detection profiles.

(3) Patterns in personal chemical exposure emerged, including the detection of 14 chemicals in over 50%

of wristbands, revealing common mixtures that can be used in future toxicology research on chemical

mixtures. These common chemicals are primarily potential EDCs (93%).

(4) Geographical and demographic variables highlight priority chemical categories for future studies,

such as flame retardant exposure in North American children and chemical exposure in

communities affected by natural disasters (e.g. people in Houston, Texas after Hurricane Harvey-

related flooding).

Gathering personal exposure data with wristbands can be valuable for informing how organic chemical

mixtures, especially EDCs, influence health.
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