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The Aryl hydrocarbon receptor mediates tobacco-
induced PD-L1 expression and is associated with
response to immunotherapy
Gui-Zhen Wang1,2, Li Zhang3, Xin-Chun Zhao1,2, San-Hui Gao1, Li-Wei Qu2, Hong Yu1,4, Wen-Feng Fang3,

Yong-Chun Zhou5, Fan Liang2, Chen Zhang2, Yun-Chao Huang5, Zhihua Liu 1, Yang-Xin Fu 6 &

Guang-Biao Zhou1,2

Whether tobacco carcinogens enable exposed cells immune escape resulting in carcino-

genesis, and why patients who smoke respond better to immunotherapies than non-smokers,

remains poorly understood. Here we report that cigarette smoke and the carcinogen benzo

(a)pyrene (BaP) induce PD-L1 expression on lung epithelial cells in vitro and in vivo, which is

mediated by aryl hydrocarbon receptor (AhR). Anti-PD-L1 antibody or deficiency in AhR

significantly suppresses BaP-induced lung cancer. In 37 patients treated with anti-PD-1

antibody pembrolizumab, 13/16 (81.3%) patients who achieve partial response or stable

disease express high levels of AhR, whereas 12/16 (75%) patients with progression disease

exhibit low levels of AhR in tumor tissues. AhR inhibitors exert significant antitumor activity

and synergize with anti-PD-L1 antibody in lung cancer mouse models. These results

demonstrate that tobacco smoke enables lung epithelial cells to escape from adaptive

immunity to promote tumorigenesis, and AhR predicts the response to immunotherapy and

represents an attractive therapeutic target.
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Tobacco smoke represents the single biggest public health
threat the world is currently facing, killing around 7 mil-
lion people a year1. More than 8000 compounds have been

identified in tobacco and tobacco smoke, among which >70 ones
are carcinogens. These include polycyclic aromatic hydrocarbons
(PAHs), tobacco-specific nitrosamines, volatile nitrosamines, and
many others2. Tobacco smoke induces a large amount of somatic
genomic mutations in cancer tissues3 and counterpart normal
controls4,5, and confers the exposed cells with the hallmarks of
cancer6–10. However, whether and how the carcinogens render
the exposed cells to escape the immune system to promote lung
carcinogenesis, remains unclear.
Programmed cell death 1 ligand (PD-L1; also known as B7-H1,

CD274) is an immune inhibitory receptor ligand that is expressed
by cancer cells and cells in the tumor microenvironment11,12.
Interaction of this ligand with its receptor programmed cell death
receptor 1 (PD-1; or CD279) inhibits T-cell activation and
cytokine production. PD-L1 is induced by cytokines such as
interferon-γ (IFNγ)13 and oncogenes including epidermal growth
factor receptor (EGFR)14, chimeric nucleophosmin (NPM)/ana-
plastic lymphoma kinase (ALK)15, transforming growth factor β
(TGFβ)16, signal transducer and activator of transcription 3
(STAT3)17, and hypoxia inducible-factor-1α (HIF-1α)18. Ampli-
fication of 9p24.119 and deficiency in phosphatase and tensin
homolog (PTEN)20 or p5321 result in PD-L1 overexpression.
Epigenetic modifiers and microRNAs also modulate PD-L1
expression22,23. However, the effect of environmental carcino-
gens on immune checkpoints needs to be elucidated.
PD-L1/PD-1 blockade therapy has yielded promising clinical

responses in lung cancer patients24–28. As compared with non-
smoker patients, smoker patients receiving anti-PD-L1/PD-1
therapy exhibited improved objective response, durable clinical
benefits, and progression-free survival26,27. By whole-exome
sequencing of non–small cell lung cancers (NSCLCs) treated
with a PD-1 antibody, Rizvi et al29 showed that the higher
nonsynonymous mutation and higher neoantigen burden in
tumors of smokers might contribute to improved response. The
above results also suggest a possibility that smoking might induce
a mechanism to suppress tumor specific T cell responses at early
stage. We hypothesized that the carcinogens of tobacco smoke
may modulate immune checkpoints and confer cancer cells
immune escape. We tested this hypothesis in this study.

Results
Tobacco smoke induces PD-L1 expression on lung epithelial
cells. We analyzed the immune checkpoint molecules in GDS1348
and GDS3493 microarray datasets of gene expression profiles of
normal bronchial epithelial cells (http://www.ncbi.nlm.nih.gov/
geo/), and reported that cigarette smoke significantly upregulated
PD-L1 in 2 to 24 h (Fig. 1a). Cigarette smoke extract (CES) was
prepared30 and used to treat 16HBE (normal lung epithelial cells)
and H460 (NSCLC) cells, and the results showed that treatment of
the cells with 20 – 40% of CES significantly upregulated PD-L1 at
both mRNA (Fig. 1b) and protein (Fig. 1c) levels.
We used the main tobacco carcinogens benzo(a)pyrene (BaP),

nicotine-derived nitrosaminoketone (NNK), dibenz[a,h]anthra-
cene (DbA) and benzo[g,h,i]perylene (BzP) to treat the cells, and
showed that BaP upregulated PD-L1 in a dose- and time-
dependent manner (Fig. 1d, e). BaP increased PD-L1 at protein
level, revealed by immunofluorescent (Fig. 1f), flow cytometry
(Fig. 1g), and western blot (Fig. 1h) assays using an anti-PD-L1
antibody. DbA and BzP also upregulated PD-L1 in 16HBE cells
(supplementary Fig. 1), but the effects were much weaker than
that induced by BaP. We therefore investigated the mechanisms
of action of BaP-induced PD-L1 expression in this study.

