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In insects, antimicrobial humoral immunity is governed by two distinct gene

cascades, IMD pathway mainly targeting Gram-negative bacteria and Toll

pathway preferentially targeting Gram-positive bacteria, which are widely

conserved among diverse metazoans. However, recent genomic studies

uncovered that IMD pathway is exceptionally absent in some hemipteran

lineages like aphids and assassin bugs. How the apparently incomplete

immune pathways have evolved with functionality is of interest. Here we

report the discovery that, in the hemipteran stinkbug Plautia stali, both

IMD and Toll pathways are present but their functional differentiation is

blurred. Injection of Gram-negative bacteria and Gram-positive bacteria

upregulated effector genes of both pathways. Notably, RNAi experiments

unveiled significant functional permeation and crosstalk between IMD and

Toll pathways: RNAi of IMD pathway genes suppressed upregulation of

effector molecules of both pathways, where the suppression was more

remarkable for IMD effectors; and RNAi of Toll pathway genes reduced

upregulation of effector molecules of both pathways, where the suppression

was more conspicuous for Toll effectors. These results suggest the possibility

that, in hemipterans and other arthropods, IMD and Toll pathways are inter-

twined to target wider and overlapping arrays of microbes, which might

have predisposed and facilitated the evolution of incomplete immune

pathways.
1. Introduction
The innate immune system is highly conserved among metazoans, which

enables prompt defense against microbial intruders [1,2]. In insects, the

innate immunity is often classified into three categories: physical, cellular

and humoral [3]. The humoral immunity rapidly and transiently activates

immune genes upon microbial infections and elicits the release of an array of

antimicrobial peptides (AMPs) to haemolymph [4]. Humoral immunity is trig-

gered by sensing of microbial infections via interactions of peptidoglycan

recognition proteins (PGRP) and Gram-negative binding proteins (GNBP)

with microbial surface molecules [2]. In general, each of the recognition proteins

induces subsequent reactions of one of the two signalling pathways, namely

immune deficiency (IMD) pathway, which is preferentially activated by

Gram-negative bacteria, and Toll pathway, which is preferentially activated

by Gram-positive bacteria and fungi. In the fruit fly Drosophila melanogaster,

most of the AMPs are preferentially activated by either IMD pathway or Toll

pathway, but exceptionally, some AMPs (such as Drosomycin) are activated by

both IMD and Toll pathways [5,6]. Despite the presence of some minor crosstalk,

the two immune pathways are generally recognized as independent.
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Figure 1. A schematic phylogenetic tree of arthropods on which presence/absence of humoral immunity-related genes is mapped. Black and white squares indicate
the presence and absence of humoral immunity-related genes, respectively. There is a grey square that indicates uncertainty (see text for details). The phylogeny was
drawn on the basis of Misof et al. [23], Kolokotronis et al. [24], Sharma et al. [25] and Palmer & Jiggins [20]. Presence/absence of the genes were based on
Mesquita et al. [15] for R. prolixus, Benoit et al. [16] and Zumaya-Estrada et al. [17] for C. lectularius, Bao et al. [18] for N. lugens, Shao et al. [26] for
E. vitis, Gerardo et al. [14] for A. pisum, Zhang et al. [27] for B. tabaci, Arp et al. [28] for D. citri, Sackton et al. [9] for D. melanogaster, Tanaka et al. [11]
for B. mori, Evans et al. [12] for A. mellifera, Zou et al. [13] for T. castaneum, McTaggart et al. [19] for D. pulex, Palmer & Jiggins [20] for S. maritima, P. tepidariorum
and M. occidentalis, Cao et al. [21] for M. martensii, Grbı́c et al. [29] for T. urticae and Smith & Pal [22] for I. scapularis. Squares with asterisks indicate the results of
this study (see Results and discussion). (Online version in colour.)
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Genome-wide analyses have shown that IMD pathway

and Toll pathway are both highly conserved in holometabo-

lous insects including the fruit flies Drosophila spp. [7–9],

the mosquito Anopheles gambiae [10], the silkmoth Bombyx
mori [11], the honeybee Apis mellifera [12] and the flour

beetle Tribolium castaneum [13]. These immune pathways

correspond to the mammalian signalling pathways of inter-

leukin-1 receptor and tumour necrosis factor receptor [14].

