
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Cousins M, Sargeant JM,

Fisman D, Greer AL. 2019 Modelling the

transmission dynamics of Campylobacter in

Ontario, Canada, assuming house flies,

Musca domestica, are a mechanical vector

of disease transmission. R. Soc. open sci. 6:

181394.

http://dx.doi.org/10.1098/rsos.181394
Received: 22 August 2018

Accepted: 14 January 2019
Subject Category:
Biology (whole organism)

Subject Areas:
health and disease and epidemiology/

biomathematics

Keywords:
transmission model, Campylobacter transmission,

campylobacteriosis, house flies, mechanical

vectors, climate change
& 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Author for correspondence:
Amy L. Greer

e-mail: agreer@uoguelph.ca

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.figshare.

c.4382246.
Modelling the transmission
dynamics of Campylobacter
in Ontario, Canada, assuming
house flies, Musca domestica,
are a mechanical vector
of disease transmission
Melanie Cousins1,2, Jan M. Sargeant1,2, David Fisman3

and Amy L. Greer1,2

1Department of Population Medicine, Ontario Veterinary College, University of Guelph,
Guelph, Ontario, Canada
2Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
3Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto,
Toronto, Ontario, Canada

MC, 0000-0003-3725-4058

Campylobacter’s complicated dynamics and multiple

transmission routes have made it difficult to describe using a

mathematical framework. Vector-borne disease transmission

has been proposed as a potential transmission route of

Campylobacter with house flies acting as a mechanical vector.

This study aimed to (i) determine if a basic SIR compartment

model that included flies as a mechanical vector and

incorporated a seasonally forced environment compartment

could be used to capture the observed disease dynamics in

Ontario, Canada, and (ii) use this model to determine potential

changes to campylobacteriosis incidence using predicted

changes to fly population size and fly activity under multiple

climate change scenarios. The model was fit to 1 year of data

and validated against 8 and 12 years of data. It accurately

captured the observed incidence. We then explored changes in

human disease incidence under multiple climate change

scenarios. When fly activity levels were at a 25% increase, our

model predicted a 28.15% increase in incidence by 2050 using

the medium–low emissions scenario and 30.20% increase

using the high emissions scenario. This model demonstrates

that the dynamics of Campylobacter transmission can be

captured by a model that assumes that the primary

transmission of the pathogen occurs via insect vectors.
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1. Background

Campylobacteriosis (the infection caused by the bacteria Campylobacter) affected 21 in 100 000 people in Ontario

in 2017, making it the most common gastrointestinal illness in Canada [1]. Humans can contract these bacteria

from awide variety of sources including: contaminated food and water, contact with animals and animal faeces

and contact with an infected individual or their faecal matter [2–4]. In a study in Ontario, of domestic cases of

known exposure, 63% were food-related, 27% from contact with animals, 6% from other individuals and 3%

from contaminated water [5]. Also, Ravel et al. [6] researched campylobacteriosis source attribution through

exposure assessment and comparative genomic fingerprinting using isolates from clinical cases and

potential sources in Canada [7]. They found that chicken meat was the most common source (65–69%)

followed by contact with cattle or cattle faeces (14–19%), and lastly meat from cattle was of minor

importance [8]. This evidence suggests that contaminated food and contact with animals are of highest

importance as the source of campylobacteriosis in Canada.

Human campylobacteriosis exhibits seasonal fluctuations in disease incidence with peaks in the

summer months, June–August [8–12]. There are many hypotheses for the observed seasonality

including: environmental/climactic changes, human behavioural changes and, more recently, flies as

mechanical vectors and seasonal fluctuations in fly populations [9–11,13]. There is evidence that

campylobacteriosis is associated with certain environmental and climatic factors such as increased

temperatures, increased humidity and higher water flows [14–16]. As Campylobacter use the environment

to move between human and animal hosts, it is important to know how these bacteria are affected by

external factors.

It has also been noticed that the seasonal fluctuations in campylobacteriosis coincide with times of

highest fly population density and activity level [13]. It has been demonstrated that flies carry bacteria

including Campylobacter, and these bacteria can be transferred to food and surfaces from which

humans can then become infected [17]. Flies can also encounter these bacteria, carry them on their

bodies and transfer them among agricultural settings, such as between pens or barns, thus infecting

food animals which can then be contacted or consumed by humans [13].