Tobacco smoke induces PD-L1 expression in vivo. The A/J mice
(n= 10 for each group) were exposed to cigarette smoke with
filtered conditioned air of 750 µg total particulate matter (TPM)
per liter (TPM/l) for up to 12 months31 and PD-L1 in lung tissues
was measured. We found that as compared with mice exposed to
clean air, mice exposed to cigarette smoke had higher PD-L1 in
their lung tissues (Fig. 2a, left panel). The membranous PD-L1 on
lung epithelial cells was upregulated, revealed by immunohis-
tochemistry (IHC) staining (Fig. 2b). Flow cytometry analysis
showed that the total PD-L1+ and CD45-/PD-L1+ cells were
increased by tobacco smoke in cell populations prepared from
lung tissues (Fig. 2c). PD-1+ T lymphocytes were also increased
in lung tissues of mice exposed to tobacco smoke (Fig. 2d, upper
panel). The lysates of lung tissues were subjected to Western blot
and the results showed that tobacco induced upregulation of PD-
L1 in mice (Fig. 2e).

In mice (n= 10 for each group) treated with BaP at 100 mg/kg
twice a week for 5 weeks10, the expression of PD-L1 at mRNA
level was upregulated (Fig. 2a, right panel). BaP induced
upregulation of PD-L1 on cell membrane of lung tissues (Fig. 2f).
IHC staining showed that PD-L1 positive cells were mainly
TTF1-positive cancer cells (Fig. 2g). Total PD-L1+ and CD45-/
PD-L1+ cells (Fig. 2h) as well as PD-1+ cells (Fig. 2d, lower
panel) were increased in cell populations prepared from lung
tissues of the mice. Western blot analysis of lung tissue lysates
confirmed the upregulation of PD-L1 by BaP (Fig. 2i). These
results indicate that tobacco smoke and BaP induce PD-L1 on
lung epithelial cells in vivo.

Inhibition of PD-L1 suppresses BaP-induced lung cancer. We
tested the effect of PD-L1 blockade in A/J mice (n= 10 for each
group) treated with BaP10 in the presence or absence of anti-PD-
L1 antibody (200 µg once a week for 5 weeks). Six months later,
the mice were scanned by microscopic computed tomography
(micro-CT) and the results showed that while BaP induced lung
cancer, PD-L1 blockade effectively suppressed tumor formation
(Fig. 2j, k). Hematoxylin-eosin (HE) staining of the tissues
demonstrated that PD-L1 blockade-treated mice have much
reduced area of lung adenocarcinoma (Fig. 2l) and less lesions
(Fig. 2k) and decreased PD-L1+ lung cancer cells (Fig. 2m).
Previous studies showed that sufficient T cell infiltration is
essential for response to PD-L1 blockade32. By flow cytometry
analysis, we showed that the CD45+CD3+CD8+ cells in mice
treated with PD-L1 blockade were significantly increased
(Fig. 2n).

Aryl hydrocarbon receptor-mediates tobacco-induced PD-L1.
Aryl hydrocarbon receptor (AhR) mediates BaP-induced pro-
duction of chemokine CXCL13 by lung epithelial cells10, and is
critical to BaP-induced skin cancer33. By analyzing the sequence
of PD-L1 gene, we found two XRE-like elements, 5’-GCGTC-3’
and 5’-GCGCG-3’, in its promoter region (Fig. 3a). While BaP
increased wild-type (wt) PD-L1 promoter-driven luciferase
activity, deletion of one XRE-like element (5’-GCGTC-3’) sig-
nificantly attenuated this activity (Fig. 3a). In in vitro reporter
assays, silencing of AhR significantly suppressed BaP-induced
PD-L1 in the cells (Fig. 3b). In 16HBE cells upon BaP, PD-L1 was
inhibited by siAhR at both mRNA and protein levels detected by
quantitative RT-PCR (Fig. 3c) and immunofluorescence analysis
(Fig. 3d, upper panel). A synthetic flavone derivative AhR
antagonist, alpha-naphthoflavone (ANF)34, inhibited BaP-
induced PD-L1 at both mRNA (Fig. 3e) and protein (Fig. 3d,
lower panel) levels. Since ANF also bears agonistic effect on AhR
in that it can activate AhR target CYP1A1 promoter35, a more
specific AhR antagonist CH22319136 was further tested. We
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showed that CH223191 suppressed BaP-induced PD-L1 at both
mRNA (Fig. 3e) and protein (Fig. 3f) levels at a stronger extent
than ANF. Chromatin immunoprecipitation (ChIP) and RT-
PCR/qRT-PCR assays were conducted to test AhR-PD-L1 inter-
action, and the results showed that AhR directly bound the
promoter of PD-L1 at -700 to -100 (region 1) but not other region
(Fig. 3g).
To further test the role AhR plays in BaP-induced PD-L1

expression, the AhR-deficient mice37 were treated with BaP and
tested by micro-CT. We found that in AhR+/+ mice, BaP induced
lung cancer (Fig. 3h); but in AhR-/- mice, BaP-induced lung
cancer was inhibited (Fig. 3h, i), life span was prolonged (Fig. 3j),
and PD-L1 upregulation was markedly attenuated (Fig. 3k, l).
These data indicate that AhR is critical to PD-L1 expression.

