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Abstract

INTRODUCTION: The genetic architecture of Alzheimer disease (AD) is only partially 

understood.

METHODS: We conducted an association study for AD using whole sequence data from 507 

genetically enriched AD cases (i.e., cases having close relatives affected by AD) and 4,917 
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cognitively healthy controls of European Ancestry (EA) and 172 enriched cases and 179 controls 

of Caribbean Hispanic (CH) ancestry. Confirmation of top findings from Stage 1 was sought in 

two family-based GWAS datasets and in a whole genome sequencing dataset comprising members 

from 42 EA and 115 CH families.

RESULTS: We identified associations in EAs with variants in 12 novel loci. The most robust 

finding is a rare CASP7 missense variant (rs116437863; p=2.44×10−10) which improved when 

combined with results from the Stage 2 datasets (p=1.92 ×10−10).

DISCUSSION: Our study demonstrated that an enriched cases design can strengthen genetic 

signals, thus allowing detection of associations that would otherwise be missed in a traditional 

case-control study.

Keywords

enriched case-control; whole exome sequencing; association study; genome-wide association 
studies; gene-based analyses

1. Introduction

Late-onset Alzheimer disease (AD) is a progressive neurodegenerative disorder in persons 

ages 65 years and older characterized by memory loss and dementia. AD risk increases 

exponentially with age with a prevalence of 30–40% among 85–89 year-olds [1]. As average 

life expectancy has increased, the number of AD cases will increase to 11–16 million by 

2050 with nearly 1 million new cases per year unless measures are identified to delay or 

prevent the disease [2, 3].

Risk of AD is modulated by variants in multiple genes, most notably the APOE ɛ2 and ɛ4 

alleles, in combination with lifestyle and environmental factors. AD has a substantial genetic 

component with an estimated heritability of 58–79% [4]. Genome-wide association studies 

(GWAS) have identified >20 common susceptibility variant loci showing robust evidence for 

association with AD [5–7]. Recently, studies that performed whole exome sequencing 

(WES), targeting gene sequencing and rapid throughput genotyping using SNP microarray 

chips with high exome content have reported associations with rare risk variants in multiple 

novel loci including TREM2 (R47H) [8–10], PLD3 [11], AKAP9 [12], UNC5C [13], 
PLCG2 [14], ABI3 [14] as well as with rare risk and protective variants in several previously 

known AD genes (APP [15, 16], APOE (p.V236E) [17], SORL1 [18] and ABCA7 [19, 20]).

The Alzheimer’s Disease Sequencing Project (ADSP) is an NIH-funded initiative to identify 

novel genes and rare risk and protective variants using WES and whole genome sequencing 

(WGS) approaches. In this study, we analyzed a subset of the ADSP WES cohort including 

“enriched” AD cases (i.e., cases who have close relatives also affected by AD and thus more 

likely to have a high burden of AD risk alleles compared to cases not ascertained on the 

basis of a positive family history) and all controls to identify novel associations with single 

nucleotide variants (SNVs) and short insertions and deletions (indels).
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2. Methods

2.1 Participants, Sequencing and Data Processing

The Alzheimer’s Disease Sequencing Project (ADSP) performed WES of DNA specimens 

from 5,778 AD cases and 5,136 controls at three NHGRI Genome Centers (Broad Institute, 

Baylor College of Medicine, and McDonnell Genome Institute at the Washington 

University). Detailed description of the ADSP WES study design has been published 

elsewhere [21]. In brief, subjects for this study were selected from datasets assembled by the 

Alzheimer’s Disease Genetics Consortium (ADGC), Cohorts for Heart and Aging Research 

in Genomic Epidemiology (CHARGE) consortium, and the Rotterdam Study [5, 22]. In the 

ADSP WES EA cohort, ~5,000 AD cases that were not ascertained on the basis of family 

history of AD were selected because they have the lowest risk explained by age and APOE 

genotypes (young onset, APOE ɛ2/ɛ2, ɛ2/ɛ3, or ɛ3/ɛ3). ~5,000 cognitively normal controls 

were selected as controls least likely to convert to a case based on age, APOE, and autopsy 

data (old, APOE ɛ2/ɛ2, ɛ2/ɛ3, or ɛ3/ɛ3, and little or no AD neuropathology). In addition, 

~700 unrelated cases were selected from additional multiplex families with >2 close 

relatives affected by AD in each family, but only one case was selected from each family 

(i.e., “enriched-cases”). To enhance discovery of novel AD-related variants, enriched cases 

which could be explained by cosegregation of APOE ɛ4 were excluded.