This theory requires attention, as fly population size and activity are subject to increase along with the

number of flies surviving the winter season under predictions of climate change [18,19]. Climate change

is predicted to cause an increase in temperature, humidity and precipitation in Canada and places of

similar latitude [20]. It is also expected that the winter season will be shorter and warmer with more

precipitation falling as rain instead of snow [21]. In a study in the UK, temperature, humidity and

precipitation were all highly correlated with fly population size [18]. Using a model, these authors

projected the annual size of house fly populations under medium–low and high carbon emission

scenarios [18]. Their results suggest up to a 244% increase in fly population size by 2080 under a high

emissions scenario over the population in 2003 [18]. Fly activity is also predicted to increase as

temperatures rise [19]. Schou et al. [19] found that both sexes of house flies’ daytime activity increased

with temperature until a threshold of 30–358C, respectively. Therefore, as the ambient temperature

rises, flies may become more active throughout the day. Since house flies are very sensitive to changes

in the environment, it is important to know how flies may react to climate change and in turn change

the dynamics of campylobacteriosis.

A mathematical modelling framework can be used to simulate the spread of a pathogen through a

population of individuals in order to quantify disease outcomes, including the burden of disease, the

number of secondary cases arising from a single case (R0) and/or the population attack rate [20]. Models

can also be used to examine hypotheses related to data gaps, or disease prevention and intervention

strategies [20].

Simple compartmental models have been expanded to capture the dynamics of waterborne diseases

such as cholera [21–23]. In most cases, this was done by adding a water compartment into which

infected individuals shed the pathogen. Susceptible humans can then become infected by contact with

this infected water reservoir or by contact with an infected individual. This allows the model to capture

traditional person–person transmission (aka the ‘fast loop’ [22]) as well as person–water–person

transmission (or the ‘slow loop’ [22]). These types of models allow researchers to gain a more complete

picture of the disease dynamics as well as test the impact of intervening on the different transmission routes.

Compartmental models have also been expanded to model vector-borne infectious diseases, known

as Ross–MacDonald models [24–26]. Ross and MacDonald developed a model for mosquito-borne

pathogen transmission that included latency due to the pathogen’s life cycle [26,27]. In the Ross–

MacDonald model structure, a susceptible vector obtains the pathogen from a host during blood
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feeding. Once the pathogen has multiplied to a sufficient level in the vector, it can then be passed to a

new susceptible host during a subsequent feeding [24,25]. These models have been adopted as the

standard framework for many vector-borne diseases [26].

Owing to Campylobacter’s zoonotic disease dynamics and multiple transmission routes, it is a complicated

host–pathogen system to model. Skelly and Weinstein modelled human campylobacteriosis that explicitly

looked at infection from aquatic environments contaminated by human and animal faeces (treated and

untreated water), and through food consumption, preparation and processing [27]. However, there are no

models that attempt to capture the observed seasonality either through the environment, through fly

dynamics or through these two sources in combination. The objectives of this study were to: (i) determine

if a basic SIR compartment model that incorporates flies as a mechanical vector, and also incorporates a

seasonally forced environmental reservoir compartment, could be used to capture the observed disease

dynamics in Ontario, Canada, and (ii) use this model to explore possible changes to campylobacteriosis

incidence using projected changes to fly population dynamics and fly activity level under different

climate change scenarios.
Soc.open
sci.6:181394
2. Methods
2.1. Case data
We used two sets of data to parametrize and validate our model. Firstly, we had access to confirmed

campylobacteriosis cases from Public Health Ontario (PHO) from 1 January 2005 to 31 December

2013. A positive individual had gastrointestinal illness symptoms and either the pathogen isolated

from stool or body fluids, or had an epidemiological link to one or more laboratory-confirmed cases.