Smokers have higher PD-L1 expression than nonsmokers. We
tested the expression of PD-L1 in tumor tissues of 62 patients by
IHC staining, and found that smokers had higher membranous
PD-L1 on tumor cells than nonsmokers (Fig. 4a). AhR expression
in smoker patients was also higher than in nonsmoker patients
(Fig. 4a). To investigate whether AhR and PD-L1 co-localize in
specific cells in the tumor microenvironment, immunofluorescent
assays were performed using antibodies against AhR and PD-L1,

and DAPI. The staining pattern was analyzed in combination
with the morphology of the cells. We reported that cancer cells
expressed both AhR and PD-L1 at a relatively high level, which
represent the main cells on which AhR and PD-L1 were co-
localized (arrow, Fig. 4b). There are some non-cancerous cells
that also co-expressed AhR and PD-L1 (Fig. 4b), which mor-
phologically exhibited lymphocyte characteristics. Western blot
analyses (Fig. 4c) and the ratios of PD-L1 in tumors to PD-L1 in
counterpart normal controls (determined by densitometry ana-
lyses of immunoblot bands) (Fig. 4d) showed that smokers had
higher PD-L1 than nonsmokers. Among the 35 smokers, 18
(51.4%) patients had higher PD-L1 in tumor tissues than in
normal tissues, whereas 7/27 (25.9%) nonsmokers had higher
expression of PD-L1 in tumor tissues (Table 1). Without anti-PD-
L1/anti-PD-1 treatment, patients with higher PD-L1 had shorter
overall survival than patients with lower PD-L1 (Fig. 4e).

A threshold level of AhR is critical to PD-L1 overexpression. To
investigate PD-L1 expression in NSCLCs of other cohorts, a
cancer microarray database Oncomine (www.oncomine.org) was
applied. In a cohort of 123 smokers and 123 nonsmokers38, the
smoker patients had higher PD-L1 than nonsmokers (Student’s t
test, P= 0.0089; Fig. 4f). The DNA microarray data of 515
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patients were downloaded from the Cancer Genomics Hub
(CGHub) (https://cghub.ucsc.edu/) of The Cancer Genome Atlas
(TCGA) datasets, and the association of PD-L1 expression and
AhR Z score was tested. We found that the relative PD-L1
expression in patients with AhR Z score of ≥−2 was much higher
than patients with AhR Z score <−2 (Fig. 4g), and PD-L1
expression was associated with AhR expression (Fig. 4h). In

patients with AhR Z score ≤−2, the difference in PD-L1 between
smokers and nonsmokers was not statistically significant, but in
patients with AhR Z score >−2, the difference was statistically
significant (Mann-Whitney test, P= 0.0073; Fig. 4i). Smokers
with AhR Z score >−2 had much higher PD-L1 than smokers
with AhR Z score ≤−2 (Fig. 4i, left panel). Heavy ( ≥ 30 pack
years) and light ( < 30 pack years) smokers with AhR Z score >−2
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had much higher PD-L1 than patients with AhR Z score ≤−2,
and light smokers with AhR Z score >−2 had higher PD-L1 than
heavy smokers with AhR Z score ≤−2 (Fig. 4i, light panel).

We analyzed the association of PD-L1 expression and some
driver mutations, and found that PD-L1 in patients with mutant
TP53 was higher than patients with wild type (WT) TP53, but
PD-L1 in cases with AhR Z score >−2 and WT TP53 was higher
than in patients with AhR Z score ≤−2 and mutant TP53 (Mann-
Whitney test, P= 0.02; Fig. 4j). In patients with WT or mutant
KRAS, those with AhR Z score of >−2 had higher PD-L1 than
patients with AhR Z score of ≤−2 (Fig. 4k). Patients with WT
STK11 had higher PD-L1 than patients with mutant STK11, and
patients with higher AhR Z score had higher PD-L1; but in
patients with WT STK11 and AhR Z score of ≤−2, PD-L1 was
not higher than in patients with mutant STK11 and AhR Z score
>−2 (Fig. 4l). These results suggested an important role of AhR
in determining PD-L1 expression level.

AhR is associated with clinical benefit of anti–PD-1 therapy.
We tested the potential association between the AhR expression
and clinical outcome of patients treated with anti-PD-1 antibody
pembrolizumab. To do this, 37 NSCLCs previously treated with
cisplatin-based chemotherapies (Table 2) were enrolled, and IHC
was conducted to detect the expression of AhR and PD-L1 on
tumors and counterpart normal lung tissues. The patients were
then treated with pembrolizumab as described27. We found that
AhR staining on tumors of patients achieved partial response
(PR) and stable disease (SD) was much stronger than patients
with progression of disease (PD) (Fig. 5a), and IRS of patients
achieved PR and SD was significantly higher than cases with PD
(Fig. 5b, Table 2). The multivariate logistic analyses showed that
AhR-high was associated with beneficial effect of pembrolizumab
(Table 3). In this setting, the expression of PD-L1 on cancer cells
could not predict responses to pembrolizumab, in that some
tumors expressed PD-L1 did not respond, and some responses
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occurred in PD-L1–negative tumors (Fig. 5a, b), in consistence
with a previous report12.

