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Intraspecific genetic structure in widely distributed marine species often mir-

rors the boundaries between temperature-defined bioregions. This suggests

that the same thermal gradients that maintain distinct species assemblages

also drive the evolution of new biodiversity. Ecological speciation scenarios

are often invoked to explain such patterns, but the fact that adaptation is

usually only identified when phylogenetic splits are already evident makes

it impossible to rule out the alternative scenario of allopatric speciation with

subsequent adaptation. We integrated large-scale genomic and environmental

datasets along one of the world’s best-defined marine thermal gradients

(the South African coastline) to test the hypothesis that incipient ecological

speciation is a result of divergence linked to the thermal environment. We

identified temperature-associated gene regions in a coastal fish species that

is spatially homogeneous throughout several temperature-defined biogeo-

graphic regions based on selectively neutral markers. Based on these gene

regions, the species is divided into geographically distinct regional popu-

lations. Importantly, the ranges of these populations are delimited by the

same ecological boundaries that define distinct infraspecific genetic lineages

in co-distributed marine species, and biogeographic disjunctions in species

assemblages. Our results indicate that temperature-mediated selection rep-

resents an early stage of marine ecological speciation in coastal regions that

lack physical dispersal barriers.
1. Introduction
Molecular phylogenies of marine species present along continuous coastlines

have revealed that spatial disjunctions between distinct evolutionary lineages

are often associated with the boundaries between different marine biogeographic

regions [1,2], but such genetic patterns tend to be present in only a fraction of

species [1,3–6] (figure 1). This discrepancy is often attributed to life history:

actively dispersing species, and those with extended planktonic dispersal

phases, cross the boundaries between bioregions more frequently than species

with short propagule duration, making them less likely to diverge in spatial iso-

lation [5,13]. However, support for this paradigm is not consistent, as numerous

studies from North America [6,14], South Africa [1], and Australasia [4] have

failed to identify a clear link between genetic structure and dispersal potential.

An alternative explanation for this paradox is offered by ecological divergence

that preceded the allopatric distribution patterns evident on the basis of selec-

tively neutral genetic markers. This is primarily supported by ‘phylogenetic

shifts approaches’, in which phylogenetic splits coincide with ecological diver-

gence [15]. The evidence for ecological speciation is particularly strong when

phylogenetic splits are not associated with physical dispersal barriers that can
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Figure 1. Sampling sites, marine bioregions, and examples of genetic breaks in South African coastal animals; (a) a map indicating the location of sampling sites
within southern Africa’s temperature-defined marine bioregions; (b) maximum and minimum sea surface temperatures (SSTs) at each sampling site; these temp-
eratures divide bioregions into two groups each (indicated by ellipses), and by themselves only partially explain the region’s biogeography; (c) examples of
distribution ranges (grey horizontal bars) and location of genetic breaks (black vertical bars) in coastal South African animals, arranged hierarchically. (i) Species
that occur as a single phylogenetic lineage in multiple bioregions: 1, Psammogobius knysnaensis (the study species, marked with an asterisk) [7] and 2, Scutellastra
longicosta [8]. (ii) Species with phylogenetically distinct sister lineages that are not distinguishable morphologically (cryptic species): 3, Callichirus kraussi [9] and 4,
Palaemon peringueyi [10]. (iii) Morphologically distinguishable sister species: 5, Hymenosoma spp. [11] and 6, Tricolia spp. [12]. W, cool-temperate west coast; SW,
transition zone on the southwest coast; S, warm-temperate south coast; SE, transition zone on the southeast coast; E, subtropical east coast.
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completely isolate sister lineages [15], when contact zones are

located in regions where environmental conditions are inter-

mediate [1,16], and when each lineage displays reduced

fitness in the habitat of its sister lineage [17,18]. Phylogenetic

splits that are shared by multiple species across the same

boundary may differ considerably in age [1,8], and by exten-

sion, this supports the hypothesis that species in which

phylogenetic divergence is not yet evident have undergone

ecological differentiation very recently.