Hence, it is presumed that primitive forms of IMD pathway

and Toll pathway must have arisen in the common ancestor

of arthropods and vertebrates.

However, in some insects belonging to the Hemiptera,

recent studies uncovered the absence or incompleteness of

IMD pathway. The pea aphid Acyrthosiphon pisum lacks all

IMD pathway genes including PGRP-encoding gene, Imd and

Relish [14] and the assassin bug Rhodnius prolixus lacks key com-

ponents of IMD pathway-like Imd but retains Relish [15]. Lack

of Imd was also reported from the bedbug Cimex lectularius
and other assassin bugs Triatoma pallidipennis, T. dimidiata and
T. infestans [16,17]. On the other hand, the brown planthopper

Nilaparvata lugens possesses a conserved IMD pathway [18].

The conserved IMD pathway was also found in non-insect

arthropods like the water flea Daphnia pulex [19] and the coastal

centipede Strigamia maritima [20], but the Chinese scorpion

Mesobuthus martensii and the deer tick Ixodes scapularis do not

possess Imd [21,22] and the western orchard predatory mite

Metaseiulus occidentalis lacks almost all IMD pathway com-

ponents including Imd and Relish [20]. Hence, phylogenetic

mapping suggests repeated and independent losses of IMD

pathway components in the evolutionary course of arthropods

(figure 1), but it has been poorly understood how the erosion of

IMD pathway has proceeded.

In this study, we demonstrate that a hemipteran insect,

the brown-winged green stinkbug Plautia stali, retains both

IMD pathway and Toll pathway but their functional differen-

tiation has been blurred, which provides insight into the

evolutionary process of incomplete immune pathways in

hemipteran insects and other arthropods.
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2. Material and methods
(a) Insects
Adult insects of P. stali, collected at the forest edge in the National

Institute of Advanced Industrial Science and Technology,

Tsukuba, Japan, were used to establish an inbred strain.

A mass-reared colony of the strain was used as the source of the

experimental insects. The insects were reared in plastic containers

(150 mm in diameter, 60 mm high) supplied with raw peanuts,

dry soya beans and water supplemented with 0.05% ascorbic

acid at 258C+ 18C under a long-day regime of 16 L : 8 D dark

following the previous study [30].
rspb
Proc.R.Soc.B
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(b) RNA-seq analysis
Total RNAs were extracted from fat body, midgut or whole

body of adult females approximately 5 days after ecdysis

using RNeasy Mini Kit (Qiagen, Hilden, Germany). To efficien-

tly obtain humoral immunity-related genes, RNAs were also

extracted from fat body of adult insects injected with Gram-

negative Escherichia coli or Gram-positive Micrococcus luteus.

The cDNAs were sequenced by Illumina HiSeq 2500 with

paired-end 101 bp (Macrogen Japan Corp., Kyoto, Japan),

and the generated raw reads (Accession nos. DRR118501–

DRR118507; electronic supplementary material, table S1) were

cleaned by trimming low-quality regions and adapter sequences

using TRIMMOMATIC version 0.36 with minimum length setting

as 50 bp [31]. Reference contigs were constructed by de novo
assembly of all the cleaned paired-end reads using TRINITY

v. 2.4.0 [32]. After automatic assembly, we manually checked

and corrected the target gene sequences using the Integrative

Genomics Viewer [33]. For annotation of the reference contigs,

each contig sequence was compared with NCBI-nr protein data-

base by blastx (e-value less than ,1 � 1023), and a summary

of the top-hit result was added to each contig. In addition,

CDS region of each contig was predicted by TRANSDECODER

v. r20140704 [32], and conserved domains in each predicted

amino acid sequence were searched by HMMER v. 3.1b2 [34]