After performing a series of filtering steps to identify duplicate samples and subjects with 

low genotype call rates, there remained a sample containing 10,441 individuals of European 

ancestry (EA) and 395 Caribbean Hispanics (CH). Subjects for this study included 679 

unrelated AD cases (507 EA and 172 CH) from families containing at least three members 

affected by AD and 5,094 unrelated controls (4,917 EA and 177 CH).Characteristics of the 

5,773 subjects included in this study are shown in Supplementary Table 1. Compared to the 

overall ADSP case-control study design, EA enriched cases are older (age at onset = 83.6 

years) and similar in age to the controls (age at last examination = 86.5 years). The mean age 

at onset of CH enriched cases (75.4 years) is similar to the mean age at last examination 

(73.5 years) of the CH controls.

2.2 Whole Exome Sequencing and Quality Control

Details of library preparation, sequencing protocols, and variant calling pipelines are 

described in Supplementary Methods. After sequencing, 100 bp paired-end reads were 

mapped to human reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner 

(BWA) [23]. The ADSP Quality Control (QC) Working Group applied QC protocols to 

autosomal bi-allelic single nucleotide variants (SNVs) and short insertions and deletions 

(indels) to generate a high-quality variant call set. After QC, there remained 1,454,483 

SNVs and 69,931 indels for association analyses.

2.3 Single-variant Association Analyses

In Stage 1, association of AD with each variant having a minor allele count (MAC) ≥10 

(100,338 variants for EA and 64,691 for CH; Figure 1 and Supplementary Table 2) was 

tested in each population using score tests in seqMeta (https://github.com/DavisBrian/

seqMeta) with three additive logistic regression models. A MAC cutoff of 10 is the 
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minimum number of alleles to achieve statistical significance in this sample. A minimal 

adjustment model (Model 0) included covariates for sequencing center and principal 

components (PCs) of ancestry (the first 10 PCs for EAs and the first 3 PCs for CHs) in order 

to identify variants whose effects on AD risk are confounded by age and sex. This model 

was previously shown to increase detection of associations in this sample in which the mean 

age is substantially different between cases and controls [24]. A second model (Model 1) 

also included terms for age and sex, and a third model (Model 2) included all covariates 

from model 2 plus terms for the number of APOE ɛ4 and ɛ2 alleles. Results from analyses 

of 46,425 variants that were successfully called and passed criteria for single-variant 

analysis in the EA and CH data sets were combined using an inverse variance–weighted 

meta-analysis approach implemented in seqMeta after applying genomic control. A 

Bonferroni correction was applied to define study-wide significance (SWS) in each group 

(EA: p< 4.98×10−7, CH: p< 7.73×10−7, and meta p< 1.08×10−6; Supplementary Table 2).

It is well-known that the standard maximum likelihood estimation of the logistic model can 

suffer from small-sample bias [25]. We applied a penalized likelihood method (i.e., the Firth 

logistic regression test [25–27]) to evaluate association of the odds ratio (OR) and 

confidence intervals for all top single variants using Heinze’s “logistf” package in R (http://

cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/ fllogistf/).