The phylogenetic evidence for ecological drivers of

speciation is nonetheless circumstantial, because diver-

gence events mostly occurred during the Pleistocene or

earlier [8,19], and it is difficult to extrapolate from contempor-

ary conditions when species’ historical distribution patterns

are unknown and past oceanographic conditions not well

understood. Because of such uncertainties, it is controversial

to ascertain whether adaptation to divergent environments

that reduced levels of gene flow because of the maladaptation

of migrants was the primary driver of divergence, or whether it

occurred after a phylogenetic split that may very well have

evolved during an extended period of physical isolation.
More compelling evidence for ecological speciation in the

sea would come from scenarios in which there is support for

genetic differentiation that coincides with biogeography, but

in which phylogenetic divergence indicative of speciation has

not yet occurred [20]. The fact that phylogeographic breaks

tend to be present in only a fraction of the species whose

ranges span the boundaries between ecologically distinct

marine regions [1,3,4] suggests that the condition of recent

divergence may be met by those species that display no gen-

etic divergence on the basis of the selectively neutral datasets

typically employed in phylogeographic studies [21].

The South African coastline is characterized by ecologi-

cally distinct marine bioregions (figure 1) that are arranged

along a thermal gradient [1]. This provides a unique opportu-

nity for studying the importance of incipient environmentally

driven parapatric speciation in the sea, as biogeography

(and, by extension, ecological speciation) is believed to be pri-

marily a function of species’ thermal tolerance ranges [22].

Numerous species complexes exist along this coastline that

comprise cryptic species whose ranges are limited by the

boundaries between bioregions [1], and which exhibit distinct
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temperature preferences [17,18]. This suggests that thermal

adaptation contributes towards limiting gene flow between

biogeographic regions by reducing migrant fitness and by

subjecting migrants to competitive exclusion [1]. However,

in some species, a single evolutionary lineage is found

across multiple bioregions (figure 1). The latter are suitable

candidates for determining whether diversifying selection

driven by the environment, and corresponding reductions

in gene flow, may have preceded phylogenetic splits.

We tested this hypothesis by generating genome-wide

data from one of these phylogenetically homogeneous species

[7], the Knysna sandgoby, Psammogobius knysnaensis (figure 1).

This numerically dominant estuarine fish, which ranges from

the west coast to the southeast coast and which disperses

by means of planktonic larvae (electronic supplementary

material), was selected because the purity of extracted DNA

was much higher than that of other candidate species. We

expect population divergence that mirrors coastal biogeography

to be evident based only on temperature-associated genes. This

would support the idea that in coastal regions lacking physical

dispersal barriers, thermal selection plays a defining role in the

early stages of parapatric ecological speciation.
3

2. Methods
(a) Sampling procedure
Tissue samples from a total of 312 individuals of P. knysnaensis were

collected from at least three different locations in the mouth areas of

nine estuaries throughout the species’ range over a period of 2 years

(electronic supplementary material, table S1), using a pushnet.

Upon capture, a fin clip was obtained from one of the pectoral

fins using sterilized fingernail scissors, and immediately preserved

in 100% ethanol. The fish were subsequently released.

(b) Generation and processing of genomic data
Double digest restriction site-associated DNA (ddRAD) libraries

were constructed for a subset of 109 individuals and 12 replicates

with particularly high-quality DNA, following the protocol

described in Sandoval-Castillo et al. [23]. Libraries were pooled

in groups of 48 or 93 samples per lane and sequenced on an

Illumina HiSeq 2000 (100 bp paired-end reads) platform at the

McGill University and Genome Québec Innovation Centre.

Raw sequences were processed as described in the electronic

supplementary material.