using Pfam protein families database [35]. For searching ortholo-

gous genes related to Toll and IMD pathways, blastp search

using Drosophila Toll and IMD genes as query sequences were per-

formed against a database of the predicted amino acid sequences of

P. stali. For transcript quantification of the reference contigs for each

fat body sample, align_and_estimate_abundance.pl script bundled

with TRINITY v. r20140707 was used for the cleaned reads of each fat

body sample with –est_method RSEM, –aln_method bowtie2 and

–trinity_mode options, and the calculated expression levels of the

reference contigs were normalized to fragments per kilobase per

million mapped fragments (FPKM) values with Trimmed mean of

M values (TMM) normalization among all the fat body samples

by abundance_estimate_to_matrix.pl script bundled with TRINITY

v. r20140707. The normalized FRKM values were used for

comparing gene (contig) expression level between control and

bacteria-treated fat body samples.
(c) Septic shock experiments
Adult female P. stali approximately 5 days after ecdysis were

injected by glass capillary tubes (size: 100 ml; Drummond, Ala-

bama, USA). The females (approximately 7.0 mm in thorax

width and 0.13 mg in body weight) were injected with ca 5 ml

of 0.9% saline (Otsuka Pharmaceutical, Tokyo, Japan) or

108 ml21 heat-killed bacteria (E. coli or M. luteus), into the ventral

septum between thoracic and abdominal segments. As controls,

non-treated females and mock-injected (wounded by glass capil-

lary tubes only) females were used. The fat body was excised 1, 4,

8 or 24 h after injection and total RNA was extracted (see below;

electronic supplementary material, figure S1a).
(d) Quantitative RT-PCR
Total RNAs extracted from abdominal fat bodies using TRIzol

(Life Technologies Japan Ltd, Tokyo, Japan) were reverse tran-

scribed into cDNA using High-Capacity cDNA Reverse

Transcription Kit (Life Technologies Japan Ltd, Tokyo, Japan).

Quantitative RT-PCR of humoral immunity-related genes

(PGRP-encoding genes, GNBPs, Imd, Relish, myeloid differen-

tiation protein-88 (MyD88), Dorsal, Defensin, Hemiptericin and

Lysozyme) was conducted with primer pairs designed on the

basis of RNA-seq data (electronic supplementary material,

table S2) using LightCycler 480 and LightCycler 480 SYBR

Green Master (Roche Diagnostics, Tokyo, Japan).

(e) RNAi experiments
To knockdown the mRNA levels of humoral immunity-related

genes, adult females approximately 5 days after ecdysis were

injected with roughly 5 ml of double-stranded RNA (dsRNA) sol-

ution (100 ng ml21) into the ventral septum between thoracic and

abdominal segments. dsRNA was synthesized from a PCR pro-

duct using primers listed in electronic supplementary material,

table S3, and MEGAscript RNAi Kit (Thermo Fisher Inc.,

Kanagawa, Japan). Three days after dsRNA injection, several indi-

viduals were subjected to RNA extraction to examine the effects of

RNAi (electronic supplementary material, figure S1b). Other indi-

viduals were injected with heat-killed E. coli or M. luteus 3 days

after dsRNA injection, and then, subjected to RNA extraction on

the following day (electronic supplementary material, figure

S1c). The extracted RNAs were subjected to quantitative RT-PCR

(as above) to infer the expression levels of AMPs.

( f ) Phylogenetic analysis
The amino acid sequences inferred from PGRP, GNBP and lyso-

zyme genes were aligned by CLUSTALW [36] and subjected to

phylogenetic analyses by the maximum-likelihood method

using MEGA7 program [37,38].

3. Results
(a) Genes of Plautia stali upregulated by septic shock
Compared with non-treated control, 650 RNA-seq contigs

showed 10-fold or higher expression upon injection of heat-

killed E. coli (a representative of Gram-negative bacteria),

whereas 554 contigs showed 10-fold or higher expression

upon injection of heat-killed M. luteus (a representative of

Gram-positive bacteria). Notably, 274 contigs were com-

monly identified between them (i.e. upregulated by both

E. coli and M. luteus) (electronic supplementary material,

table S4).