Smokers have more somatic mutations than non-smoker
patients39, raising the possibility that mutation burdens may link
to AhR levels. We tested this possibility by analyzing the
mutation loads of LUADs, LUSCs, and other cancers such as

esophageal carcinomas (ESCAs) and stomach adenocarcinomas
(STADs) in TCGA datasets, and reported that while LUADs,
LUSCs, and STADs had more mutations/tumor than ESCAs
(supplementary Fig. 2a), AhR expression levels in ESCAs were
higher than LUADs, LUSCs, and STADs (supplementary Fig. 2b).
These results indicate that AhR levels are not associated with
mutation burdens of the patients. To further investigate the
tumor mutation burden (TMB) of the patients treated with
pembrolizumab, a total of 422 genes (Supplementary Table 1)
were sequenced in tumor samples of 35 of the 37 patient, and our
results showed that the patients harbored 1 – 29 (median, 7)
mutated genes (Fig. 5c, d and Table 2). Multivariate logistic
analyses showed that in this setting, TMB was not associated with
clinical outcome of the patients treated with pembrolizumab
(Fig. 5c, d and Tables 2, 3). Hence, AhR may be an independent
factor for clinical outcome of patients upon pembrolizumab
treatment.

AhR modulator exhibits anti-lung cancer activity in vivo. We
tested the efficacy of ANF (50 to 200 mg/(kg·day) for 22 days) in
C57BL mice harboring 5 × 105 Lewis lung carcinoma (LLC) cells
that express high level of PD-L118. Micro-CT results showed
disseminated disease in both lungs of the mice treated with
vehicle control, whereas ANF markedly suppressed tumor growth
(Fig. 6a and supplementary Fig. 3a). Histologic examination
showed a clearly decreased cellularity and reduced tumor load in
lungs of ANF-treated mice compared with that of control mice
(Fig. 6a). ANF downregulated the expression of proliferation
index Ki67 (Fig. 6b), reduced PD-L1+ cells (Fig. 6b), and
increased CD8+, CD4+, CD3+, and B220+ cells (Fig. 6c) in the
lungs. ANF downregulated PD-L1 (Fig. 6b, d) and upregulated
tumor necrosis factor α (TNFα) and interferon γ (IFNγ) in lungs
of mice injected with LLC cells (Fig. 6e). ANF significantly pro-
longed life span (P= 0.0024; Fig. 6f) but did not perturb the body
weight (supplementary Fig. 3b) of mice bearing LLC cells.
CH223191 also markedly suppressed disseminated disease
(Fig. 6g) and significantly prolonged life span (Fig. 6h) of the LLC
cells-harboring C57BL mice at a relatively low dosage (20 mg/kg).
However, ANF did not significantly inhibited tumor growth
(Fig. 6i) or prolong overall survival (Fig. 6j) of immune com-
promised NOD/SCID mice inoculated with LLC cells, suggesting
that the immune modulation activity is important to ANF’s anti-
lung cancer activity.

ANF enhances PD-L1 antibody in treating murine lung cancer.
We further showed that while anti-PD-L1 antibody exhibited
anti-lung cancer activity, ANF significantly enhanced its efficacy
in LLC cells-harboring mice, reflected by micro-CT, histologic
examination, and Ki67 staining (Fig. 6k). Combined use of ANF
and anti-PD-L1 antibody significantly increased infiltration of
CD8+, CD4+, and CD3+ T lymphocytes into tumor tissues
(Fig. 6l), and upregulated the expression of IFNγ (Fig. 6m) and
TNFα (Fig. 6n). Kaplan-Meier analysis showed that combination
of ANF and anti-PD-L1 antibody significantly prolonged the
lifespan of the mice (Fig. 6o). Treatment with ANF/anti-PD-L1
antibody did not reduce the body weight of the mice (supple-
mentary Fig. 3c).

ANF in treating colon cancer and fibrosarcoma murine mod-
els. We showed that in C57BL/6 mice subcutaneously injected
with PD-L1-expressing MC3832 murine colon cancer cells
(5 × 105), ANF significantly suppressed tumor growth and
potentiated the efficacy of anti-PD-L1 antibody (Supplementary
Fig. 4a-c). ANF inhibited Ki67 expression and induced apoptosis
of tumor cells reflected by Cleaved Caspase-3 (Casp-3)

Table 1 Baseline demographic characteristics of the patients

Characteristics Case, n PD-L1-high, n (%) P value*

Total 62 25 (40.3)
Gender
Male 41 20 (48.8) 0.06
Female 21 5 (23.8)

Smoking
Smoker 35 18 (51.4) 0.04
Non-smoker 27 7 (25.9)

Age
<65 46 20 (43.5) 0.39
≥65 16 5 (31.2)

Histology
Adenocarcinoma 38 14 (36.8) 0.54
Squamous-cell carcinoma 20 9 (45)
Others 4 2 (50)

TNM stage
I 28 10 (35.6) 0.3
II 7 2 (28.6)
III 22 10 (45.5)
IV 5 3 (60)

* tested by the Fisher exact test.