(c) Identification of loci under thermal selection and
neutral loci

We assessed the contribution of coastal sea surface temperature

(SST) to the overall pattern of genetic differentiation using the R

package gINLAnd [24]. This software uses a spatial generalized

linear mixed model to quantify the correlation between genotypes

and environmental variables, while controlling for the effects of

spatial population structure and population history. As the appli-

cation of satellite-based SST data is often problematic when

studying coastal biogeography, because it includes data from off-

shore regions [25], we used southern African temperature data

based on in situ measurements, as described in the electronic sup-

plementary material. To ascertain that the study species does not

yet exhibit genetic divergence based on putatively neutral data,

which could indicate that geographical isolation preceded thermal

adaptation, we also created a reduced dataset comprising selec-

tively neutral data. In addition to excluding loci identified as

being under thermal selection, we excluded additional outlier
loci from FST-based genome scans, using BayeScan v. 2.1 [26], as

temperature may only be one of a number of drivers of selection.

(d) Functional annotation
To identify the possible functions of genes under thermal selection,

we blasted the flanking sequences of temperature-associated

loci against the National Center for Biotechnology Information

(NCBI) non-redundant nucleotide database. The resulting reads

were then annotated against the UniProtKB/Swiss-Prot database

[27]. We then performed a gene ontology term analysis in topGO

2.24.0 [28]. Genes whose function indicates an influence of thermal

selection were identified by searching the relevant literature.

(e) Population genetic structure
Genetic structure was investigated using both clustering and phy-

logenetic approaches. The clustering approaches were used to

analyse both loci under selection and neutral loci, and included

discriminant analysis of principal components (DAPC), which

was performed with the R package ADEGENET v. 2.1.0 [29], and infer-

ence of population structure using fastStructure 1.0 [30]. DAPC was

used to explore various combinations of maximum or minimum

temperature as the environmental variable (with covariance

factors that included geographical distance, biogeographic bound-

aries, and a combination of the two), while fastStructure was used

to confirm the DAPC results for the most informative dataset

identified in gINLAnd based on minimum SST (with geographical

distance as the covariance factor). Phylogenetic analyses were per-

formed in BEAST v. 2.4.7 [31] using (i) the most informative dataset

of loci under thermal selection identified in gINLAnd using mini-

mum SST (see Results) and (ii) previously published mtDNA COI

data [7]. In both cases, maximum clade credibility (MCC) trees

were reconstructed using a discrete phylogeographic analysis [32].
3. Results
A total of 8532 single nucleotide polymorphisms (SNPs) were

generated for 109 individuals of P. knysnaensis, of which up to

239 were identified as being under thermal selection (electronic

supplementary material, table S2). SNPs from ddRADseq orig-

inate from all genomic regions, and some may be located on

protein-coding genes that are strongly affected by temperature.

While such associations may not necessarily imply a causal

relationship, identifying their function may contribute towards

an improved understanding of possible drivers of genetic diver-

gence between temperature-defined bioregions. Although no

fully annotated transcriptome for the family Gobiidae is pre-

sently available, nine of the loci (identified using either

maximum or minimum temperature, with geographical distance

as the covariance factor) could be annotated as genes involved in

mitigating thermal stress (electronic supplementary material,

table S3). Three of these (14-3-3 gene, tyrosine protein kinase,

and tubulin beta chain) are of particularly interest because they

were involved in heat stress responses in a species of goby

[33], or cold stress adaptation/acclimation in other teleosts

[34,35]. In all but two cases, loci that were identified using mini-

mum temperature data were also identified using maximum

temperatures (data available in the Dryad Digital Repository:

https://doi.org/10.5061/dryad.ns790j4 [36]). This suggests

that even though most experimental studies investigated

responses to heat stress, genetically fixed differences of these

genes between temperature-defined marine bioregions may

reflect general adaptations to different thermal environments,

and thus play a role in determining thermal tolerance ranges.