(b) Immune pathway genes of Plautia stali
Blastp searches on transcriptomes of P. stali (both septic

shocked and non-treated ones) using immunity-related

genes of D. melanogaster as queries suggested that P. stali pos-

sesses nearly complete IMD pathway and Toll pathway

(figure 2; electronic supplementary material, figure S2).

(i) Pattern recognition molecules
Three P. stali orthologues of a peptidoglycan recognition

protein (i.e. PsPGRP-L1a, PsPGRP-L1b and PsPGRP-L2) and

an orthologue of a lysin motif protein (PsLysM), a member

of peptidoglycan recognition proteins known to bind

to peptidoglycans in plants [39], were found. The three

PGRPs in P. stali were named as PsPGRP-L1a, PsPGRP-L1b
and PsPGRP-L2, respectively, because all of them were
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categorized as long type and the two PGRPs (PsPGRP-L1a
and PsPGRP-L1b) were considered as isoforms. Predicted

amino acid sequences of PsPGRP-L1a, PsPGRP-L1b and

PsPGRP-L2 exhibited transmembrane domains and were pre-

sumably without amidase activities for scavenging digested

peptidoglycan (electronic supplementary material, figures

S3–S5). Two orthologues of GNBPs (PsGNBP1 and

PsGNBP2) were also found (electronic supplementary

material, figure S6).

(ii) Signalling pathway components
Orthologues of all major IMD pathway and Toll pathway

components were found in the RNA-seq data (figure 2).

However, we failed to detect several IMD component genes

such as death-related ced-3/Nedd2-like caspase (Dredd),

TAK1-binding protein (TAB2) and IEC-intrinsic IkB kinase

(IKKg), although full genomic sequencing of P. stali is

needed to verify the absence of these genes. PsImd and Fas-

associated protein with death domain (PsFADD) exhibited

relatively low homology values to DmImd and DmFADD,

respectively (e-values by blastp were 0.014 and 6 � 1025,

respectively; note that PsImd appeared to be functional in

IMD pathway; see below).

(iii) Immune-responsive effectors
As immune-responsive effector genes, two orthologues of

defensin (PsDefensin1 and PsDefensin2), one orthologue of

hemiptericin (PsHemiptericin) and six orthologues of lyso-

zyme (PsLysozyme b-1, PsLysozyme b-2, PsLysozyme c-1,

PsLysozyme c-2, PsLysozyme c-3 and PsLysozyme i-1) were

identified in the RNA-seq data (electronic supplementary

material, figure S7).
(c) Expression of immune pathway genes upon septic
shock

(i) Pattern recognition molecules
PsPGRP-L1a was significantly upregulated by M. luteus 8 h

after injection but was not by E. coli (�3.4) (figure 3; elec-

tronic supplementary material, figure S8). PsPGRP-L1b was

significantly upregulated not only by E. coli (�3.4) and

M. luteus (�2.7) but also by mock (�2.4) and saline (�3.3)

8 h after injection (figure 3; electronic supplementary

material, figure S8). By contrast, PsPGRP-L2 and PsLysM
were not affected by the septic shock treatments (figure 3;

electronic supplementary material, figure S8). PsGNBP1 was

upregulated by both E. coli (�16.0–22.3) and M. luteus
(�14.2–27.1) 4 and 8 h after injection, whereas PsGNBP2
was not affected by the septic shock treatments (figure 3;

electronic supplementary material, figure S8).

(ii) Signalling pathway components
Among five pathway component genes, only PsRelish (an IMD

pathway component) was upregulated by both E. coli (�4.6–

24.5) and M. luteus (�3.6–15.5) 1, 4, 8 and 24 h after injection,

while the others (i.e. PsImd, PsMyD88, PsDorsalA and PsDor-
salB) were not affected by the septic shock treatments

(figure 3; electronic supplementary material, figure S9).