Table 2 Clinical Characteristics of the patients
administrated with pembrolizumab

Characteristics Case, n PR, n SD, n PD, n P-value

Gender
Male 26 7 5 12 1
Female 11 4 4

Smoking
Smoker 19 6 3 9 1
Non-smoker 18 1 6 7

Age
<65 31 5 7 14 0.36
≥65 6 2 2 2

Histology
Adenocarcinoma 23 5 5 9 0.52
Squamous-cell
carcinoma

11 2 2 6

Others 3 2 1
TNM stage
I 1 1 0.93
II 2 2
III 3 2 1
IV 30 5 8 12
Unknown 1 1

AhR IRS
≥4 21 7 6 4 0.001
<4 16 0 3 12

No. of TMB
≥7 19 3 3 10 0.20
<7 15 2 6 5

Unknown 3 2 1

PR partial response, SD stable disease, PD progression of disease, P value patients achieved PR
and SD versus cases with PD
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upregulation (Supplementary Fig. 4d). ANF also enhanced the
effects of anti-PD-L1 antibody on Ki67 and Cleaved Casp-3
expression (Supplementary Fig. 4d). ANF in combination with
PD-L1 blockade exerted potentiated effects in induction of infil-
tration of CD3, CD8, CD4, and B220 positive cells into tumor
tissues (Supplementary Fig. 4e), and upregulation of IFNγ and
TNFα expression by the lungs (Supplementary Fig. 4f). ANF/anti-
PD-L1 antibody did not reduce the body weight of the mice
(Supplementary Fig. 4g). In mice harboring Ag104Ld fibro-
sarcoma cells that are resistant to immune checkpoint inhibitor32,
treatment with ANF/anti-PD-L1 antibody significantly inhibited
tumor growth (Supplementary Fig. 5a) and increased infiltration
of CD8+ and CD3+ T lymphocytes into the tumors (Supple-
mentary Fig. 5b).

Discussion
More than 87% of the lung cancer deaths are caused by cigarette
smoke40. However, the detailed tobacco-induced lung carcino-
genesis remains to be elucidated. Here, we reported that tobacco
smoke and related carcinogens induced PD-L1 expression in
normal and cancerous lung epithelial cells in vitro (Fig. 1) and in
TTF1 positive lung epithelial cells in mice (Fig. 2). The expression
of PD-L1 and AhR in lung cancer tissues of smoker patients was
higher than in nonsmoker patients, and these molecules co-
localize on lung cancer cells (Fig. 4). Indeed, tobacco smoke and
BaP induced enrichment of CD4+, CD8+, and PD-1+ lympho-
cytes in lungs of the mice (Fig. 2), probably suggesting the
compensation of immune system to suppress malignant trans-
formation. However, lung cancer cells expressing PD-L1 may
evade immunosurveillance by engaging the PD-1 immune
checkpoint41. Therefore, tobacco smoke confers lung cancer cells
evasion of immune destruction via induction of PD-L1 onto lung
epithelial cells.
Antibodies against PD-L1 significantly improve progression-

free survival and overall survival of a proportion of patients with
most subtypes of cancer42,43. However, whether checkpoint
inhibitors have a role in prevention of cancer formation remains
largely unknown. Since tobacco smoke induced the expression of
PD-L1 in lungs at an early stage, i.e., 20 days after the first
exposure (Fig. 2), we hypothesized that suppression of PD-L1
may prevent formation of lung cancer. To test this possibility, the
mice were treated with anti-PD-L1 antibody when they were
exposed to BaP. Interestingly, treatment with PD-L1 antibody at
200 µg once a week for 5 weeks significantly inhibited BaP-
induced lung cancer detected by micro-CT 6 months later
(Fig. 2). In histologic sections, large tumors and disseminated
cancer cells were easily found in control mice, but only limited
and small tumor nodules were seen in anti-PD-L1 antibody-
treated mice (Fig. 2). Though further evidence, e.g., treatment

with longer terms or higher doses of anti-PD-L1 antibody in mice
exposed to tobacco smoke, is needed, our results demonstrate that
antagonizing PD-L1 may be helpful for prevention of lung cancer
in smokers.
AhR is a basic helix-loop-helix transcription factors which

binds the xenobiotic-responsive element (XRE) or aryl hydro-
carbon response element (AHRE) to regulate target genes in
response to PAHs and dioxin44. AhR is expressed in all tissues,
and plays an important role in modulation of immune response45.
AhR is critical to BaP-induced skin cancer33. We recently showed
that AhR mediates BaP-induced production of a chemokine
CXCL13, knockout of which significantly inhibits BaP-initiated
lung cancer10. Here, we reported that PD-L1 was also a target of
AhR, and the expression level of AhR was associated with PD-L1
expression in human NSCLCs (Fig. 4). PD-L1 was crucial for BaP-
induced lung cancer, since blockade of this immune checkpoint
suppressed BaP-triggered lung carcinogenesis (Fig. 2). These
results indicate the critical role of AhR in environmental lung
tumorigenesis. Indeed, deficiency in AhR abrogated BaP-caused
lung cancer (Fig. 3). AhR is also required for kynurenine-induced
PD-L1 in T cells46. AhR may also act through PD-L1 independent
mechanisms in lung cancer cells. Hence, AhR has a central role in
lung carcinogenesis and may serve as a target for chemopreven-
tion and treatment of lung cancer.
Identification of predictive companion biomarkers represents