The positive cases were reported to the integrated Public Health Information System (iPHIS). Cases

that had travelled outside of Ontario within the incubation period of Campylobacter were excluded as

it was assumed that these do not represent locally acquired cases. Over the 9-year period, there were

a total of 27 956 confirmed cases in Ontario. The campylobacteriosis cases showed seasonality, with

most cases occurring in the spring and summer months (June–September). The second form of data

was publicly available ‘Monthly Infectious Disease Surveillance Reports’ provided by PHO which is a

summation of cases from iPHIS on a provincial level.

2.2. Model structure
A deterministic SEIR model was developed that included the addition of an environmental reservoir (B).

This reservoir is a placeholder to include many of the potential transmission routes: contaminated water,

contaminated food, contact with animals and other environments contaminated by human and animal

faeces. The environmental reservoir is seasonally forced to account for the changing levels of bacteria

in the reservoir depending on the season. Campylobacter are sensitive to changes in the environment,

which results in variability in the bacterial load in the environmental reservoir dependent on the

season [8]. This dynamic occurs via direct changes to the biology of the bacteria in the environment

as well as changes in the other aspects of the environmental reservoir. For example, high temperature

and water levels are associated with increased odds of Campylobacter-positivity on farms [28]. This

could lead to increased shedding of the pathogen and therefore an increased environmental load [8].

High temperatures are also associated with increased carcass levels of Campylobacter on poultry which

could lead to increased risk of food contamination [10,29]. In order to mathematically allow for the

seasonal oscillation of the environmental compartment (B), an ‘environmental parameter’ was added

to the model (z). This parameter is a scaling/augmenting factor (refer to appendix A, equation (A 5)).

This SBEIR model was then further expanded to include house flies, Musca domestica, as mechanical

vectors (e.g. insects that carry the pathogen on the outside of the body and transmit through physical

contact [30]). In this model (figure 1), a susceptible human (Sh) can become infected in three different

ways: contact with an infectious human (bi), contact with the environmental reservoir (bb) or

consuming food that has been contaminated by a ‘contaminated’ fly (bf ).

Susceptible flies enter the population at a seasonally fluctuating birth rate (mb) and leave the population

at a seasonal rate dependent on the number of flies in each compartment (md). The birth rate is seasonal

because egg laying rates and larval development times fluctuate with temperature [13,31]. Female flies

have more eggs in their lifetime at warmer temperatures (117.8+36.5 at 208C versus 494.9+73.2 at

308C) [32]. Also, warmer temperatures along with an increase in rainy days leads to larvae being able to
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Figure 1. Compartmental diagram showing Campylobacter transmission in humans (top, h subscript) driven by flies (bottom,
f subscript). Susceptible humans (Sh) are exposed (Eh) before becoming infectious to others (Ih) and then recover (Rh).
Susceptible house flies (Sf ) become contaminated (If ) when they contact the environment (B). Person – person, environment –
person and mechanical vector transmission due to flies are denoted by the dotted lines. Rates of change are represented by
Greek letters above the arrows.

Table 1. Model parameters with values from the literature (ranges used for sensitivity analysis) and assumptions.

symbol definition value (range) reference

human demographic parameters

mbh human birth rate 0.000026 days21 [33]

mdh human death rate 0.000019 days21 [33]

mi human immigration rate 0.000016 days21 [33]

transmission parameters

bi person – person transmission rate fitted

bb environment – person transmission rate fitted

bf mechanical vector transmission rate fitted

be environment – fly transmission rate fitted

disease parameters

g latent period 0.65 (0.33 – 1) days21 [2,34]

l duration of infection 0.0476 (0.014 – 0.142) days21 [2,35 – 37]

z environmental parameter fitted

fly demographic parameters

mb fly birth rate fitted

md fly death rate fitted
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develop into adult flies within days compared to months (tables 1 and 2) [13]. These two factors in

combination allow the fly population to increase exponentially as temperatures rise into the summer

months. The fly birth rate includes both fly births from domestic flies that survived the winter and the

influx of flies from warmer climates that occurs as temperatures rise [38]. Therefore, the birth rate is



Table 2. Model initial conditions with values from the literature and assumptions.

symbol definition value reference

Sh0 initial human susceptible population fitted

B0 initial environmental load fitted

Eh0 initial human exposed population 0 assumption

Ih0 initial human infectious population 9 PHO dataset

Rh0 initial human recovered population fitted

Sf0 initial fly susceptible population fitted

If0 initial fly infectious population 0 assumption

w number of flies survive winter fitted (same as Sf0)
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independent of the number of flies in the population. The death rate is seasonal because temperature also

affects adult fly survival [32]. Flies thrive at mean temperatures of 20–258C. Survival decreases above and

below this range [32].