(iii) Immune-responsive effectors
PsDefensin1 and PsHemiptericin were upregulated by both E.
coli (�8.1–134.5 and �6.2–166.6) and M. luteus (�6.1–169.1

and �6.9–168.1) 1 h after injection and on, while Defensin2
was upregulated by E. coli (�14.2–96.8) and M. luteus
(�14.2–60.4) 4 h after injection and on (figure 3; electronic
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supplementary material, figure S10). Among six lysozyme

genes, Lysozyme b-1 and Lysozyme c-1 were upregulated by

both E. coli (�9.4–38.5 and �8.5–27.2) and M. luteus
(�21.3–30.7 and �11.6–35.1) 4 h after injection and on,

while the remaining four lysozyme genes were not upregu-

lated by the septic shock treatments (figure 3; electronic

supplementary material, figure S11).
(d) RNAi-mediated knockdown of immune pathway
genes and expression levels of effector genes

In P. stali, RNAi generally worked efficiently and stably by

injection of dsRNA. For example, injection of dsPsRelish into

adult insects suppressed the expression levels of PsRelish to

approximately one-tenth in comparison with the dsEGFP-

injected control insects during at least 14 days after injection

(electronic supplementary material, figure S12). All the other

immune component genes we examined, namely PsImd,

PsMyD88, PsDorsal, PsPGRP-L1a, PsPGRP-L1b, PsPGRP-L2,

PsLysM, PsGNBP1 and PsGNBP2, were also suppressed effi-

ciently by RNAi (electronic supplementary material, figures

S13–S16).
(i) Which immune pathway controls AMPs and lysozymes?
Blocking of IMD pathway by RNAi of PsImd or PsRelish
resulted in suppressed upregulation of PsDefensin1, PsHemip-
tericin, PsLysozyme b-1 and PsLysozyme c-1 (figure 4a,b,e– j ),
indicating that these immune effector molecules are mainly

under the control of IMD pathway. By contrast, blocking of

Toll pathway by RNAi of PsMyD88 or PsDorsal caused sup-

pressed upregulation of PsDefensin2 (figure 4c,d ), indicating

that this effector is mainly under the control of Toll pathway.

Here it should be noted that the RNAi blocking of IMD path-

way also resulted in, though less remarkable, suppressed

upregulation of PsDefensin2 (figure 4c,d ). Likewise, the

RNAi blocking of Toll pathway caused, though less remark-

able, suppressed upregulation of PsDefensin1, PsHemiptericin,

PsLysozyme b-1 and PsLysozyme c-1 (figure 4a,b,e– j ). Simul-

taneous blocking of IMD pathway and Toll pathway

by RNAi of PsRelish and PsDorsal was most effective in all

effector genes (figure 4a– j ).
(ii) Which recognition protein triggers the immune pathways?
RNAi of PsPGRP-L1a resulted in suppressed upregulation of

PsDefensin1, PsHemiptericin and PsLysozyme c-1 when
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challenged by Gram-negative E. coli (figure 5a,e,i). For the

effectors that are mainly under the control of IMD pathway

(figure 4), the suppression was not observed when

challenged by Gram-positive M. luteus (figure 5b,f,j ).
Meanwhile, the suppression patterns observed with the

effector PsDefensin2, which is mainly under the control of

Toll pathway (figure 4), were observed by RNAi of PsPGRP-
L1a, PsPGRP-L2 and PsLysM (and marginally PsPGRP-L1b),

irrespective of bacterial challenges by Gram-negative E. coli
or Gram-positive M. luteus (figure 5c,d).
4. Discussion
(a) Immune pathway genes of Plautia stali
Our RNA-seq analysis showed that P. stali possesses a reper-

toire of well-conserved genes of IMD pathway and Toll

pathway, but some components of IMD pathway (Dredd,

TAB2 and IKKg) had not been found. The lack of Dredd, TAB2
and IKKg was also reported in the bedbug C. lectularius and

the assassin bug R. prolixus, in which Imd was also assumed

to be absent [15,17]. Using PsImd as a query, however, we

found a homologous sequence in C. lectularius (uncharacter-

ized protein, XP_014246002; e-values were 4e-5 by blastp and

0.084 by tblastx) but not in R. prolixus (lowest e-values were

0.15 to mapmodulin-like protein [AY340275] by blastp and

0.19 to Krüppel gene [JN092576] by tblastx). It is likely that

the barely homologous sequence in C. lectularius may function

as Imd. We speculate that the Imd sequence is so divergent that

it is extremely difficult to find by homology search in some

hemipteran species, mites and ticks (figure 1) [20].
(b) Induction of immune pathway genes in response
to Gram-negative and Gram-positive bacteria