one of the biggest challenges for clinical application of immune
checkpoint inhibitors. PD-L1 expression on cancer cells cannot
precisely predict response12, because many tumors expressed PD-
L1 do not respond, and some responses occur in PD-L1–negative
tumors. Tumor mutational burden29 and mismatch repair defi-
ciency47 predict a proportion of responders. Here, we showed
that AhR expression might have a role in prediction of patients’
responses to pembrolizumab, because patients achieved PR had
much higher AhR than those with SD, and SD cases exhibited
significantly higher AhR than patients with PD (Fig. 5). Of the 16
patients achieve PR and SD, only 3 (18.75%) cases had AhR IRS
less than 4; of the 16 NSCLCs with PD, only 1 (6.25%) patient
expressed AhR with IRS greater than 4 (Fig. 5). In these patients,
multivariate logistic analyses showed that TMB was not asso-
ciated with clinical outcome (Fig. 5 and Tables 2, 3).Some non-
smokers expressed high level of AhR and response to
pembrolizumab, possibly reflecting their exposure to PAHs in
different environmental media (such as air, soil, and water) and
foods48,49. Future works are warranted to expand these obser-
vations and determine the significance of AhR in prediction of
patients’ response to immune checkpoint inhibitors, alone or in
combination with other biomarkers.
Limitations of immune-checkpoint inhibitors include the fact

that only a proportion (20-30%) of patients benefited from these
expensive therapeutics and the development of drug resistance
mainly mediated by JAK1/JAK2 mutations50 and type I and II
interferons51. We found that in murine lung cancer model, ANF
induced infiltration of CD8+ T lymphocytes into tumor tissues
and increased IFNγ and TNFα expression, suppressed lung cancer
cell proliferation, prolonged life-span of the mice, and sig-
nificantly enhanced the therapeutic efficacy of anti-PD-L1 anti-
body (Fig. 6). In mouse models for PD-L1 blockade-sensitive
colon cancer and PD-L1 blockade-resistant fibrosarcoma32,
combined use of ANF and anti-PD-L1 antibody resulted in
potentiated T cell infiltration and increased IFNγ and TNFα
expression, as well as significant tumor growth inhibition (sup-
plementary Fig. 4, 5). A more specific AhR antagonist CH223191
also showed therapeutic efficacy on C57 mice bearing LLC cells
(Fig. 6). These results indicate that inhibition of AhR-PD-L1 axis
and inhibition of AhR in immune cells pave the way to anti-lung
cancer efficacy of AhR inhibitor, and the ANF/anti-PD-L1

Table 3 AhR-high and patients’ clinical characteristics

Variable Odds ratio 95% confidence
interval

P values

Gender 5.422 0.412–71.339 0.199
Age 1.094 0.011–112.872 0.970
Smoking 5.889 0.288–120.5 0.250
Histology 0.957 0.322–2.840 0.937
TNM stage 1.356 0.495–3.714 0.553
Beneficial effect 14.568 2.530–83.896 0.003
PD-L1 6.520E9 0 0.999
TMB 2.646 0.160-43.869 0.497

The association between AhR-high and clinical characteristics of the 37 patients treated with
pembrolizumab was analyzed by multivariate logistic analyses
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antibody combination represents a novel strategy of cancer
immunotherapy.

Methods
Patients. The study was approved by the research ethics committees of the Sun
Yat-Sen University Cancer Center, and the Third Affiliated Hospital of Kunming

Medical University (Yunnan Tumor Hospital). All lung cancer samples were col-
lected with informed consent. Fresh tumor samples and counterpart normal lung
tissues of 62 previously untreated NSCLCs (Table 1) were collected and tested by
IHC and Western blot for the expression of interest targets. Moreover, 37 NSCLCs
(Table 2) previously treated with cisplatin-based chemotherapies were enrolled,
tumor biopsy specimens were collected and analyzed by IHC using an anti-AhR
antibody and mouse monoclonal anti-human PD-L1 antibody PD-L1 IHC 28-8
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pharmDx (Dako, Carpinteria, CA, USA), and received pembrolizumab (Keytruda,
Merck, Kenilworth, NJ, USA) at a dose of 2 mg per kilogram of body weight every
3 weeks (ClinicalTrials.gov number, NCT02835690). Five patients quit pem-
brolizumab due to grade 4 rash, sudden death, or stroke. At the time of the data
cutoff, the median duration of follow-up of the 32 eligible patients was 6 months
(range, 3.2 to 10.5). TCGA level 3 IlluminaHiseq RNAseqV2 data were down-
loaded from the Broad GDAC Firehose 2015_11_01 run.