2.4 Gene-based Association Analysis

In an attempt to improve power by removing non-functional variants, we selected variants 

on the basis of annotated function using the Ensembl Variant Effect Predictor (VEP) [28] 

and SnpEff [29] software as follows: a) HIGH IMPACT: variants classified as splice 

acceptor, splice donor, stop gained, frameshift, stop lost, start lost, or transcript 

amplification; b) HIGH or MODERATE IMPACT: included the categories above plus 

variants annotated as in-frame insertion, in-frame deletion, missense variant, or protein 

altering. Association was tested for genes with ≥ 2 variants and a cumulative MAC (cMAC) 

≥ 10 after excluding variants with a minor allele frequency (MAF) >0.05 using the same 

three models tested in the individual variant analyses and the SKAT-O program in seqMeta 

[30]. Separate analyses were performed for high impact variants only (2,298 genes in EAs 

and 314 genes in CHs) and for high and moderate impact variants (16,026 genes in EAs and 

11,743 genes in CHs). Analyses of the combined populations included 1,941 genes with 

high-impact variants and 14,960 genes with high/moderate impact variants. The ethnic-

specific gene-based results were combined by meta-analysis of Z-scores weighted by the 

number of subjects using seqMeta, assuming the same direction of effect on a gene in both 

populations. Significance thresholds for each analysis were determined based on the number 

of genes tested (Supplementary Table 3).

2.5 Stage 2 Analyses in GWAS datasets

We attempted to confirm the top-ranked discovery stage results from single variant analysis 

(p<1.0×10−5) and gene-based tests (p<1.0×10−4) obtained from the best-model (i.e. the 

smallest P-value among the three models tested for each individual variant or gene) using 

ADGC GWAS datasets in which genotypes for ~39M variants as rare as MAF=0.0004 were 

imputed with the Haplotype Reference Consortium (HRC) r1.1 reference panel [31] using 
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MiniMac3 (see Supplementary Methods for additional details of imputation procedures). In 

order to be consistent with enriched cases design of the discovery analyses, we evaluated the 

two ADGC family-based cohorts, MIRAGE (449 AD cases and 704 controls) and NIA-

LOAD (1,568 cases and 1,457 controls), after excluding subjects who were included in the 

ADSP WES dataset (Table 1). Models 1 and 2 only were evaluated in each data set using 

imputed allele dosages for each variant, generalized estimating equations (GEE) 

implemented in geepack R package for single variant tests, and ‘F-SKAT’ [32] for gene-

based tests to account for the family structure. Model 0 was not evaluated in the Stage 2 

datasets because these samples did not have unique ascertainment schemes for AD cases and 

controls on the basis of age and sex. Results from the Stage 2 datasets were combined using 

a fixed-effects inverse variance-weighted method in METAL [33] applied to single variant 

results and the sample-size weighted Z-score method applied to gene-based results. 

Successful replication was determined using a nominal significance threshold (p<0.05) and, 

for single variants, if the effect direction was the same in the Stage 1 and Stage 2 datasets. 

Results from Stages 1 and 2 were combined using the same meta-analysis approach.Results 

for Models 0 and 1 in the Stage 1 dataset were each meta-analyzed with those obtained from 

Model 1 in the Stage 2 datasets.

2.6 Stage 2 Analyses in the ADSP Family-based WGS Dataset

We further examined the top-ranked discovery stage results (52 individual variants and eight 

genes) in the ADSP WGS family-based dataset [21, 34]. This dataset includes 197 

individuals sequenced in 42 EA families and 501 individuals in 115 CH families. 

Association of individual variants was evaluated by inspecting their segregation within 

families. Gene-based tests were conducted separately for EA and CH families using F- 

SKAT.

3. Results

There was little evidence for genomic inflation in single variant based exome-wide results in 

the EA (λ=0.92), CH (λ=1.05), or combined populations (λ=1.07; Supplementary Fig. 1).

3.1 .Single-variant Results in EAs

In Model 0, rare variants in TREM2 (p=4.56×10−12), NPC1 (p=5.78×10−9), CASP7 
(p=2.44×10−10) and KCNK13 (p=1.55×10−7) were significantly associated with AD (Table 

2, Supplementary Fig. 2). After adjusting for age and sex (Model 1), the evidence for 

association with all four genes was reduced but the TREM2 and NPC1 variants were still 

significant (P<5.0×10−7). Additional adjustment for APOE genotype (Model 2) further 

diminished associations with all genes but NPC1 (p<9.41×10−5; Supplementary Table 4). 