Almost all immune pathway genes upregulated by septic

shock treatments in P. stali, including PsPGRP-L1b,
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PsGNBP1, PsRelish, PsDefensin1, PsDefensin2, PsHemiptericin,

PsLysozyme b-1 and PsLysozyme c-1, responded to Gram-

negative E. coli and Gram-positive M. luteus indiscriminately,

although E. coli and M. luteus represent different cell wall

components on their surface, namely E. coli with DAP-type

peptidoglycan and M. luteus with Lys-type peptidoglycan.

These upregulation patterns are distinct from the well-

known patterns established for D. melanogaster: most of the

AMPs are preferentially activated by either IMD pathway

or Toll pathway (but with lesser degree for Drosomycin

[6]), whereas IMD pathway and Toll pathway are

preferentially activated by Gram-negative bacteria and

Gram-positive bacteria, respectively [40–42]. In T. castaneum
[43] and A. mellifera [44], it has been reported that some

AMPs ambiguously respond to various bacteria while other

AMPs respond to specific bacteria in a canonical manner.

Our results in P. stali is peculiar in that, in all the affected

genes, the degree of response was similar between the insects

challenged by Gram-negative bacteria and those challenged

by Gram-positive bacteria.
Notably, upregulation of these responded effectors was

maintained for at least 24 h, which was in contrast to most

AMPs in D. melanogaster that exhibit transient monomodal

upregulation within 12 h after bacterial challenge [40,41,45].

The long-lasting expression of AMPs might be relevant to

the presumable lack of amidase activities in the PGRPs of

P. stali. Because the amino acid sequences of three PGRP

orthologues in P. stali assumed to have no amidase activity,

three PGRP orthologues were considered presumably to

play some roles in recognizing invading bacteria. PGRPs

with amidase activity (amidase PGRPs), such as PGRP-LB

and PGRP-SC in D. melanogaster, play important roles in

downregulation of IMD pathway by degrading bacterial

peptidoglycans [46,47].

(c) Functional crosstalk across IMD and Toll pathways
in Plautia stali

The knockdown of IMD pathway components reduced the

upregulation of effectors of both pathways (but more
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remarkable for those of IMD pathway), and the knockdown

of Toll pathway components also reduced the upregulation

of effectors of both pathways (but more remarkable for

those of Toll pathways). These results suggest that IMD path-

way and Toll pathway are not distinct but intertwined in

P. stali. Figure 6 shows a hypothetical model of innate

immune pathways in P. stali. The crosstalk between IMD

pathway and Toll pathway is mainly mediated by PsRelish
and PsDorsal, although the possibility of crosstalk mediated

by upstream genes cannot be excluded. The conspicuous

crosstalk between IMD pathway and Toll pathway in

P. stali counter the well-established notion in D. melanogaster
that IMD pathway and Toll pathway are preferentially

activated by and acting on Gram-negative bacteria and

Gram-positive bacteria, respectively [40,41]. Meanwhile,

several studies reported slight interactive effects between

the immune pathways in D. melanogaster, which are mediated

by NF-kB family transcription factors that bind to promoters

of immune effector genes [48,49]. The NF-kB-mediated inter-

active effects were also found in the honeybee A. mellifera
[44]. Because Toll pathway component MyD88 and Imd
share a death domain, MyD88 might activate IMD path-

way in D. melanogaster [50]. It was also reported that, in

the flour beetle T. castaneum, IMD pathway and Toll path-

way are activated and used more promiscuously than in

D. melanogaster [43].

(d) Which recognition protein triggers the immune
pathways?