Animals. The animal studies were approved by the Institutional Review Board of
Institute of Zoology, Chinese Academy of Sciences. All animal studies were con-
ducted according to protocols approved by the Animal Ethics Committee of the
Institute of Zoology, Chinese Academy of Sciences. Female mice C57BL/6, C3H (5-
6 weeks old) were purchased from the Vital River Laboratory Animal Technology
Co. Ltd. (Beijing, China). A/J mice (5-6 weeks old, female) and homozygous AhR-
deficient mice were purchased from the Jackson Laboratory (Bar Harbor, Maine,
USA). The A/J mice were exposed to cigarette smoke31 generated by DSI’s Buxco
Smoke Generator (Buxco, NC, USA) inside a perspex box, at a frequency of 12
cigarettes per day, 5 days per week for 20 days to 6 months. Whole body cigarette
smoke exposure per cigarette was 3 minutes followed by a 15-minute period of
fresh air. In other experiments, the mice were treated with BaP at 100 mg/kg twice
a week for 5 weeks10. C57BL/6 mice were numbered, injected with LLC cells (5 ×
105) via tail vein, three days after xenograft, the mice were randomized into groups,
and treated with vehicle control (coin oil) or ANF at 50, 100, 200 mg/kg/day, or
CH223191 at 20 mg/kg/day, for 22 days. NOD/SCID mice were numbered,
inoculated with LLC (5 × 105) cells, randomized into groups, and treated with
vehicle control or ANF at 200 mg/kg/day for 22 days. Three weeks after the last
dose of ANF administration, the mice were anesthetized with the mixture of
oxygen/isoflurane inhalation and scanned by microscopic computed tomography
(Micro-CT, PerkinElmer, Waltham, MA). Survival of the mice was evaluated from
the first day of treatment until death or became moribund, at which time points the
mice were euthanized by cervical dislocation. C57BL/6 and B6C3F1 mice were
numbered, respectively subcutaneously injected with 5 × 105 MC38 and Ag104Ld
cells into their right flank, randomized into groups, and treated intraperitoneally
with ANF and/or anti-PD-L1 four times on days 7, 10, 13 and 1632. Tumor size was
measured every alternate day with electronic caliper and calculated by the formula:
volume (mm3)=½ (width)2 × length. After 22 days of treatment, the mice were
sacrificed by cervical dislocation, tumour tissues were excised, photographed, and
subjected to HE and IHC staining.

Antibodies and reagents. Antibodies used included rabbit anti-human PD-L1
(#13684, Cell Signaling Technology, Beverly, MA, USA; 1:1000 for Western blot),
anti-Cleaved Caspase-3 (#9664, Cell Signaling Technology; 1:250 for IHC), Rabbit
anti-human AhR (#83200, Cell Signaling Technology; 1:50 for ChIP), goat anti-
mouse PD-L1 (#AF1019, R&D, Minneapolis, MN, USA; 10 µg/mL for IHC), anti-
Ki67 (#ab15580, Abcam, Cambridge, MA, USA; 1:500 for IHC), TTF1 (#ab76013,
Abcam, Cambridge, MA, USA; 1:200 for IHC), anti-β-Actin (#A1978, Sigma, St.
Louis, MO, USA; 1:5000 for WB), APC anti-mouse CD3 (#100235, Biolegend, San
Diego, CA, USA; 1:20 for flow cytometry), PE/Cy7 anti-mouse CD8a (#100721,
Biolegend; 1:20 for flow cytometry), APC/Cy7 anti-mouse CD4 (#100413, Biole-
gend; 1:20 for flow cytometry), PE anti-mouse CD45 (#103105, Biolegend; 1:20 for
flow cytometry), PE/Cy7 anti-mouse PD-L1 (#124313, Biolegend; 1:20 for flow
cytometry), PE anti-mouse PD-1 (#135206, Biolegend; 1:20 for flow cytometry),
FITC anti-mouse B220 (#103205, Biolegend, San Diego, CA, USA; 1:20 for flow
cytometry), In Vivo Plus anti-mouse PD-L1 (#BP0101), In Vivo Plus Rat IgG 2b
Isotype Control (Clone: LTF-2, #BP0090) were purchased from BioXcell (West
Lebanon, NH, USA). Benzo(a)pyrene (#B1760) and Alpha-Naphthoflavone (ANF;
# N5757) were purchased from Sigma.

Cell culture and RNA extraction. The human normal bronchial epithelial cell line
16HBE (Clonetics, Walkersville, MD), NSCLC line H460, murine LLC (the
American Type Culture Collection (ATCC), Manassas, VA, USA), MC38, and
Ag104Ld cells were cultured according to recommended protocols10,52. The total

RNA was isolated using the TRIZOL Reagent (Invitrogen, Frederick, MD, USA)
and the phenol-chloroform extraction method according to the manufacturer’s
instruction. Total RNA (2 μg) was annealed with random primers at 65 °C for 5
min. The cDNA was synthesized using a 1st-STRAND cDNA Synthesis Kit (Fer-
mentas, Pittsburgh PA, USA). Quantitative real-time PCR was carried out using
SYBR Premix ExTaqTM (Takara Biotechnology, Dalian, China). Chromatin
immunoprecipitation (ChIP) assay was performed using AhR-immunoprecipitated
DNA samples and primers listed in Supplementary Table 2.

Flow cytometry. Mouse lung cancer tissues were dissected into 2 mm fragments,
followed by collagenase IV (0.3%; Sigma) digestion for 20 min at 37 °C. A single-
cell suspension was generated through a 200 mm-stainless steel wire mesh. The
dissociated cancer cells labeled with indicated cell surface markers were sorted by
MoFlo XDP Cell Sorter (Beckman Coulter, Brea, CA, USA), and the data was
analyzed on the Summit Software v5.0 (Beckman Coulter). All FACS analyses and
sorting were paired with matched isotype control. Dead cells were excluded based
on scatter profile.