Variants in HOXB-AS1/HOXB2 (p=7.63×10−8), HTR3A (p=1.28×10−7), 
ZNF333(p=1.28×10−7) and STAB1 (p=3.58×10−7) surpassed the SWS threshold for Model 

1, and the association with the HOXB-AS1/HOXB2 variant was also significant in Model 2 

(p=1.30×10−7). For Model 2, SWS associations were identified with rare variants in six 

additional novel gene regions including SCN4A (p=6.30×10-14), MUC17 (p=1.63×10−9), 
AKNAD1 (two variants in complete LD, p=2.71×10−8 for both), KANSL3 (p=6.40×10−8), 
TMEM87A (p=2.79×10−7) and OTOG (p=4.16×10−7). Suggestive evidence for association 
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(p<5.0×10−6) was obtained for variants in seven additional genes (Supplementary Table 4). 

In addition to the previously known TREM2 R47H variant [8–10], 52 variants including two 

indels from 50 novel loci met criteria for follow up in the Stage 2 datasets. Analyses of these 

variants yielded nominally significant (P<0.05) results, however only the CASP7 variant 

showed the same effect direction, and this association was slightly more significant 

(p=1.92×10−10) in the combined Stage 1+2 sample (Table 2, Supplementary Table 5). This 

CASP7 variant is a previously identified missense mutation (rs116437863) that results in an 

amino acid substitution of glycine for arginine and is predicted to be deleterious and 

probably damaging by SIFT [35] (score =0) and PolyPhen [36] (score = 0.99).

3.2 .Single-variant results in Caribbean Hispanics

No variants reached SWS (p<7.73×10−7) in the CH group. However, notable novel 

association signals were observed with a SNV in LDB3 (p=5.11 ×10−6), a previously known 

6 bp frameshift deletion (rs782084513) in ORAI1 (p=5.34×10−5), and a 3 bp deletion in 

KLHL40 (p=7.98×10−5). The strength of these associations was similar in all three models 

(Supplementary Table 6) indicating they are independent of age, sex and APOE genotype. 

The LDB3 and ORAI1 variants were also observed in EAs but were not associated with AD 

risk (p>0.25). Conversely, none of the top-ranked rare variants in EAs had a MAC≥10 in the 

CH group, except for the variants in ZNF333 (MAC=26) and SCN4A (MAC=19) which 

were not associated with AD risk in the CH dataset (p>0.20) (Supplementary Table 7). 

However, a rare variant SLAIN1 showed mild evidence of association in both EA 

(p=0.00015) and CH (p=0.0023) groups, and the Model 0 result from the two groups 

combined approached SWS (meta p=4.68×10−6; Supplementary Table 8).

3.3 .Gene-based association results

In analyses focused on high-impact variants, associations with six novel loci were SWS 

(p<2.18×10−5) including JMJD4, C1orf173, ANXA5, AARD, ASCC1, and ASB13 (Table 

3). Results for two additional novel genes (DTYMK and IGHJ6) were SWS (p<3.12×10−6) 

in analyses that included high and moderate-impact variants. Among these findings, only 

AARD showed evidence for association in the Stage 2 datasets (p=6.16×10−3). However, 

associations were strengthened for C1orf173 (p=1.50×10−5), ANXA5 (p=2.27×10−5) and 

AARD (p=1.01×10−6) in the combined Stage 1+2 dataset. Although none of the gene-based 

tests were SWS in the CH group, analyses of high and moderate impact variants revealed a 

significant association with KLHL40 (p=9.98×10−5 in model 0 and p=1.01×10−4 in models 

1 and 2).

3.4 .Stage 2 results in the ADSP Family-based WGS data

SWS and suggestive associations for 52 individual variants (Supplementary Table 4) and 

eight genes (Table 3) were further examined in the ADSP WGS family-based dataset. Low-

frequency missense variants in AIM1L (rs80177817, MAF=0.02, Discovery p=6.14×10−7) 

were observed and segregated nearly perfectly with disease in two EA families and one CH 

family. A previously identified rare frameshift mutation in DHX37 (rs779974893, 

MAF=0.001, Stage 1 p=7.68×10−6), and the known AD-associated rare missense mutation 

in TREM2 (R47H, MAF=0.003) each occurred and segregated with disease in one EA 

family (Supplementary Table 9). A rare missense variant in ENGASE (rs11871357, 
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MAF=0.001, Stage 1 p=7.47×10−6) and a rare synonymous variant in ZNF333 (rs79724046, 