In temperate climates, such as Ontario, most flies do not survive the cold winter temperatures [32].

In order to capture this, the model removes all flies above the initial fly population (w ¼ Sf0) at the

end of each warm season. Therefore, the model restarts every year with the same number of

susceptible flies and zero ‘contaminated’ flies. Susceptible flies become ‘contaminated’ when they

contact the environmental reservoir (bb). The flies pick up bacteria on their bristles. When they land

on human food, they leave the bacteria behind. These bacteria can then infect a susceptible human

when the food is consumed (bf ). It is assumed that the contaminated flies remain contaminated until

they die. This dynamic disease transmission process is represented by equations (A 1)–(A 7) in

appendix A.

2.3. Model assumptions
The model assumed homogeneous mixing between the entire human population of Ontario, Canada.

The model assumed that humans acquire lifelong immunity to Campylobacter after they have recovered

from an infection. Waning immunity was added to the model and had minimal effect on the model

outcomes and therefore was removed for simplicity. Owing to the low case fatality rate [39], the

model also assumed that there was no difference in death rates for those who had been infected and

those who were uninfected.

Many of the assumptions revolve around flies and their contact. There are few empirical data on fly

contact rates with both humans and the environment. Therefore, these parameters were estimated

through model fitting.

2.4. Model fitting and validation
Owing to the number of unknown parameters, the model was fit to existing data in order to estimate

these parameters. This was done by fitting the model’s unknown parameters to the first year of the

PHO dataset (1 January to 31 December 2005) using R’s optimizing function. This is an optimization

technique based on Nelder–Mead, quasi-Newton and conjugate-gradient algorithms for general

purpose [40]. Initial parameter estimates were defined along with upper and lower bounds using the

‘L-BFGS-B’ method. Model fit was determined graphically by visually comparing the model output to

the observed daily incidence data.

The model was validated using two techniques. First, the model was run for the remaining duration

of the dataset (2006–2013). The predicted daily incidence was compared to the observed PHO incidence

from 1 January 2006 until 31 December 2013. This appeared to be a good fit graphically and, therefore, a

second validation step was done to ensure the model outputs were accurate. Using the model-predicted

cumulative incidence from 1 January 2005 to 31 December 2017, the cumulative incidence was compared

to incidence reported in the ‘Monthly Infectious Disease Surveillance Report’ by PHO, with 15% of the

cases removed to account for the proportion of cases that were assumed to have acquired the bacteria

through international travel [1,39].



Table 3. Parameters used to calculate changes in fly population size and fly activity levels under climate change scenarios.

mb md Sf0/w be bf

baseline 2.15 � 1023 1.67 � 1023 4910 5.10 � 10211 1.03 � 10211

increase in fly population size

medium – low emissions

45.7% 2.196 � 1023 1.696 � 1023 5250 5.10 � 10211 1.03 � 10211

84.3% 2.175 � 1023 1.715 � 1023 5500 5.10 � 10211 1.03 � 10211

156% 2.204 � 1023 1.734 � 1023 6000 5.10 � 10211 1.03 � 10211

high emissions

45.7% 2.196 � 1023 1.696 � 1023 5250 5.10 � 10211 1.03 � 10211

128% 2.197 � 1023 1.727 � 1023 5750 5.10 � 10211 1.03 � 10211

244% 2.186 � 1023 1.756 � 1023 6250 5.10 � 10211 1.03 � 10211

increase in fly activity

25% 2.15 � 1023 1.67 � 1023 4910 6.37 � 10211 1.29 � 10211

50% 2.15 � 1023 1.67 � 1023 4910 7.64 � 10211 1.54 � 10211

75% 2.15 � 1023 1.67 � 1023 4910 8.92 � 10211 1.80 � 10211

100% 2.15 � 1023 1.67 � 1023 4910 1.02 � 10210 2.06 � 10211
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2.5. Sensitivity analysis
A Latin hypercube sensitivity analysis was performed on all parameters in the model with results

depicted as partial rank correlation coefficients. A univariate sensitivity analysis was performed on

the initial conditions that had uncertainty or that were estimated through model fitting.

