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Forming global estimates of self-performance from
local confidence

Marion Rouault® !, Peter Dayan'?34 & Stephen M. Fleming'2

Metacognition, the ability to internally evaluate our own cognitive performance, is particularly
useful since many real-life decisions lack immediate feedback. While most previous studies
have focused on the construction of confidence at the level of single decisions, little is known
about the formation of “global” self-performance estimates (SPEs) aggregated from multiple
decisions. Here, we compare the formation of SPEs in the presence and absence of feedback,
testing a hypothesis that local decision confidence supports the formation of SPEs when
feedback is unavailable. We reveal that humans pervasively underestimate their performance
in the absence of feedback, compared to a condition with full feedback, despite objective
performance being unaffected. We find that fluctuations in confidence contribute to global
SPEs over and above objective accuracy and reaction times. Our findings create a bridge
between a computation of local confidence and global SPEs, and support a functional role for
confidence in higher-order behavioral control.
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etacognition, the ability to internally evaluate our cog-

nitive processes, is critical for adaptive behavioral

control, particularly as many real-life decisions lack
immediate feedback. Specifically, action outcomes can be
ambiguous!, delayed, occur only after a sequence of subsequent
decisions?, or might never occur at all>*. Yet behavioral and
neural evidence indicate that subjects are able to evaluate their
choices online in the absence of immediate feedback, forming
estimates of decision confidence®® and detecting and correcting
response errors’8. Previous research on metacognition in both
humans and animals has focused on mechanisms supporting
“local” decision confidence, elicited at or around the time of a
particular decision®10. The formation of decision confidence is
informed by stimulus evidence!!-14, reaction times!°~17, and
integration of post-decision evidence!8. Theoretically, decision
confidence is proposed to correspond to a probability that a
choice was correct!®, and, empirically, confidence computations
are thought to depend on a network of the prefrontal and parietal
brain areas>!>20:21,

Despite this intensive focus on the construction of “local”
confidence at the level of individual decisions, it remains unclear
whether and how local confidence estimates might be aggregated
over time to form “global” self-performance estimates (SPEs).
Global beliefs about our abilities play an important role in
shaping our behavior??, determining the goals we choose to
pursue, and the motivation and effort we put into our
endeavors?324, Put simply, if we believe we are unable to succeed
at a particular task, we may be unlikely to try in the first place. In
certain situations, such beliefs may exert stronger influences on
our behavior than objective performance?>2%, and distortions in
global self-evaluation have been associated with various psy-
chiatric symptoms27-28,

However, despite their widespread behavioral influence, little is
known about the mechanisms supporting the formation of global
SPEs on a given task. It is likely that global SPEs incorporate
external feedback when it is available. For instance, when

choosing our next career move, we may learn about our self-
competence over multiple evaluations of performance (such as
formal appraisals), and accumulate these local evaluations into
coherent global beliefs. Critically, however, when external feed-
back is absent, it may prove adaptive to use decision confidence as
a proxy for success, aggregating local confidence estimates over
longer timescales to form global SPEs.

Here, we developed a paradigm to investigate how external
feedback and local decision confidence relate to global SPEs, and
whether local fluctuations in decision confidence inform SPEs
when external feedback is unavailable. In three experiments,
human subjects played short interleaved tasks and were subse-
quently asked to choose the task on which they think they per-
formed best. These task choices provided a simple behavioral
assay of global SPEs. Strikingly, subjects pervasively under-
estimate their performance in the absence of feedback, compared
with a condition with full feedback, despite objective performance
being similar in the two cases. Moreover, we observe that local
decision confidence influences SPEs over and above accuracy and
reaction times. Our findings create a bridge between local con-
fidence signals and global SPEs, and support a functional role for
confidence in higher-order behavioral control.

Results

Experimental design. In Experiment 1, conducted online, human
subjects (N=29) performed short learning blocks (24 trials)
featuring random alternation of two tasks, which were signaled by
two arbitrary color cues (Fig. 1a). Each task required a perceptual
discrimination as to which of two boxes contained a higher
number of dots (Fig. 1c). Two factors controlled the character-
istics of each task: the task was either easy or difficult (according
to the dot difference between boxes), and subjects received either
veridical feedback (correct, incorrect) or no feedback following
each choice (Fig. 1b). This factorial design resulted in six possible
task pairings within a learning block; for instance, an Easy-
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Fig. 1 Experimental design, Experiment 1. a Learning blocks were composed of randomly alternating trials from two “tasks”. Each task was either easy or
difficult and provided feedback or no feedback (b), resulting in six possible task pairings (a). At the end of each learning block, subjects were asked to
choose which task should be used to calculate a monetary bonus based on their performance at the chosen task. They were also asked to rate their overall
ability at each task on a continuous rating scale. A new block ensued with two new color cues indicating two new tasks. ¢ Trial structure. Each trial
consisted of a perceptual judgment as to which of two boxes contained a higher number of dots. Each judgment was either easy or difficult according to the
dot difference between the left and right boxes. Following their response, subjects either received veridical feedback (correct, incorrect) about their

perceptual judgment or no feedback
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Fig. 2 Behavioral dissociation between objective performance and SPEs in Experiment 1 (N = 29). a Performance (mean percent correct) was better for
easy than difficult tasks, but was not different in tasks with and without feedback. Global self-performance estimates (SPEs) as measured directly by task
choice (b) or indirectly via task ratings (¢) were higher in the presence than in the absence of feedback, despite objective performance being unchanged.
Error bars represent S.E.M. across subjects. Black dashes are individual data points (there are fewer task choice data points due to the limited number of

blocks per subject)

Feedback task could be paired with a Difficult-Feedback task, or a
Difficult-Feedback task could be paired with a Difficult-No-
Feedback task, and so forth (Fig. 1a).

At the end of each learning block, subjects were asked to
choose the task at which they believed they performed better
(Fig. la). They were instructed that they would receive a
monetary bonus in proportion to their performance in the
chosen task, and were therefore incentivized to select the task for
which they thought they performed best (see the Methods
section). They were additionally asked for an overall rating of self-
performance on each of the two tasks on a continuous scale
(Fig. 1a and Methods). A short break ensued before the next
learning block started, when two new color cues indicated two
new tasks. The two end-of-block measures, task choices, and task
ratings, represented our proxies for global self-performance
estimates (SPEs). This experimental design allowed us to
investigate how SPEs are formed when external feedback is
absent—requiring subjects to rely on trial-by-trial metacognitive
estimates of their performance—as compared with when feedback
is available.