https://doi.org/10.5061/dryad.ns790j4
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Figure 2. Population genetic structure inferred for temperature-associated loci, and reconstruction of phylogenetic relationships between individuals of
Psammogobius knysnaensis from four South African marine bioregions; (a) DAPC compoplot for minimum SST data using geography as the covariate (results
for alternative combinations of temperature data and covariates are shown in electronic supplementary material, figure S4); (b) corresponding consensus fastStructure
barplot for four genetic clusters (K ) ( for comparison, barplots for K ¼ 2 – 5 are shown in electronic supplementary material, figure S5); (c) MCC tree of 218
sequences from phased SNP data (same as in a and b), with location state reconstructions of ancestral nodes; and d corresponding phylogenetic tree based
on mtDNA COI data [7]. In c, clear regional structure is evident, but there are possible migrants. The south coast cluster was identified as being the oldest.
By contrast, there are no clear regional clades in d, and there was no evidence for any cluster being the oldest. Site numbers and abbreviations correspond
to those in figure 1 and electronic supplementary material, table S1, and trees are not drawn to scale.
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Clustering methods found high statistical support for

three to four clusters (K) when analysing the temperature-

associated loci, while a single cluster (K ¼ 1) was found for

the neutral loci (electronic supplementary material, figures S2

and S3), confirming that thermal selection preceded geographi-

cal divergence. Even though temperature alone only accounts

for two marine bioregions (figure 1), and despite the fact

that geographical distances and/or the boundaries between

bioregions were controlled for when identifying temperature-

associated loci, an affiliation of genetic clusters with up to

four bioregions was found for the temperature-associated

loci (figure 2a; electronic supplementary material, figure S4).

The distinctness of subtropical (SE) individuals from the

temperate (W, SW, and S) sites was evident in all analyses,

and most analyses using minimum temperature as the

environmental variable also identified the W coast as a distinct

cluster. There was even evidence for distinct SW and S coast

clusters, although these were comparatively poorly differen-

tiated. This result was robust, and was also recovered using

fastStructure (figure 2b).

Congruent with the clustering methods, an MCC tree

(figure 2c) of temperature-associated loci recovered both

the western and southeastern group as mostly distinct but

poorly differentiated clusters nested within a tree whose

oldest nodes were inferred to have existed on the south coast.

Some branches are nested within clades that mostly have
location states from other regions, which may reflect migration

between adjacent marine bioregions, and further supports the

idea that thermal selection drove ecological speciation in the

absence of geographical isolation. For comparison, an MCC

tree reconstructed from mtDNA COI sequences [7] shows no

clear regional structure (figure 2d).
4. Discussion
Speciation is a continuous process comprising a number of

evolutionary stages that range from adaptive differentiation

to complete reproductive isolation between populations [37].

Identifying the primary drivers of speciation is challenging

because a considerable amount of time has often already

passed by the time incipient speciation becomes evident. This

makes it difficult to distinguish ecologically driven divergence

from allopatric speciation with subsequent adaptation [38,39].

Marine biogeography is often considered to be a function

of species’ thermal tolerance ranges [22,40–43]. The fact that

South Africa’s coastal biogeography is mirrored by intra-

specific spatial genetic structure suggests that species present

in more than one province should comprise multiple

evolutionary lineages that represent cryptic species [1]. The

goby P. knysnaensis is one of a number of coastal southern

African species that occur in multiple marine bioregions, but
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which displays no regional divergence on the basis of selec-

tively neutral markers [7] of the type that are primarily used

in phylogeographic research [21]. Here, we reject the previous

finding of genetic homogeneity and show that this species is in

fact represented by multiple regional groups delimited by

temperature-defined bioregions. The fact that this is only evi-

dent for temperature-associated loci, and not for putatively

neutral loci, confirms that divergence must have taken place

in the absence of an interruption of gene flow due to physical

dispersal barriers. Under these conditions, a pattern of iso-

lation-by-adaptation [44] can be expected to eventually

evolve, as migrants dispersing into adjacent bioregions will

have fewer surviving offspring and reduced survival rates

compared to residents. West-to-east thermal differentiation

was evident particularly for the minimum temperatures,

where the two easternmost sites had much warmer water

than the other sites (figure 1). It is not clear why minimum

temperature would have more explanatory power than maxi-

mum temperature, but its importance to southern Africa’s

marine biogeography has also been reported in a study on sea-

weed b-diversity [45]. Experiments on crustacean larvae from

the southeast coast indicate that development is considerably

delayed at lower temperatures typical of upwelling events in

the temperate bioregions [17,18]. It is possible that, in addition

to metabolic constraints at both high and low temperatures

[46], recruitment success of the larvae of warm-adapted species

is reduced at low temperatures because of the increased likeli-

hood of predation, advection away from suitable habitat,

and inability to capture prey [17,18]. There was no indication

that marine bioregions could be identified based on high or

low temperatures alone, and the identification of loci under

thermal selection and subsequent detection of up to four

genetic clusters cannot be explained as being an artefact of

the temperature variables used in the gINLAnd analyses.