MAF=0.003, Stage 1 p=1.28×10−7) each occurred and were observed predominantly among 

affected members with disease in three CH families. A rare variant in KANSL3 
(rs34406082, Stage 1 p=6.40×10−8) perfectly co- segregated with disease in two CH 

families. Low-frequency variants in SCN4A (rs73992419, Stage 1 p=6.30×10−14) and 

PTGIS (rs61322884, Stage 1 p=4.55×10−6) each showed a high degree of co-segregation 

with disease in two CH families. None of the gene-based tests in EA or CH families were 

nominally significant (P>0.20; Supplementary Table 10), noting that none of the rare 

variants that primarily accounted for the gene associations in the Stage 1 sample were 

observed in the WGS families (Supplementary Table 11).

3.5 .Findings for previously reported AD-associated rare variants

Of 15 rare variants previously reported to be associated with AD, two non-exonic ABCA7 
variants not included in the WES capture. Three of the tested seven variants (i.e., those with 

MAC ≥ 10) were significantly associated with AD after correcting for the number of tests 

(P< 0.007) in a model adjusting for age, sex and APOE dosage: PLD3- V232M, ABI3-

S209F, and SORL1-A528T (Supplementary Table 12).

4. Discussion

We identified novel associations for AD with a single rare variant in CASP7 and gene- based 

tests of aggregated rare variants in C1orf173, ANXA5, and AARD in 5,094 controls and a 

subset of 679 unrelated familial AD cases from the ADSP. These findings were study-wide 

significant and improved when combined with results obtained from HRC-imputed data 

from 2,161 AD cases and 2,017 controls in two family-based ADGC GWAS datasets. Study-

wide significant findings at the variant or gene level were observed for several other loci 

(NPC1, KCNK13, HOXB2, HTR3A, ZNF333, STAB1, SCN4A, MUC17, AKNAD1, 
KANSL3, TMEM87A, OTOG, DTYMK, and IGHJ6), but these findings were not bolstered 

by the Stage 2 datasets. A previous study by the ADSP of the entire WES dataset including 

5,740 AD cases reported associations with one rare variant in AC099552.4 and nine high-

impact aggregated variants in ZNF655 [35]. The greatly improved detection of associations 

with rare variants in this smaller sample of AD cases is likely due to the enriched case 

design. For example, the result for the established rare TREM2 R47H variant 

(p=4.56×10−12) is virtually identical to the result for this variant in the prior study [35] 

which is consistent with the observation of the R47H variant only among enriched AD cases 

in the entire dataset. None of the other top association findings in this study were remarkable 

in the analysis of the enlarged ADSP sample including cases that were not ascertained on the 

basis of family history of AD; the strongest signals were observed for KCNK13 (P=0.0063) 

and HOXB2 (P=0.0019) (Supplementary Table 13).

CASP7 encodes a member of the cysteine-aspartic acid protease (caspase) family. Sequential 

activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspase-7 

is a protease involved in apoptosis and inflammation [37]. Activation of caspase apoptotic 

pathways involves apoptosome assembly [38] and multiple recent studies link this process to 

aging and AD neuropathology, including caspase cleavage of amyloid precursor protein 
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[39–41] and tau [40, 42] (Figure 2). Roles for other caspases in AD pathogenesis have been 

described, including caspase-6 in cognitive impairment [43] and tau cleavage [44], caspase-8 

in amyloid processing, synaptic plasticity, learning, memory and control of microglia pro-

inflammatory activation and associated neurotoxicity [45, 46], and caspase-9 activation in 

tau cleavage [47]. Su et al. reported that activated caspase-3 expression correlates with 

Alzheimer pathology [48]. Caspase 3 is processed by caspases 8, 9, and 10, and is the 

predominant caspase involved in the cleavage of amyloid precursor protein, which is 

associated with neuronal death and plaque formation in AD brain [49]. A recent targeted 

sequencing study of genes involved in amyloid metabolism found association of AD with 

two CASP8 rare variants [46]. Our finding of a rare missense variant in CASP7 provides 

additional evidence for the role of caspase apoptotic pathways in AD. Further functional 

studies of CASP7, and the rs116437863 missense variant in particular, are needed to define 

its role in AD pathogenesis and evaluate the potential of caspase 7 inhibition as an AD 

treatment strategy.