Behavioral results. We initially examined how our experimental
factors affected subjects’ performance on the tasks. A 2x2
ANOVA on performance revealed a main effect of Difficulty (F
(1,28) =292.8, p<1071%), but no main effect of Feedback (F
(1,28) =0.02, p=0.90) and no interaction (F(1,28) =0.44, p=
0.51). In particular, subjects’ performance averaged 67 and 85%
correct in the difficult and easy tasks, respectively (difference: t,4
—17.02, p<10-1); this difference in performance between
difficulty levels was also present for every subject individually.
Critically, within each of the two difficulty levels, objective per-
formance was similar in the presence and absence of feedback
(both difficulty levels t,5<0.58, p>0.57, BF <0.22; substantial
evidence for the null hypothesis), indicating that we were able to
examine how feedback affects SPEs irrespective of variations in
performance. A similar pattern was observed for reaction times
(RTs) (main effect of Difficulty, F(1,28) =23.87, p<10~% no
main effect of Feedback, F(1,28) =0.16, p=0.69 and no inter-
action, F(1,28) =0.08, p=0.78). RTs were significantly faster in
easy (mean = 672 ms) as compared with difficult tasks (mean =
707 ms) (t,3 = 4.88, p < 10~4); this difference in RTs was observed
in 24 out of 29 subjects. Conversely, within each of the two
difficulty levels, RTs were similar in the presence and absence of

feedback (both difficulty levels #,5<0.41, p>0.68; BF <0.21 i.e,
substantial evidence for the null hypothesis), allowing us to
examine how feedback affects SPEs independently of variations in
both objective performance and RTs (Fig. 2a).

Together these analyses indicate that task difficulty affected
objective performance, as expected, but performance was
unaffected by the presence or absence of feedback. We next
examined whether subjects were able to form global SPEs that
reflected their objective performance over the course of a block.
To this end, we asked whether and how the various factors of our
experimental design influenced end-of-block measures of SPEs. A
2x2 ANOVA indicated a significant influence of Feedback (F
(1,28) =112.6, p<10719 and Difficulty (F(1,28) =24.2,
p<107%) on task choice together with an interaction between
these factors (F(1,28) =4.5, p=0.04). Easy tasks were chosen
more often than difficult tasks, even in the absence of feedback,
indicating that subjects were sensitive to variations in task
difficulty when making end-of-block choices (Fig. 2b). Con-
versely, tasks were chosen less often in the absence of feedback
(Fig. 2b) despite task performance remaining similar in the
presence and absence of feedback, with the interaction indicating
that tasks were chosen more often in the presence of feedback, an
increase which was slightly larger for difficult tasks.

Likewise, subjective ratings of overall performance were greater
on easy tasks compared with difficult tasks, and again, despite
task performance remaining stable in the presence and absence of
feedback, performance was rated as worse in the absence of
feedback (Fig. 2c). A 2x2 ANOVA revealed a significant
influence of Feedback (F(1,28) =32.1, p<10~°) and Difficulty
(F(1,28) =51.1, p<1077) on subjective ratings together with a
significant interaction (F(1,28) = 10.5, p = 0.003), indicating that
tasks were rated higher in the presence of feedback and even
more so for easy tasks. We note that the presence and direction of
interactions between factors predicting SPEs differed across task
choices and ratings (and also across experiments, see below),
which may be due to the boundedness of the rating scale creating
ceiling/floor effects that do not affect task choices. Importantly,
however, the main effects of our Feedback and Difficulty
manipulations reliably and consistently impacted SPEs across
all measures.

To explore the source of these differences in SPEs, we split task
choice and task ability rating data into the six types of learning
blocks (Fig. 3a, b). Strikingly, subjects chose Feedback-Difficult
tasks more frequently when paired with No-Feedback-Easy tasks
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Fig. 3 Effects of task difficulty and feedback on global SPEs in Experiment 1 (N=29). a, b Task choice frequency (a) and task ability ratings (b) were
visualized for the six task pairings. a Task choice frequencies could only take on the values O, 0.5, or 1 due to the limited repetitions of pairing types per
subject; pie charts display the fractions of subjects for whom these values were O, 0.5 or 1 (for the right-hand bar of each plot). b Black dashes are
individual data points. € Chosen tasks (Ch.) were rated more highly than unchosen tasks (Unch.), indicating consistency across our two measures of SPEs.

“p < 0.000001, paired t test. Error bars represent S.E.M. across subjects

(28% difference in task choice frequency) (Fig. 3a, third panel),
indicating a greater SPE in the former despite performing
significantly better in the latter. This was also the case, albeit to a
lesser extent, when examining task ratings (t,3 = —2.29, p = 0.03)
(Fig. 3b, third panel). Furthermore, subjects’ task choices
discriminated equally well between easy and difficult tasks in
blocks where both tasks had feedback (31% difference in task
choice frequency) or both had no feedback (28% difference in
task choice frequency; Fig. 3a, compare first and last panels). This
indicates that subjects’ task choices were sensitive to variations in
difficulty despite feedback being unavailable. Across all panels,
subjects’ task choices were more extreme than task ratings,
possibly due to task choice being a binary read-out of a graded
SPE (see Discussion). Critically, these differences in SPEs were
not trivially explained by variations in objective performance
across the six types of learning blocks: neither performance nor
RTs in a given task condition differed across the different task
pairings (performance, all p >0.36 except for Feedback-Difficult
tasks when paired with No-Feedback-Difficult vs. Feedback-Easy
tasks, p =0.04; RTs, all p>0.16, paired ¢ tests).

Despite task choices being slightly more extreme than task
ability ratings, their patterns were notably similar, with identical
direction of effects in all six task pairings (Fig. 3a, b). Moreover,
subjects rated chosen tasks more highly than unchosen tasks in
72% of the blocks, which reveals a high level of consistency
between our two proxies for global SPEs (rating chosen vs.
unchosen task: f,3=16.92, p< 1076) (Fig. 3c). Accordingly, a
logistic regression showed that the difference in task ratings
strongly predicted task choice (8=0.24, p< 10715, r2=0.41),
again indicating consistency across our two ways of operationa-
lizing SPEs. Taken together, the results of Experiment 1 indicate
that participants are sensitive to changes in task difficulty when
constructing SPEs, and that self-performance is systematically
underestimated in the absence of feedback as compared with
when feedback is available, despite objective performance
remaining stable.