Western blotting. Cells were lysed on ice for 30 min in RIPA buffer (50 mM Tris-
HCl pH 7.4, 150 mM NaCl, 0.1% SDS, 1% deoxycholate, 1% TritonX-100, 1 mM
EDTA, 5 mM NaF, 1 mM sodium vanadate, and protease inhibitors cocktail), and
protein extracts were quantitated. Proteins (20 μg) were subjected to 10-15% SDS-
PAGE, electrophoresed and transferred to a nitrocellulose membrane. After
blocking with 5% non-fat milk in Tris-buffered saline, the membrane was washed
and incubated with the indicated primary and secondary antibodies and detected
by Luminescent Image Analyzer LSA 4000 (GE, Fairfield, CO, USA). The
uncropped and unprocessed scans of Figs. 1h. 2e, and 3l are shown in Supple-
mentary Fig. 6–8.

Immunofluorescence Microscopy. Cells grown on coverslip (24 mm × 24mm)
were fixed with 4% paraformaldehyde for 15 min, washed with 150 mM glycine in
PBS, and permeabilized with 0.3% Triton X-100 in PBS for 20 min at room tem-
perature. After blocking with 5% BSA, the cell smears were incubated with the
indicated primary antibodies overnight at 4 °C, washed, and Alexa Flour® 488/647-
labeled secondary antibody (life technologies) in PBS was added to the cell smears.
Images were taken by a laser scanning confocal microscope (N-STORM, Nikon,
Japan).

Immunohistochemistry analysis. IHC assay was performed using indicated pri-
mary antibodies. The formalin-fixed, paraffin-embedded human or mouse lung
cancer tissue specimens (5 µm) were deparaffinized through xylene and graded
alcohol, and subjected to a heat-induced epitope retrieval step in citrate buffer
solution. The sections were then blocked with 5% BSA for 30 min and incubated
with indicated antibodies at 4 °C overnight, followed by incubation with secondary
antibodies for 90 min at 37 °C. Detection was achieved with 3, 3’-diaminobenzidine
(DAB, Zhongshan Golden Bridge Biotechnology Co., Ltd, Beijing, China) and
counterstained with hematoxylin, dehydrated, cleared and mounted as in routine
processing. The immunoreactivity score was calculated as IRS (0–12)= RP (0–4) ×
SI (0–3), where RP is the percentage of staining-positive cells and SI is staining
intensity.

Statistical analysis. All statistical analyses were conducted using a GraphPad
Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA) and the software SPSS 16.0
for Windows (Chicago, IL, USA). Statistically significant differences were deter-
mined by Students t-test or Fisher’s exact test. Survival curve for each group was
estimated by the Kaplan–Meier method and log-rank test. P values less than 0.05
were considered statistically significant in all cases.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Fig. 6 AhR inhibitor exhibits anti-lung cancer activity in vivo. a C57BL/6 mice were intravenously injected with LLC (5 × 105) cells, and 3 days later the mice
were randomized to receive vehicle or ANF treatment. Micro-CT scanning images and HE staining of lung sections are shown. Scale bar= 500 μm. b IHC
assays of ANF-treated mice’ lung tumor tissues using indicated antibodies. Scale bar= 500 μm. c Flow cytometry analysis of CD8+, CD4+, CD45+CD3+,
and CD45+B220+ cells in the lung tissues. d The expression of PD-L1 in lung tissues was detected by real-time PCR. e The expression of TNFα and IFNγ in
the lung tissues was detected by real-time PCR. f Life span of the mice. g, h The C57BL/6 mice were intravenously injected with LLC (5 × 105) cells, and
3 days later randomized to receive vehicle or CH223191 treatment. Micro-CT scanning images (g) and life span of the mice (h) are shown. i, j The NOD/
SCID mice were intravenously injected with LLC (5 × 105) cells, and 3 days later randomized to receive vehicle or ANF treatment. Micro-CT scanning
images (i) and life span of the mice (j) are shown. k C57BL/6 mice were injected intravenously with LLC (5 × 105) cells and treated with ANF and/or anti-
PD-L1 antibody. Micro-CT scanning images, HE and IHC staining of lung sections of the mice are shown. Scale bar= 500 μm. l Flow cytometry analysis of
CD8+, CD4+, and CD3+ cells in the lung tissues. m, n The expression of IFNγ (m) and TNFα (n) in the lung tissues was detected by real-time PCR. o Life
span of the mice. P values in c-e, l-n, Student’s t test; P values in f, h, j, o, Log-rank test. Error bars, sd

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08887-7 ARTICLE

NATURE COMMUNICATIONS | (2019)10:1125 | https://doi.org/10.1038/s41467-019-08887-7 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Data availability
The microarray data of normal human bronchial cells was downloaded from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) using datasets under the
accession codes GDS1348 and GDS3493. Cancer microarray data was downloaded from
the Okayama Lung of the oncomine (the data can also be found at the Gene Expression
Omnibus, GSE31210), and the TCGA database using accession code phs000178. All the
remaining data supporting the findings of this study are available within this paper and
its supplementary information.
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