2.6. Climate change conditions
As the global temperature rises, the population dynamics of flies, as with many other vectors, are sure to

change [18,19]. In order to capture expected changes in fly population size, we used population

predictions from Goulson et al. [18] under moderate and high carbon emission scenarios. Under a

medium–low emission scenario, the authors predicted a 45.7% increase by 2020, an 84.3% increase by

2050 and a 156% increase by 2080 of annual fly population size compared to baseline population size

estimates from 2003 [18]. Under a high emission scenario, the authors predicted a 45.7%, 128% and 244%

increase in annual fly population size [18]. This dynamic was captured in the model by changing the birth

and death rate of the flies as well as increasing the number of flies that survive over the winter (table 3).

The amount of fly activity also increases as temperatures increase and, therefore, is likely to increase under

the warming temperatures associated with climate change [19]. This is of concern because as flies become

more active, they may have more contact with the contaminated reservoir where they can pick up

pathogens on their bodies. Therefore, this increased activity could also lead to more flies landing on our

foods. An increase in fly activity was modelled by increasing the amount the flies contact the environment

(be) and the amount the flies contact human food (bf ). We modelled this as a 25–100% increase in fly

activity (table 3). These scenarios were also examined in combination (fly population�fly activity level) to

determine the expected observed increase in human incidence of disease in these different scenarios. All

scenarios were compared to the first year of the baseline scenario (1 January–31 December 2005). This year

was chosen for comparison as the predictions by Goulson et al. [18] were compared to 2003 fly populations

and the surveillance data show relatively stable incidence over the given time period.
3. Results
3.1. Model fit
The optimization function in R finds unknown parameter values by finding parameters to minimize the

difference between the observed data and the model output. After parametrization (parameters found in



Table 4. Model parameters and initial conditions found through model fitting.

symbol definition value

bi person – person transmission rate 1.034177 � 10213

bb environmental – person transmission rate 3.380743 � 10207

bf fly – person transmission rate 1.028844 � 10211

mb fly birth rate 2.154924 � 10203

md fly death rate 1.67 � 10203

be environment – fly transmission rate 5.095899 � 10211

Z environmental parameter 2.237077 � 10202

Sh0 initial human susceptible population 8 � 10þ06

B0 initial environmental load 2.5 � 10202

Rh0 initial human recovered population 4.57 � 10þ06

Sf0 initial fly susceptible population 4.91 � 10þ03

w number of flies survive winter 4.91 � 10þ03
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Figure 2. Model fit to PHO confirmed campylobacteriosis daily incidence from 1 January to 31 December 2005.
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table 4), the model graphically appeared to have a good fit to the observed Campylobacter incidence in

Ontario from 1 January to 31 December 2005 (figure 2), meaning that it found the minimal difference

and best fit statistically. Since parameters were estimated using the first year of the data and appeared

to have a good fit, the model was run for the next 8 years (the full duration of the dataset) using the

best fit parameter values to validate the model. The daily incidence of the confirmed

campylobacteriosis cases from PHO were graphically compared to the model and appeared to have a

good fit (figure 3). For further validation, the cumulative incidence from 2005 to 2017 was compared

to incidence reported in the ‘Monthly Infectious Disease Surveillance Report’ by PHO. This also

appeared to have a good fit (figure 4).
3.2. Sensitivity analysis
From the Latin hypercube sensitivity analysis, the model was most sensitive to the latent period (l), the

environmental parameter (z) and the fly death rate (md) as seen by the high partial rank correlation

coefficients in figure 5. The model was moderately sensitive to the transmission parameters including

flies and the environmental reservoir (bf, be, bb), but not to the person-to-person transmission rate (bi).