Learning dynamics. We next sought to replicate these effects in
an independent data set while additionally investigating the
dynamics of SPE formation. In Experiment 2 (N =29 new sub-
jects), we varied the duration of blocks from 2 to 10 trials per task
to ask how the amount of experience with each task influenced
SPEs (Fig. 4a). Since task ratings followed a similar pattern as task
choices in Experiment 1 (Fig. 2b, c and Fig. 3), they were omitted

in Experiment 2 (see Methods). Replicating Experiment 1, a 2 x 2
ANOVA indicated a main effect of Feedback (F(1,28) = 44.5,
p<107%) and Difficulty (F(1,28) = 73.8, p < 1078) on task choice
in the absence of an interaction (F(1,28)=0.32, p=0.57). In
particular, we again found that in the absence of feedback, tasks
were chosen less often (Fig. 4b and Supplementary Fig. 2b),
despite objective performance remaining similar with and with-
out feedback (for both difficulty levels: both 3 <0.59, both p >
0.56, both BF <0.218; substantial evidence for the null hypoth-
esis) (Supplementary Fig. 2a and Supplementary Notes).

To determine whether subjects were sensitive to trial-by-trial
fluctuations in performance over and above variations in
difficulty level, we further split blocks of different durations
according to the difference in objective performance between
both tasks (see Methods; note that this split could not be
performed in Experiment 1 because there were only two
repetitions of each task pairing per subject). As in Experiment
1, we found that the difference in objective task performance on a
given block influenced SPEs over and above effects of objective
difficulty (Fig. 4b). A logistic regression confirmed a significant
effect of the difference in performance between tasks on end-of-
block task choices (all task pairings f3>6.25, p <0.0005, except
when an Easy-Feedback task was paired with a Difficult-No-
Feedback task (trend at § = 3.97, p = 0.076), presumably due to a
ceiling effect (Fig. 4b, fourth panel)). Notably, in blocks where
feedback was absent for both tasks, the difference in task choice
frequency between easy and difficult tasks was larger when the
difference in objective performance was also larger, indicating
that subjects’ SPEs closely followed their actual performance
(Fig. 4b, last panel). Furthermore, when an Easy-No-Feedback
task was paired with a Difficult-Feedback task, the difference in
performance between both tasks tempered the effect of feedback
(Fig. 4b, third panel): when the difference in objective task
performance was smaller, subjects favored the task with external
feedback, whereas when the difference was larger, SPEs followed
objective difficulty levels. Last, for a given difficulty level, when
the difference in performance was smaller, subjects’ choices
favored tasks which provided external feedback (Fig. 4b, second
and fifth panels): i.e., when task performance levels are similar,
external feedback is the dominant influence on SPEs.

A potential explanation of this last observation is that subjects
prefer to gamble on tasks on which they are informed about their
performance, due to a value-of-information effect. We consider
this explanation as less likely than a true decrease in SPE in the
absence of feedback (see Discussion), because the effect of
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Fig. 4 Effects of performance and learning duration on global SPEs in Experiment 2 (N = 29). a Experimental design. Block duration varied from 2 to 10 trials per
task. b Task choice frequency in the six types of learning blocks. The central circle of each subplot represents the average task choice frequency over all blocks
["A"]. The left and right circles display the same data split into blocks with smaller [“S"] and larger [“L"'] difference in objective performance between both
tasks, indicating that fluctuations in local performance influenced SPEs over and above objective difficulty. ~p = 0.076, ***p < 0.0005 indicate the significance of
the regression coefficient regarding the effect of the difference in task performance on task choice. € Task choice frequency as a function of block duration for
the six task pairings. **p < 0.01 (resp. NS) denotes whether block duration had a significant (resp. not significant) influence on task choice (statistical
significance of the logistic regression coefficient, see Methods). Error bars indicate S.E.M. across subjects. See also Supplementary Fig. 2

feedback differentially affected easy/difficult task pairings, despite
these two blocks being strictly equivalent in terms of information
gain (Fig. 2b, ¢). Importantly, these differences in SPE were not
confounded by trial number: blocks with a larger difference in
performance between tasks did not have a significantly greater
number of trials than blocks with a smaller difference in
performance (for the pairing Feedback-Difficult vs. No-Feed-
back-Difficult, blocks with a smaller difference in performance
had a greater number of trials, t,3 = —2.43, p = 0.02, for all other
pairings, all t,3<0.65, p>0.52). Taken together, these findings
indicate that subjects consider local fluctuations in their accuracy
when choosing between tasks.

To establish how SPEs emerge over the course of a block, we
next unpacked data according to learning block duration. Overall,
block duration had a small influence on task choice frequencies
(Fig. 4c). Using logistic regression (see Methods), we found that
block duration significantly influenced task choice in some of the
task pairings (Feedback-Easy vs. Feedback-Difficult, No-
Feedback-Easy vs. Feedback-Difficult and Feedback-Easy vs.
No-Feedback-Difficult; all p<0.01), but not others (Feedback-
Difficult vs. No-Feedback-Difficult, Feedback-Easy vs. No-
Feedback-Easy and No-Feedback-Easy vs. No-Feedback-Difficult;
all p>0.47) (see Methods). When feedback was given on both
tasks, block duration significantly influenced task choice (p=

NATURE COMMUNICATIONS | (2019)10:1141 | https://doi.org/10.1038/541467-019-09075-3 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

0.005, statistical significance of regression coefficient) such that
subjects became better at discriminating between easy and
difficult tasks as more feedback was accrued (Fig. 4c, first panel).
In contrast, when feedback was absent for both tasks, there was
no influence of block duration (p = 0.69, statistical significance of
regression coefficient, Fig. 4c, last panel).