The association with a rare 3 bp in-frame deletion (rs550307753) in TMEM87A reached the 

study-wide significance in EAs (p=2.79×10−7), but this finding could not be replicated 

because this variant was not genotyped or imputed well in the ADGC GWAS datasets.

Gene-based tests considering only highly deleterious SNVs and indels yielded highly 

significant associations with three novel genes (C1orf173, ANXA5, and AARD) which were 

strengthened by meta analysis with results from the Stage 2 datasets. ANXA5 is 

phosphoIipase A2 kinase C inhibitory protein that has been implicated in membrane- related 

events along exocytotic and endocytotic pathways, and in AD [50]. The function of Corf173 
(alias ERICH3 - glutamate rich 3) is largely unknown. AARD has no obvious connection to 

AD or brain. IGHJ6 was another SWS gene-based finding that did not replicate because 

none of the high or moderate impact rare variants each occurring only once or twice in the 

Stage 1 sample were observed in the Stage 2 datasets. This gene encodes one of the 

immunoglobulin heavy gamma variable chains and is a very good candidate given its 

functional similarity to IGHG3, one of the top associations in the entire ADSP WES sample 

(unpublished result) and evidence that antibodies to IgG cross-react with fibril and oligomer 

amyloid-β aggregates [51].

In comparison with the EA cohort, the CH cohort is very small with only 172 enriched cases 

and 177 controls. Nonetheless, we observed suggestive CH-specific association signals with 

three infrequent (2%<MAF<5%) previously known variants including a SNV (rs76615432) 

in LDB3 (p=5.11×10−6), a small deletion causing a frameshift (rs782084513) in ORAI1 
(p=5.34×10−5), and a small deletion in KLHL40 (p=7.98×10−5). Notably, KLHL40 is the 

only gene which yielded top-ranked results from individual variant and gene-based tests, due 

largely to the fact that among nine distinct KLH40 variants that were observed one SWS 

variant (rs34020089) accounted for 21 of the 36 aggregated rare variants (i.e., MAC=36) in 

the gene-based test (Supplementary Table 6, Supplementary Table 14).

Several strengths and limitations of our study warrant discussion. One of the major strengths 

lies in the careful clinical and genetic characterization of all individuals enrolled in the 

ADSP. Another strength of the study is the enriched cases design which strengthened the 
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genetic signals thus allowing detection of associations that would otherwise be missed in a 

larger traditional case-control study.

A major limitation of the study is that the sample sizes are relatively small especially for 

enriched AD cases and the CH group overall. In the Stage 1 EA group, the enriched cases 

represent approximately 10% of the total sample which had sufficient power to detect 

association with moderate effect variants [24]. It has been shown that one can reduce the 

sample size of cases approximately four-fold using cases who have at least two affected 

relatives to have the same power as a sample of cases that are not ascertained on the basis of 

family history [52]. Although our case sample was not large enough to benefit fully from the 

enriched cases design, it was sufficient to detect association with highly penetrant variants 

whose effects would be diluted in a sample not ascertained on the basis of family history 

[52]. This idea is exemplified by the TREM2 R47H variant for which we observed similar p 

values but a higher odds ratio in the current study (p=4.56×10−12, OR=11.82, 

Supplementary Table 13) compared to the finding for this variant in the total group of ADSP 

cases (p=4.8×10−12, OR=3.61) [35].

Another limitation is that coding variants were identified directly in the Stage 1 dataset, but 

imputed in the Stage 2 GWAS datasets with varying degrees of confidence for those with 

MAF<0.5%−1.0%. In order to be consistent with the study design of the discovery stage 

analysis, we included only family-based cohorts from the ADGC HRC-imputed GWAS 

dataset, MIRAGE and NIA-LOAD, in Stage 2 and thus had little power to confirm our 

findings. The relatively small size and unreliable imputation of very rare variants in the 

Stage 2 sample particularly limited our ability to replicate findings from gene-based tests. 