From the univariate analysis, it was found that the model was least sensitive to the initial number of

susceptible flies (Sf0), and the upper bound of initial susceptible humans (Sh0) (electronic supplementary

material, table S1A). The model was highly sensitive to the initial environmental load (B0) and the lower
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bound of the initial susceptible humans (Sh0) (electronic supplementary material, table S1A). Therefore, it

is necessary to have enough susceptible humans and enough bacterial load in the environment in order

to initiate the spread of campylobacteriosis, until a certain threshold of susceptible humans is reached, in

which case it can no longer spread to a greater extent. However, if there are more bacteria in the

environment, this can lead to much greater outbreaks.
3.3. Climate change scenarios
Using the predictions of Goulson et al. [18], under medium–low emission scenarios, which correspond to

a 156% increase in fly population size, the model showed that there could be a 6.67% increase in

campylobacteriosis incidence by 2080 [18]. Under high emission scenarios which correspond to a

244% increase in fly population size, the model showed a 10.35% increase in incidence (figure 6;

electronic supplementary material, table S2A).

When there was a 25% increase in fly activity, the model exhibited a 23.43% increase in human

Campylobacter incidence. When fly activity was doubled, the model predicted a 93.73% increase in
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incidence over the baseline of 25.04 cases per 100 000 population (figure 7; electronic supplementary

material, table S2A).

More realistically, both phenomenon will occur under climate change scenarios. Therefore, we

examined combinations in which all predicted population increases were run under the 25–100%

activity increase scenarios. In this case, under medium–low carbon emissions, the model projected a

31.74% increase in incidence by 2080 if fly activity increased by 25% but up to a 107.02% increase if fly

activity doubled. Under worst-case scenarios (high carbon emissions causing 244% population increase

and 100% activity increase), the model projected a 114.43% increase in Campylobacter incidence in

Ontario compared to the 2005 baseline (figure 8; electronic supplementary material, table S2A).
4. Discussion
Using a novel model structure, we have identified the environmental conditions that appear to describe the

observed incidence of campylobacteriosis in Ontario. In addition, we have identified how the incidence of

campylobacteriosis in the Ontario human population could change under different climate change
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scenarios that act to change fly populations and activity levels. This is an important step towards identifying

evidence in support of this hypothesis which may lead to more research in this area.

4.1. Model results
According to our model results, increased fly activity is more influential in increasing the human incidence of

campylobacteriosis compared to increased overall fly population size. For example, a 50% increase in fly

activity resulted in a 46.9% increase in the incidence of campylobacteriosis; however, a 45.6% increase in

fly population size resulted in a 1.9% increase in Campylobacter incidence. In the worst-case scenario, our

fly population model predicted a 10.3% increase in disease incidence. This pattern has been noticed in

other mathematical models of vector-borne diseases. For example, in a model of mosquito transmission in

Africa that included seasonality, the authors found that insecticide-treated nets were more effective at

controlling the spread of disease when compared with indoor residual spraying [41]. In this case, the nets

are controlling the ability of mosquitoes to enter the homes and therefore are limiting contact with

humans, whereas the spraying is controlling the size of the mosquito population. This has major

implications for public health and, therefore, gives us insight into potential areas for intervention and

control. For example, common practice for fly control includes spraying to reduce fly population size.
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However, according to our model, small populations that are highly active still contribute significantly to

transmission. Controlling fly activity or decreasing the transmission rate between flies and human

food may be more beneficial in this case. Intervention studies have been performed in which fly

screens were used to prevent the entrance of flies into poultry barns [42]. For example, there was a

reduction in C. jejuni prevalence in poultry barns in Denmark from 41 to 10% in those that had fly screens

[42]. These interventions appear to be successful at the flock level and may provide insight into future

intervention strategies.
ing.org/journal/rsos
R.Soc.open

sci.6:181394
4.2. Limitations
Modelling Campylobacter transmission is difficult because of its complex dynamics. As a result, this

model makes a number of assumptions and simplifications. For example, the homogeneous mixing

assumption assumes that every individual has the same probability of contact with the environment,

each other and the flies [43]. In reality, this may not be the case. For example, with many enteric

diseases, there are high rates of transmission within households, but little transmission between other

infected individuals [44]. Certain individuals may also have more contact with the environment or

certain components of the environmental reservoir or may be more at risk for contact with flies, such

as those living in rural areas or on farms. This model may under- or overestimate the incidence

depending on the importance of the heterogeneity of the population. Therefore, other model

structures may be required to overcome this assumption such as models stratified by age, living

conditions or level of risk.