Computational modeling. We next considered a candidate
hierarchical learning model of how SPEs are constructed over the
course of learning in order to explain end-of-block task choices
(Fig. 3¢ and Supplementary Fig. 4a). The model is composed of
two hierarchical levels, a perceptual module generating a per-
ceptual choice and confidence on each trial, and a learning
module updating global SPEs across trials from local decision
confidence and feedback, which are then used to make task
choices at the end of blocks (Supplementary Methods). An
interesting property naturally emerging from this model is that
over the course of trials, posterior distributions over SPEs become
narrower around expected performance slightly more rapidly
with feedback than without (Supplementary Fig. 4b). Model
simulations provided a proof of principle that such a learning
scheme is able to accommodate qualitative features of partici-
pants’ learned SPEs (Supplementary Fig. 4c and Supplementary
Notes). In particular, (1) the model ascribed higher SPEs to easy
tasks than difficult tasks and (2) the presence of feedback led to
higher SPEs than the absence of feedback, even at the expense of
objective performance (Supplementary Fig. 4c, third panel). We
found that the extent to which a No-Feedback-Easy task was
chosen over a Feedback-Difficult task correlated across indivi-
duals with the fitted ks parameter (which captures each sub-
ject’s sensitivity to the input when making confidence judgments,
allowing this to differ from their sensitivity k., to the input when
making choices) (Spearman p = 0.77, p < 0.000005, Pearson p =
0.71, p <0.0001). This result means that participants with more
sensitive local confidence estimates were also better at tracking
objective difficulty in their SPEs (Supplementary Fig. 4e). How-
ever, we also found notable differences between model predic-
tions and participants’ behavior: for instance, tasks providing
external feedback were chosen more frequently by participants
than predicted by the model (Supplementary Fig. 4c, lower-left
panels), indicating that influences beyond those considered in the
current model may affect SPE construction (see Discussion).

Establishing a direct link between local confidence and global
SPEs. Taken together, the results of Experiments 1 and 2 and
associated model fits suggest that subjects trade-off external
feedback against internal estimates of confidence when estimating
SPEs. However, these experimental findings and corresponding
model fits provided only indirect evidence that subjects were
sensitive to fluctuations in internal confidence when building
global SPEs. In Experiment 3, we sought to obtain direct evidence
that changes in local confidence were predictive of end-of-block
SPEs. To this end, a new sample of subjects (N = 46) were instead
asked to give confidence ratings in their perceptual judgments on
no-feedback trials. All other experimental features remained
identical to Experiment 2 (see Methods).

Replicating Experiments 1 and 2, we found in a 2 x2 ANOVA
that both the Feedback/Confidence manipulation (F(1,45) = 76.9,
p < 10719) and Difficulty (F(1,45) = 87.6, p < 10~11) impacted task
choice, with an interaction between these factors (F(1,45) = 4.8, p
=0.03). Tasks with external feedback were again chosen more
often than tasks in which subjects rated their confidence on each
trial, in the absence of feedback (Supplementary Fig. 3a). When
blocks were separated according to the difference in objective
performance between tasks, we again found that subjects’ task

choices reflected fluctuations in local performance over and above
differences in objective difficulty levels (Supplementary Fig. 3c).
Overall, task choice patterns when rating confidence in Experi-
ment 3 were similar to those found for the no-feedback condition
of Experiment 2 (Supplementary Fig. 3a and 3c), suggesting these
trials were treated similarly in the two Experiments. Critically and
consistent with Experiments 1 and 2, performance was better in
easy compared with difficult tasks (both f;>15.9, both p<
10-19), but did not differ according to the feedback/confidence
manipulation (both f45<1.44, both p>0.16, both BF <0.420;
anecdotal evidence for the null hypothesis) (Supplementary
Fig. 3a). However, unlike in Experiment 2, we found no
significant influence of block duration on task choice (logistic
regression; all p > 0.25, except marginally for the third pairing, p
=0.03) (Supplementary Fig. 3d).

We next turned to the novel aspect of Experiment 3: local
ratings of confidence. Subjects gave higher confidence ratings for
easy (mean = 0.82) compared with difficult (mean = 0.76) trials
(t45 = 8.90, p < 10719), and reported greater confidence for correct
(mean =0.80) than error (mean=0.72) trials (t;5=10.2,
p <10712) (Fig. 5a and Supplementary Fig. 3b), demonstrating a
degree of metacognitive sensitivity to performance fluctuations.
We also computed metacognitive efficiency (meta-d’/d’), an index
of the ability to discriminate between correct and incorrect trials,
irrespective of performance and confidence bias2?30 (see
Methods). We found that the posterior mean for group
metacognitive efficiency was 0.80, close to the SDT-optimal
prediction of 1 and providing further evidence that participants’
confidence ratings effectively tracked their objective performance.

We sought to directly test whether fluctuations in local
confidence affected end-of-block SPEs by splitting blocks
according to differences in confidence level between tasks. In
line with our hypothesis, we found that the larger the difference
in confidence, the more often the objectively easier task was
chosen (Fig. 5¢), such that SPEs were consistent with local
confidence ratings. To further quantify this effect, we asked
whether the difference in confidence level between tasks
explained subjects’ task choices over and above differences in
objective performance and/or RTs. We found that fluctuations in
confidence indeed explained significant variance in subjects’ task
choices (f=1.04, p<0.0001), over and above variations in
accuracy (8 = —0.036, p=0.81) and RTs (= —0.009, p =0.95)
(Fig. 5b). Critically, this regression model was better able to
explain subjects’ task choices than a reduced model, which
included only the difference in accuracy and RTs as predictors
(Bayesian Information Criteria: BIC =282 for the regression
model including confidence, BIC = 310 for the reduced model),
confirming that local confidence fluctuations are important for
explaining variance in participants’ global SPEs. Moreover, in
additional analyses in which regressors were orthogonalized to
each other, we found virtually identical results regarding the effect
of confidence on end-of-block task choices, regardless of regressor
order (confDiff: all f>15.7, all p < 0.0001; accDiff and rtDiff: all |
B| <2.08, all p>0.35). A regression model with only confidence as
a predictor (BIC = 282) was also better at predicting task choices
than the reduced model with only accuracy and RTs (BIC = 310).