Also, the ADSP WES study design, for which AD cases were selected to have relatively 

early onset and a lower frequency of the APOE ε4 allele and controls were selected to be as 

old as possible with preference given to those having at least one APOE ε4 allele to enrich 

this group for protective variants, introduced confounding between age and AD status which 

reduced power for detecting associations. To overcome this limitation, we included a model 

without age adjustment. These limitations underscore the need to replicate our findings in 

other datasets containing enriched cases. Finally, our primary analysis relied on the score 

test which is prone to increased type-I errors for rare variants in unbalanced samples [53]. 

For this reason, we re- evaluated our top results using the Firth test. This analysis showed 

that the finding for the rare CASP7 variant is attenuated (p=2.21×10−5). Recognizing that 

the Firth test over- corrects for bias in very sparse data [24], the true p-value may be between 

those obtained using the score and Firth tests.

In summary, we identified multiple novel associations for AD with individual and 

aggregated rare variants using an enriched case-control study design. A better understanding 

of the molecular mechanisms underlying these associations will require functional 

experiments and in silico studies of the connections of genetic variants to gene expression 

and processing of AD-related proteins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

1. Systematic review: The authors are members of the Alzheimer’s Disease 

Sequencing Project and therefore are familiar with emerging pertinent 

literature. PubMed searches were conducted to identify other relevant 

publications. References that support the significance of the identified risk 

loci are cited.

2. Interpretation: Although both common and rare variants in >30 late-onset 

Alzheimer’s disease (LOAD) risk genes have been identified from genome-

wide association and whole exome sequencing studies, this report identifies 

associations with rare variants in several novel loci for LOAD using a design 

focused on LOAD cases that are likely genetically enriched because they are 

members of families with multiple affected members. CASP7 provides further 

evidence for the role of caspase apoptotic pathways in AD.

3. Future directions: A better understanding of the molecular mechanisms 

underlying these associations will require functional experiments and in silico 
studies of the connections of genetic variants to gene expression and 

processing of AD-related proteins. Further studies are also needed to 

determine whether CASP7 is a suitable target for development of novel 

therapies.
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Figure 1. 
Analysis design. MAC = minor allele account; cMAC = cumulative minor allele count; EA 

= European ancestry; CH = Caribbean Hispanic; WES = whole exome sequencing; ADSP= 

Alzheimer’s Disease Sequencing Project; ADGC = Alzheimer’s Disease Genetics 

Consortium; GWAS = genome-wide association study.
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Figure 2. 
Processing of the amyloid precursor protein (APP) by α (ADAM10), β (BACE), and γ 
(PSEN1/2) secretases. Alternate processing of APP may result in cleavage of the C31 

fragment by the protease encoded by CASP7 [41]. C31 is one of several C- terminal 

fragments produced from APP and there is some evidence that it is toxic [54].
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Table 1.

Number of AD cases and controls in the Stage 1 WES dataset and Stage 2 ADGC family-based GWAS 

datasets.

 Stage  Cohort Number
controls

Number
AD cases

 Total

 Stage 1
  (ADSP WES)

 EA 4,917 507 5,424

 CH 177 172 349

 Total 5,094 679 5,773

 Stage 2
 (ADGC GWAS)

 MIRAGE (EA) 704 449 1,153

 NIA-LOAD (EA) 1,457 1,568 3,025

 Total 2,161 2,017 4,178

 Combined 7,255 2,696 9,951

AD = Alzheimer’s Disease; EA = European Ancestry; CH = Caribbean Hispanic; WES = whole exome sequencing; ADSP= Alzheimer’s Disease 
Sequencing Project; ADGC = Alzheimer’s Disease Genetics Consortium; GWAS = genome-wide association study; MIRAGE = Multi Institutional 
Research in Alzheimer’s Genetic Epidemiology Study; NIA- LOAD = National Institute on Aging - Late Onset Alzheimer’s Disease Family Study
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