This model was calibrated and validated using human incidence only and therefore does not use

independent data for the fly or environment reservoirs. Since empirical data for these reservoirs do

not exist at this scale, these values were obtained through model fitting and could not be

independently validated. This is an important limitation of the model and suggests that the collection

of additional data for further model validation would be a useful next step.

Our model-predicted incidence aligns well with the years of observed data but does diverge after

2013 and predicts higher incidence for the subsequent 4 years. This may be an indication that our

model may overestimate the burden of campylobacteriosis when run further into the future.

This model was created to explore if flies as a mechanical vector for disease transmission to humans

was a viable hypothesis. There were no data on fly population dynamics and contact rates with both

humans and the environment in Ontario, and therefore, these parameters were estimated through

model fitting. The model was also sensitive to the transmission rates involving flies (bf and be). These

parameters are influential because they determine the rate at which susceptible humans are becoming

infected and, therefore, are big drivers of the disease dynamics. These parameters were also found

through parametrization. Therefore, this model would benefit from further research into collecting

empirical data to obtain more informative upper and lower bounds on these parameters to create

more accurate and informative models.

Our results showed that increasing the amount of fly activity leads to a greater increase in incidence

and, therefore, controlling fly contact may be a superior method of prevention than controlling fly

population size. However, this may be a combination of the way in which we modelled increases to

fly activity and the uncertainty around the amount fly activity will increase in the future. Increasing

fly activity in our model involved increasing both the transmission parameter with humans (bf ) and

the environment (be) by the intended percentage increase (i.e. a 25% increase in activity resulted in a

25% increase in bf and a 25% increase in be). This could have, however, been modelled as a

synergistic effect by increasing each transmission parameter by 12.5% to create a total increase of 25%.

Further research in this area is warranted.

An aspect of the biology that we did not address is that the retention of Campylobacter on flies

may decline as temperatures increase [45]. This could be an important factor in how far flies can

carry Campylobacter depending on the temperature. This could be tested in the future using our

model in conjunction with projected fly population and activity changes under the different climate

change scenarios.

Our model used predictions from Goulson et al. on climate change’s effect on fly population size

based on the assumption from the UK Climate Impacts Programme that the global temperature will

increase by 2.348C by 2080 in an optimistic medium–low carbon emission scenario and by 3.888C in a

high emission scenario [18,46]. Should the magnitude of climate change vary in North America, it

would be expected that fly populations and activity would also vary accordingly.
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5. Conclusion

A mechanistic infectious disease model for the transmission of Campylobacter in the Ontario human

population in which flies act as a mechanical vector between contaminated environments and human

food consumption was created. The model was able to capture the observed daily and cumulative

incidence data, thus supporting the fly transmission hypothesis. Creating a model for Campylobacter
which includes a seasonally fluctuating environmental compartment and fly populations will allow

future researchers to test many different aspects of the transmission chain. This could include

expanding the model to explicitly model specific transmission routes as well as test different

prevention and control strategies.
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Appendix A
Equations:

dSh

dt
¼ mbh(Sh þ Eh þ Ih þ Rh)þ mi(Sh þ Eh þ Ih þ Rh)� biShIf � bbShB� bfShIf � mdhSh, ðA1Þ

dEh

dt
¼ biShIh þ bbShBþ bfShIf � gEh � mdhEh, ðA2Þ

dIh

dt
¼ gEh � lIh � mdhIh, ðA3Þ

dRh

dt
¼ lIh � mdhRh, ðA4Þ

dB
dt
¼ z sin

2pt
365

� �� �
B, ðA5Þ

dSf

dt
¼ mb �200 sin

2pt
365

� �� �
� beShB� md �200 sin

2pt
365

� �� �
Sf, ðA6Þ

and
dIf

dt
¼ beShB� md �200 sin

2pt
365

� �� �
If: ðA7Þ
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