Finally, we considered that if subjects use local confidence to
inform their SPEs, subjects who are better at discriminating
between their correct and incorrect judgments should also form
more accurate SPEs. In line with this hypothesis, we found that
participants with higher metacognitive efficiency were also more
likely to choose the easy task over the difficult task on blocks
without feedback (Pearson p=0.35, p=0.02; non-parametric
correlation coefficient: Spearman p=0.43, p=0.003; N =46
participants) (Fig. 5d; see Supplementary Fig. 5 for correlation
between global SPEs and other measures of metacognitive ability).
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Together, the findings of Experiment 3 support a hypothesis that
fluctuations in local confidence are predictive of global SPEs and
that the formation of accurate global SPEs is linked to
metacognitive ability.

Discussion

Beliefs about our abilities play a crucial role in shaping behavior.
These self-performance estimates influence our choices??, the
motivation and effort we engage when pursuing our objectives!,
and are thought to be distorted in many mental health dis-
orders?’. However, in contrast to the recent progress made in
understanding the neural and computational basis of local esti-
mates of decision confidence!®2%:32, little is known about the
formation of such global self-performance estimates (SPEs). Here,
using a novel experimental design, we examined how human
subjects construct SPEs over time in the presence and absence of
external feedback—situations akin to many real-world contexts in
which feedback is not always available.

Across three independent experiments, we observed that sub-
jects were able to construct SPEs efficiently for short blocks of a
perceptual decision task of variable difficulty. Because subjects
were instructed that every new block featured two new tasks,
indicated by two new color cues, they were encouraged to form
their SPEs anew at the start of each block. Specifically, we found
that subjects were sensitive to local fluctuations in performance
and confidence within blocks when forming global SPEs. Indeed,
despite stimulus evidence (i.e., difficulty level) remaining con-
stant, variability in accuracy from block to block was reflected in
subjects’ task choices (Fig. 4b). This observation rules out the
possibility that subjects were merely using stimulus evidence as a
cue to choose between tasks at the end of blocks. Critically, we
further show that fluctuations in trial-by-trial confidence were
related to end-of-block SPEs, over and above effects of objective
performance and reaction times (Fig. 5).

The ubiquity and automaticity of local confidence computa-
tions suggests they may be of widespread use in guiding beha-
vior20, Earlier work has focused on local computations of
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confidence immediately following single decisions, for instance as
informed by response accuracy, stimulus evidence and reaction
times in perceptual>32, and value-based33 decision-making.
However, the functional role(s) played by subjective confidence in
decision-making have only recently received attention17-34, In a
perceptual task offering the possibility of viewing a stimulus again
before committing to a decision, a sense of confidence has been
shown to mediate decisions to seek more information3>. Likewise,
perceptual confidence in a first decision modulates the speed/
accuracy trade-off applied to a subsequent decision!”, and people
leverage perceptual confidence when adjusting “meta-decisions”
to switch environments3¢ and when updating expected accuracy
in a visual perceptual learning task®. Confidence also intervenes
in cognitive offloading when deciding whether to rely on internal
memories or set external reminders3’. Here, we build on this
diverse set of findings by highlighting a distinct but fundamental
role for local confidence: the formation of global beliefs about
self-ability. Indeed, for metacognitive evaluation to be profitable
in guiding subsequent choices, confidence should aggregate over
multiple instances of task experience. In keeping with this pro-
posal, here we show that human subjects are able to form and
update such global SPEs over the course of learning, and to use
them for prospective decisions (such as deciding which task to do
next).

Across our three experiments, we also found that the presence
versus absence of feedback affected SPEs, despite objective per-
formance remaining unaffected. Specifically, we found that sub-
jects pervasively underestimated their performance in the absence
of feedback as measured both by their task choices and ability
ratings. Here, we consider three alternative explanations of this
effect. First, the effect of feedback on task choices is reminiscent of
a value-of-information effect:38 subjects’ choices favor tasks on
which they received information about their performance. How-
ever, if this was the case, we might expect to find this effect
consistently across task pairings. Instead, in Experiments 2 and 3,
we found that receiving external feedback was strongly preferred
in blocks where both tasks were easy (Fig. 4b, fifth panel) but only
slightly preferred in blocks where both tasks were difficult (Fig. 4b,
second panel), despite these two types of blocks being strictly
equivalent in terms of information gain. Second, subjects may
attach positive or negative valence to tasks in which they receive
more positive (correct) or more negative (incorrect) outcomes,
with the receipt of no feedback occupying a valence in between3®.
We note however that such a valence effect is absent in Experi-
ment 1 (Fig. 3a, second and fifth panels), making it less likely as an
overall explanation of the findings. Finally, we considered the
possibility that the effect of feedback presence might be a sec-
ondary consequence of reduced uncertainty about the SPE, rather
than an actual increase in SPE. Under this interpretation, subjects
may have equivalent SPEs in the presence and absence of feed-
back, but since they would be more uncertain about their SPE in
the absence of feedback, would be reluctant to gamble on their
task performance when making end-of-block choices (such an
effect is indeed observed in our model simulations, see Supple-
mentary Fig. 4). However, we note that similar effects of feedback
were found on both task choices and task ability ratings in
Experiment 1 (Fig. 2b, ¢ and Fig. 3a, b), and task ability ratings
were also overall higher in the presence versus the absence of
feedback. This observation argues against a risk-preference
explanation and instead suggest that the absence of feedback
leads to a genuine reduction in SPE (as assayed by subjective
ratings). However, it will be of interest in future work to develop
models and experimental assays that can track not only SPEs, but
also the precision of SPEs (see Supplementary Fig. 4).

In all experiments, our primary probe of SPEs was a binary
two-alternative forced choice. From such data, it remains

uncertain whether subjects acquire SPEs in a discrete manner or
gradually over the course of a learning block. For instance, there
may be a particular time point within a learning sequence at
which subjects commit to choosing either task in a winner-take-
all fashion, and cease to update their SPEs. In support of this
interpretation, we found limited evidence for an effect of block
duration on task choice, suggesting that it remains possible that
subjects commit to either task at an earlier time point. On the
other hand, we did not observe that performance earlier in a
block had a stronger effect on task choices than performance later
on (Supplementary Fig. 1). SPEs may be gradually acquired, as
one would expect under a Bayesian learning framework similar to
the one proposed here (see Supplementary Notes). In either case,
the subjective task ratings at the end of each block in Experiment
1 revealed that subjects indeed had access to a graded, parametric
representation of self-performance, which followed a similar
pattern to that of task choices (Fig. 3a, b). A parsimonious
interpretation of these relationships is that a common latent SPE
underpins both task choice and task ratings. We also found that
patterns of SPEs were similar regardless of whether subjects were
asked to prospectively evaluate their expected performance on a
subsequent test block (Experiment 1) or retrospectively evaluate
self-performance over the past learning block (Experiments 2 and
3). It is therefore possible that SPEs are aggregated from past
instances in anticipation of encountering the same or a similar
situation in the future*, such as when subjects were asked to
choose which task to play for a bonus in Experiment 1.