Adaptations to the thermal environment are complex

and ubiquitous in nature. Temperature affects many different

biological pathways, with strong effects on the integrity of pro-

teins and cellular structures and on the rates of physiological

processes, particularly in ectotherms [47]. The thermal environ-

ment can promote partial reproductive isolation between

populations, which might drive them along the speciation

continuum [48]. This is particularly true for organisms that (i)

have distinct populations with parapatric distributions along

the thermal gradient, (ii) do not maintain a stable internal temp-

erature (poikilotherms), and (iii) are found across stable thermal

gradients (e.g. aquatic environments), which are regions where

exogenous divergent selection is not expected to weaken due to

marked temperature fluctuations [48]. Our study system meets

all these conditions and represents an example of parapatric

ecological divergence with genomic hallmarks of incipient

evolutionary divergence driven by the thermal environment.

Unlike previous spatial demographic inferences from

coastal southern Africa, which typically reflect the influence

of past climatic changes [8,49], the spatial genetic patterns

identified here can be explained by present-day environmental

conditions. On the east coast, northward dispersal in the near

shore area is facilitated by wind-driven circulation [50], but

this is unlikely to occur beyond site 9 (the northern distribution

limit of P. knysnaensis) [49,51] because under contemporary

conditions, the southward-flowing Agulhas Current flows

very close to the coast and causes the parallel southward

flow of near shore circulation [52]. In the western portion of

the species’ range, gene flow between the south and west
coast is primarily facilitated by the westward drift of surface

water [53]. The limited evidence for gene flow in both cases

would be difficult to explain if one exclusively invoked phys-

ical isolation, given the high dispersal potential of the

species’ larvae coupled with the region’s strong ocean circula-

tion. It suggests that migrants from a particular bioregion are

maladapted to the environmental conditions in adjacent biore-

gions. For example, the distinctness of the west coast

population from those on the southwest and south coast may

reflect the influence of cold-water upwelling in the west [54].

We hypothesize that thermal selection, perhaps in combi-

nation with factors such as oceanography and primary

productivity that covary with temperature to influence local

adaptation [48], acts primarily on the sensitive larvae. Under

this scenario, ecologically diverging populations are limited

in their ability to exchange genes and, as such, reproductive

isolation is expected to ensue [48]. There are no known conspic-

uous phenotypes that differ between the presumably locally

adapted P. knysnaensis populations, but this is unsurprising

because thermal adaptation often initially creates cryptic

changes at the level of cell membranes or thermal stability of

enzymes [55]. Studies that combine information from population

genomics and controlled laboratory experiments using tempera-

ture-defined populations along an evolutionary continuum

of speciation are expected to improve the identification of

phenotypes enriched for selection signals of thermal adaptation.
5. Conclusion
Allopatric speciation in the marine environment is often

invoked along continuous but ecologically subdivided coast-

lines, despite evidence that the physical dispersal barriers to

whom this is attributed are insufficient to completely isolate

regional populations [56,57]. Our study contributes to the

growing evidence that in adjacent, temperature-defined

marine provinces, divergence of loci linked to the thermal

environment can precede significant spatial divergence of

selectively neutral markers [58]. This strongly favours a scen-

ario of parapatric ecological divergence over one in which

allopatric divergence is followed by thermal adaptation. In

the context of larger biogeographic patterns, where range

boundaries in the sea often coincide with the boundaries

between temperature-defined bioregions [59], this evidence

suggests that temperature-driven diversifying selection may

be an important early-stage factor in the evolution of

marine biodiversity.
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