RNAi of PsPGRP-L1a resulted in suppressed upregulation of

effectors that are mainly under the control of IMD pathway

when challenged by Gram-negative E. coli but not by the
challenge of Gram-positive M. luteus. Meanwhile, the sup-

pression patterns observed with the effector that is mainly

under the control of Toll pathway was observed by RNAi

of PsPGRP-L1a, PsPGRP-L2 and PsLysM (and marginally

PsPGRP-L1b). These results indicate that PsPGRP-L1a
recognizes Gram-negative E. coli, thereby upregulating the

downstream effector molecules PsDefensin1, PsHemiptericin
and PsLysozyme c-1. PsPGRP-L2 and PsLysM (and possibly

PsPGRP-L1b) are located at the upstream of the pathway(s)

leading to upregulation of PsDefensin2 and might be capable

of recognizing not only Gram-positive M. luteus but also

Gram-negative E. coli. On the other hand, the suppressive

effect of PsPGRP-L1a RNAi on upregulation of PsDefensin2
when challenged by Gram-positive M. luteus ( p ¼ 0.032) is

confusing and difficult to interpret, deserving detailed

analyses in future studies. Taken together, these results

suggest that the specificity of the recognition proteins to

Gram-positive and Gram-negative bacteria may be also

blurred in P. stali.
This blurred recognition of Gram-negative and Gram-

positive bacteria might cause intertwining across IMD

pathway and Toll pathway. While IMD pathway is mainly

induced by Gram-negative bacteria via PsPGRP-L1a, Toll

pathway is stimulated not only by Gram-positive bacteria

but also by Gram-negative bacteria via PsPGRP-L2 and

PsLysM (and possibly PsPGRP-L1b).

(e) PsLysM as a presumable immune recognition
protein

Our observation that RNAi of PsLysM suppressed the septic

shock-induced upregulation of PsDefensin2 (figure 5c,d )

suggests that PsLysM may function as an immune recognition
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protein in P. stali. PsLysM contains a lysin motif (LysM),

which is a ubiquitous protein module identified in many

prokaryotes and eukaryotes [40]. In some plants, LysM-

containing genes recognize bacteria, especially symbiotic

ones [51]. To our knowledge, this study is the first to

show an immunity-related role of a LysM-containing gene

in insects. It is notable that LysM-containing genes have

been identified in other hemipteran insects such as Riptortus
pedestris [52] and Diaphorina citri [28], but the function has

not been examined.

( f ) Evolutionary insight into the loss of IMD pathway
genes in some arthropods

In previous studies on the genomics of the pea aphid A.
pisum, the following aspects were argued in relation to the

loss of IMD pathway genes [14,53]. First, the aphid feeds

on plant phloem sap that is substantially sterile [54] and

thus may entail the relatively low risk of encountering

microbial pathogens. Second, the aphid often harbours facul-

tative bacterial symbionts (including Regiella, Hamiltonella,

Rickettsia, Rickettsiella and Spiroplasma) that exhibit defensive

activities against microbial pathogens and insect parasitoids

[55–57], which may at least partially compensate for the

host’s innate immune functions. Notably, P. stali have obli-

gate symbionts but its defensive function had not been

explored [30,58,59]. Finally, upon injury, the aphid was
reported to increase terminal reproductive investment, pre-

sumably at the expense of humoral immunity [60], which

may to some extent attenuate dependence on its own innate

immune system. In this study, we propose a hypothesis

that the functional redundancy between IMD pathway and

Toll pathway may have predisposed and facilitated the loss

of some or entire IMD pathway genes. It should be noted

that this hypothesis is, although more generally applicable,

not mutually exclusive with the above-mentioned hypotheses

and might be strengthened by functional analysis of IMD

pathway and Toll pathway in other hemipteran insects and

non-insect arthropods that have incomplete IMD pathway.

The functional crosstalk across IMD pathway and Toll path-

way may be more common than generally recognized, and

it might be the evolutionarily intermediate step towards the

loss of IMD-related genes.
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