How SPEs are represented and updated at a computational and
neural level remain to be determined. As an initial step in this
direction, in Supplementary Notes we outline a candidate hier-
archical learning model, which links local confidence to the con-
struction of SPEs. This model includes local confidence as an
internal feedback signal, formalizing the fact that the evidence
available for updating SPEs is more uncertain in the absence versus
presence of external feedback, as illustrated through simulations of
task choices (Supplementary Fig. 4). Despite the model qualita-
tively capturing subjects’ SPEs, more work is required to under-
stand why subjects’ task choices favor tasks with external feedback
to a greater extent than predicted by the model. Due to the global
nature of SPEs (as compared with trial-by-trial estimates of local
confidence) and the blocked structure of our experimental design,
we only had access to a limited number of data points per subject
(12 task choices in Experiment 1; 30 in Experiments 2 and 3)
preventing us from reliably fitting model parameter(s) and dis-
criminating between competing models*!. Future work could
attempt to combine manipulations of local confidence with a
denser sampling of SPEs to allow such model development.

The ventromedial prefrontal cortex and adjacent perigenual
anterior cingulate cortex, a key hub for performance monitoring,
are candidate regions for maintaining long-run SPEs20:21:42,
Subjects may either represent SPEs in an absolute format, sepa-
rately for both tasks, or in a relative format, for instance how
much better they are at one task compared with another. It is
possible that our experimental design with interleaved tasks may
encourage a relative representation of SPEs within a block. It also
remains unclear how SPEs interact with notions of expected
value. In the present protocol, participants received a monetary
incentive for reporting the task they thought they were better at,
and thus the expected value of task choices and SPEs were cor-
related. Moreover, value and confidence representations are often
found to rely on similar brain areas?%-33. Conceptually, subjects
might therefore represent SPEs in the frame of expected accuracy
(as postulated in the present Bayesian learning scheme) or in the
frame of expected value (as a reinforcement learning framework
would predict; e.g>43.); further work is required to distinguish
between these possibilities.
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In Experiment 3, we found evidence that individual differences
in metacognitive efficiency were related to the extent to which
SPEs discriminated between easy and difficult tasks (Fig. 5d). This
finding echoes a previous observation of a relationship between
metacognitive efficiency and the ability to learn from predictive
cues over time**. Metacognitive efficiency indexes the extent to
which one’s confidence judgments are sensitive to objective per-
formance. To the extent to which local confidence informs SPEs,
it is thus plausible that more sensitive confidence estimates
translate into more accurate SPEs. However, although easy trials
are more likely to be correct than difficult ones, there is only
partial overlap between the determinants of metacognitive effi-
ciency and our current measure of SPE sensitivity. More work is
required to determine when and how individual variation in
metacognitive efficiency influences the formation of global SPEs.

There is increasing recognition that local confidence estimates
integrate multiple cues*>#°, Interestingly, higher-order beliefs
about self-ability—assayed here as SPEs—might in turn influence
local judgments of confidence over and above bottom-up infor-
mation obtained on individual trials?>4447. This interplay of local
and global confidence might be one mechanism for supporting
transfer of SPEs to new tasks not encountered before?, in a way
that could prove either adaptive or maladaptive®S. Indeed these
global estimates may constitute useful internal priors on expected
performance in other tasks, known as self-efficacy beliefs?231. An
overgeneralization of low SPEs between different tasks may even
engender lowered self-esteem, leading to pervasive low mood#’,
as visible in depression where subjects hold low domain-general
self-efficacy beliefs?%°0, Building models for understanding how
humans learn about global self-performance from local con-
fidence represents a first canonical step toward developing
interventions for modifying this process?431>1,

Methods

Participants. In Experiment 1, 39 human subjects were recruited online through
the Amazon Mechanical Turk platform. Since we had no prior information about
expected effect sizes, we based our sample size on similar studies conducted in the
field of confidence and metacognition. Subjects were paid $3 plus up to $2 bonus
according to their performance for a ~ 30 min experiment. They provided
informed consent according to procedures approved by the UCL Research Ethics
Committee (Project ID: 1260/003). The challenging nature of the perceptual sti-
muli, which appeared only briefly, ensured that it was impossible for subjects to
perform above chance level if they were not paying careful and sustained attention
during the experiment. To further ensure data quality, standard exclusion criteria
were applied. Ten participants were excluded for responding at chance level and/or
always selecting the same rating, leaving N = 29 participants (17 f/12 m, aged
22-31 and not color-blind according to self-reports) for data analysis.

In Experiment 2, 31 subjects were recruited using the same protocol as in
Experiment 1. Identical exclusion criteria were applied leading to the exclusion of
two subjects, leaving N =29 subjects for analysis (9 f/20 m, aged 19-35).

In Experiment 3, to examine between-subjects relationships between the
formation of self-performance estimates (SPEs) and metacognitive ability,

73 subjects were originally recruited online. After application of identical exclusion
criteria to those used in Experiments 1 and 2, we additionally excluded subjects
who failed comprehension questions about usage of the confidence scale (subjects
passed if they rated “perfect” performance at least 10% greater than “chance”
performance), leaving N = 46 subjects for analysis (16 f/30 m, aged 20-50).

Overall, our exclusion rates are consistent with recent online studies from our
lab%® and a recent meta-analysis of online studies reporting typical exclusion rates
of between 3 and 37%°2. As Experiment 3 was slightly longer, subjects’ baseline pay
was increased to $3.50 plus up to $2 bonus according to their performance.
Subjects who participated in Experiment 1 were not permitted to take part in
Experiments 2 and 3, and subjects who participated in Experiment 2 were not
permitted to take part in Experiment 3.

Experiment 1. Subjects performed short learning blocks, which randomly inter-
leaved two “tasks” identified by two arbitrary color cues (Fig. 1). Subjects were
incentivised to learn about their own performance on each of the two tasks over the
course of a learning block. Each block had 24 trials (12 trials from each task,
presented in pseudo-random order). Each task required a perceptual judgment as
to which of two boxes contained more dots (Fig. 1c). The difficulty level of the
judgment was controlled by the difference in dot number between boxes. Any given

task (as indicated by the color cue) was either easy or difficult and provided either
veridical feedback or no feedback (Fig. 1b). These four task features provided six
possible pairings of tasks in the learning blocks (Fig. 1a). Each possible pairing was
repeated twice, and their order of presentation was randomized within participant.

At the end of each learning block, subjects were asked to choose the task for
which they thought they performed better (Fig. 1a). Specifically, they were asked to
report which task they would like to perform in a short subsequent “test block” in
order to gain a reward bonus. Therefore, subjects were incentivised to choose the
task they thought they were better at (even if that task did not provide external
feedback). This procedure aimed at revealing global self-performance estimates
(SPEs), as subjects should choose the task they expect to be more successful at in
the test block in order to gain maximum reward. To indicate their task choice,
subjects responded with two response keys that differed from those assigned to
perceptual decisions to avoid any carry-over effects. The subsequent test block
contained six trials from the chosen task (not illustrated in Fig. 1). No feedback was
provided during test blocks.

After the test block, subjects were asked to rate their overall performance on
each of the two tasks on a rating scale ranging from 50% (“chance level”) to 100%
(“perfect”) to obtain explicit, parametric reports of SPEs (Fig. 1a). Ratings were
made with the mouse cursor and could be given anywhere on the continuous scale.
Intermediate ticks for percentages 60, 70, 80, and 90% correct were indicated on the
scale, but without verbal labels. Perceptual choices, task choices, and ratings were
all unspeeded. After each learning block, subjects were offered a break and could
resume at any time, with the next learning block featuring two new tasks cued by
two new colors.

Subjects’ remuneration consisted of a base payment plus a monetary bonus
proportional to their performance during test blocks (see Participants). Subjects
were also encouraged to give accurate task ratings (although their actual
remuneration did not depend on this feature): “Your bonus winnings will depend
both on your performance during the bonus [i.e., test block] trials and on the
accuracy of your ratings”. As data were collected online, instructions were as self-
explanatory and progressive as possible, including practice trials with longer
stimulus presentation times on one task (one color cue) at a time.

Each learning block featured two tasks, with each trial starting with a central
color cue presented for 1200 ms, indicating which of the two tasks will be
performed in the current trial (Fig. 1c). The stimuli were black boxes filled with
white dots randomly positioned and presented for 300 ms, during which time
subjects were unable to respond. We used two difficulty levels characterized by a
constant dot difference, but the spatial configuration of the dots inside a box varied
from trial to trial. One box was always half-filled (313 dots out of 625 positions),
whereas the other contained 313 + 24 dots (difficult conditions) or 313 4 58 dots
(easy conditions). Those levels were chosen on the basis of previous online studies
in order to target performance levels of around 70 and 85% correct, respectively?s.

The location of the box that contained more dots was pseudo-randomized
within a learning block with half of the trials appearing on the left, and half on the
right. Subjects were asked to judge which box contained more dots and responded
by pressing Z (left) or M (right) on their computer keyboard. The chosen box was
highlighted for 300 ms. Afterwards, a colored rectangle (cueing the color of the
current task) was presented for 1500 ms. The rectangle was either empty (on no-
feedback trials) or contained the word “Correct” or “Incorrect” (on feedback trials),
followed by an ITI of 600 ms. The experiment was coded in JavaScript, HTML, and
CSS using jsPsych version 4.3°3, and hosted on a secure server at UCL. We ensured
that subjects’ browsers were in full screen mode during the whole experiment.

Experiment 2. To investigate how SPEs emerge over the course of learning, in
Experiment 2 each block now contained either 2, 4, 6, 8, or 10 trials per task
(Fig. 3a). These five possible learning durations were crossed with the six pairings
of our experimental design, giving 30 blocks (= 360 trials) per participant. The dot
difference for the easy conditions was changed to 313 4 60 from 313 + 58 dots,
with all other experimental features remaining the same. At the end of each
learning block, subjects were asked to report on which task they believed they had
performed better. They were instructed that their reward bonus will depend on
their average performance at the chosen task over the past learning block (instead
of performance during a subsequent “test block” as in Experiment 1). Thus in
Experiment 2, task choice required retrospective rather than prospective evaluation
of performance, thereby generalizing the findings of Experiment 1 to metacognitive
judgments with a different temporal focus. Last, given the consistency between the
pattern of task ratings and task choices in Experiment 1, we decided to omit ratings
in Experiment 2 to save time.

Experiment 3. In Experiments 1 and 2, we obtained evidence that local fluctua-
tions in performance were linked to changes in global SPEs at the end of the block.
Experiment 3 was designed to directly test whether trial-by-trial fluctuations in
internal confidence were instrumental in updating global SPEs. To this end, on no
feedback trials, subjects were asked to provide a confidence rating about the like-
lihood of their perceptual judgment being correct. The rating scale was continuous
from “50% correct (chance level)” to “100% correct (perfect)”, with intermediate
ticks indicating 60, 70, 80, and 90% correct (without verbal labels). There was no
time limit for providing confidence ratings. We did not add confidence ratings in
the Feedback condition for two reasons. First, we wanted to be able to compare this
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condition directly to that of Experiments 1 and 2. Second, we sought to minimize
the possibility that requiring a confidence judgment might affect subsequent
feedback processing in a non-trivial manner. The experimental structure and other
timings remained identical to Experiment 2.

Statistical analyses. In Experiment 1, trials from learning blocks with reaction
times (RTs) beyond three standard deviations from the mean were removed from
analyses (mean = 1.59% [min = 0.69%; max = 2.78%] of trials removed across
subjects). Paired t tests were then performed to compare performance (mean
percent correct), RTs and end-of-block task ratings between experimental condi-
tions. To examine the influence of our experimental factors on SPEs, we carried out
a 2x2 ANOVA with Feedback (present, absent) and Difficulty (easy, difficult) as
factors predicting performance, task choice, and task ratings. Note that because
task choice frequencies are proportions, they were transformed using a classic
arcsine square-root transformation before entering the ANOVA. Task ability rat-
ings were z-scored per subject non-parametrically (due to only 12 blocks per
subject). As the absence of a difference in first-order performance (and RTs)
between tasks with and without feedback is critical for interpreting differences in
SPEs, we additionally conducted Bayesian paired samples ¢ tests using JASP version
0.8.1.2 with default prior values (zero-centered Cauchy distribution with a default
scale of 0.707). Specifically, we evaluated the evidence in favor of the null
hypothesis of no difference in performance between tasks with and without feed-
back, and report the corresponding Bayes factors (BF).

Since objective performance may vary even within a given difficulty level, we
performed a linear regression to further quantify the influence of fluctuations in
objective performance on task ratings, entering objective performance and
feedback presence as taskwise regressors (two per block). Regressors were z-scored
to ensure comparability of regression coefficients. In addition, we examined
potential recency effects to ask whether subjects weighted all trials equally when
forming global SPEs. We performed a logistic regression with accuracy (X)
predicting task choice (Y) (Supplementary Fig. 1). We included four regressors
(X1-X4) corresponding to the four quartiles of each block, in chronological order,
with all six pairings pooled together. Subjects were treated as fixed-effects due to a
limited availability of task choice data points per subject precluding the use of full
random-effect models.

To provide evidence that task choice and task ability ratings were consistent
proxies for SPEs, we calculated how often the chosen task was rated higher than the
unchosen one, and we compared the mean ratings given for chosen and unchosen
tasks (paired t test). We also performed a logistic regression to examine whether
the difference in ability rating between tasks predicted task choice, with subjects
treated as fixed-effects due to a limited availability of task choice data points (12
blocks per subject).

To visualize the effects of learning duration in Experiment 2, end-of-block task
choice frequencies were averaged across subjects for each of the six possible
pairings and the five possible learning durations. Note that each data point in
Fig. 4c is obtained from a different learning block, not from a series of
measurements at different time points inside a block. To investigate whether
learning duration exerted significant influence on task choice, separate logistic
regressions were performed on each of the six task pairings. Each model was
specified as Task Choice ~ 8y + f3; X Learning Duration and subject was treated as a
fixed effect (due to only one repetition of each learning block duration per subject).
In addition, to examine whether subjects’ task choices took into account
fluctuations in objective performance on a given learning block over and above
variations in difficulty level, for each of the six pairings we split learning blocks
according to the magnitude of the observed difference in performance between
tasks. Specifically, we plotted task choice data for the two blocks with the smaller
(resp. larger) difference in performance between tasks (“Smaller” resp. “Larger”),
together with the average across all five blocks per subject (Fig. 4b). To examine
quantitatively whether the difference in performance between tasks exerted a
significant influence on task choice, we performed logistic regressions on each
of the six task pairings. Each model was specified as Task Choice ~ 8+ ; x
Difference in Performance, and subject was treated as a fixed effect (again due
to the availability of only one repetition of each learning block duration per task
pairing per subject).

To assess use of the confidence scale in Experiment 3, we compared mean
confidence (subsequently labeled “Confidence level”) between correct and incorrect
trials, and between easy and difficult trials (paired f tests). To further establish
whether subjects’ confidence ratings were reliably related to objective performance,
we computed metacognitive sensitivity (meta-d>4). Metacognitive sensitivity is a
metric derived from signal detection theory (SDT), which indicates how well
subjects’ confidence ratings discriminate between their correct and error trials,
independent of their tendency to rate confidence high or low on the scale. When
referenced to objective performance (d’), we can obtain a measure of metacognitive
efficiency using the ratio meta-d’/d’. Because the meta-d’ framework makes the
assumption of a constant signal strength across trials, we computed metacognitive
efficiency separately for easy and difficult trials (corresponding to 90 trials each)
and averaged the two values, which were in turn averaged at the group level.

We applied a hierarchical Bayesian framework for fitting meta-d’, with all R < 1.001
indicating satisfactory convergence®). We also compared the obtained
metacognitive efficiency values to a classic maximum-likelihood fit>*. Finally,

we computed a third, non-parametric measure of metacognitive ability, the area
under the type 2 receiver operating curve (AUROC2), although unlike meta-d’/d’,
this measure does not control for performance differences between conditions or
subjects®* (Supplementary Fig. 5).

To investigate whether internal fluctuations in subjective confidence were
related to end-of-block SPEs, task choices in blocks where both tasks required
confidence ratings were additionally split according to the difference in confidence
level between both tasks (Supplementary Fig. 3b). To examine whether the
difference in confidence level between tasks (confDiff) explained task choices over
and above differences in accuracy (accDiff) or reaction times (rtDiff), we conducted
a logistic regression on data from blocks where confidence ratings were elicited
from both tasks:

Task choice ~ f, + B, x accDiff + f3, x rtDiff + f8;x confDiff

The regressors were not orthogonalised meaning that all their common variance
was placed in the residuals (Fig. 5b). Subjects were again treated as fixed-effects
because we had only five data points per subject. Regressors were z-scored to
ensure comparability of regression coefficients. We also ran a series of regressions
as described above, but with regressors ordered and orthogonalised to each other
(see Results).

Finally, we hypothesized that participants who are better at judging their own
performance on a trial-by-trial basis should also form more accurate global SPEs.
To this end, we asked whether individual differences in metacognitive efficiency
were related to the extent to which the easy task was chosen over the difficult task.
Specifically, we examined the correlation between individual metacognitive
efficiency scores and task choice difference in blocks with only confidence ratings
(Fig. 5d). Because there was a limited number of blocks per subject, the possible
task choice proportions are clustered in discrete levels in Fig. 5d; we thus calculated
both parametric (Pearson) and non-parametric (Spearman) correlation coefficients
for completeness.

Code availability. MATLAB code for reproducing the main figures, statistical
analyses and model simulations are freely available at: http://github.com/
marionrouault/RouaultDayanFleming. Further requests can be addressed to the
corresponding author: Marion Rouault (marion.rouault@gmail.com).

Data availability

Behavioral summary data to reproduce the main figures and statistical analyses for all
three experiments are freely available at: https://github.com/marionrouault/
RouaultDayanFleming.
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