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The biguanides metformin (MET) and to a lesser extent buformin (BUF) have recently been shown to exert anticancer effects. In
particular, MET targets cancer stem cells (CSCs) in a variety of cancer types but these compounds have not been extensively tested
for combination therapy. In this study, we investigated in vitro the anticancer activity of MET and BUF alone or in combination
with 2-deoxy-D-glucose (2-DG) and WZB-117 (WZB), which are a glycolysis and a GLUT-1 inhibitor, respectively, in H460
human lung cancer cells growing under three different culture conditions with varying degrees of stemness: (1) routine culture
conditions (RCCs), (2) floating lung tumorspheres (LTSs) that are enriched for stem-like cancer cells, and (3) adherent cells
under prolonged periods (8-12 days) of serum starvation (PPSS). These cells are highly resistant to conventional anticancer
drugs such as paclitaxel, hydroxyurea, and colchicine and display an increased level of stemness markers. As single agents, MET,
BUF, 2-DG, and WZB-117 potently inhibited the viability of cells growing under RCCs. Both MET and BUF showed a strong
synergistic effect when used in combination with 2-DG. A weak potentiation was observed when used with WZB-117. Under
RCCs, H460 cells were more sensitive to MET and BUF and WZB-117 compared to nontumorigenic Beas-2B cells. While LTSs
were less sensitive to each single drug, both MET and BUF in combination with 2-DG showed a strong synergistic effect and
reduced cell viability to similar levels compared to the parental H460 cells. Adherent cells growing under PPSS were also less
sensitive to each single drug, and MET and BUF showed a strong synergistic effect on cell viability in combination with 2-DG.
Overall, our data demonstrates that the combination of BGs with either 2-DG or WZB-117 has “broad-spectrum” anticancer
activities targeting cells growing under a variety of cell culture conditions with varying degrees of stemness. These properties
may be useful to overcome the chemoresistance due to intratumoral heterogeneity found in lung cancer.

1. Introduction

The biguanides (BGs) metformin (MET) and to a lesser
extent buformin (BUF) have been shown to exert antican-
cer effects. In particular MET alone or in combination with
other anticancer drugs targets cancer stem cells (CSCs) and
cancer stem-like cells (CS-LCs) in a variety of cancer types
(reviewed by [1]) including lung [2], breast [3], bladder [4],
pancreatic cancer [5], and gliomas [6]. At the molecular
level, several mechanisms of action linked to multiple path-
ways critical to tumor growth have been proposed for MET
anticancer effects and have been broadly classified into

indirect or insulin-dependent pathways and direct or
insulin-independent pathways (reviewed by [7]). BGs are
also inhibitors of mitochondrial oxidative phosphorylation
[8]. Due to its toxicity, it is unlikely that MET at mM con-
centrations (1-10mM) can be used in patients since its
therapeutic level is about 0 5 ± 0 4mg/l [9] and plasma
levels > 4-10mg/l (~0.032-0.078mM) have been associated
with lactic acidosis [10, 11]. Indeed, there is a growing con-
sensus that MET alone as monotherapy is unlikely to offer
significant clinical benefit but clinical trials with MET in
combination therapy with other agents and modalities
showed that MET has a broad anticancer activity across a
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spectrum of malignancies [7]. However, low MET concen-
trations (0.03–0.3mM) have been found to inhibit selec-
tively CD44(+)CD117(+) ovarian CSCs through inhibition
of EMT and potentiate the effect of cisplatin [12]. BUF
has not been extensively tested for combination therapy
and at present the effect of this compound on CSCs/CS-LCs
has been only evaluated in breast cancer where it was found
to inhibit the stemness of breast cancer cells in vitro and
in vivo [13].

Intratumoral heterogeneity, including metabolic hetero-
geneity, is another factor in general associated with failure
of anticancer drugs and of special importance for metabolic
inhibitors [14–17]. To be effective, chemotherapeutic regimes
should be able to eliminate not only CSCs/CS-LCs but also
the bulk populations of non-CSCs/CS-LCs and therefore,
intratumoral heterogeneity should be taken in consideration
during preclinical drug screening.

The aim of this study is to evaluate in vitro the anticancer
activity of MET and BUF alone or in combination with
2-deoxy-D-glucose (2-DG) or WZB-117 (WZB) in H460
human lung cancer cells growing under three different cul-
ture conditions with varying degrees of chemosensitivity,

proliferation, and stemness: (1) routine culture conditions
(RCCs), (2) floating lung tumorspheres (LTSs) [18, 19], and
(3) adherent cells under prolonged periods (8-12 days) of
serum starvation (PPSS) [20]. LTSs (anchorage-independent
conditions) and cells growing under PPSS (anchorage-de-
pendent conditions) show increased stemness properties
and are highly resistant to conventional anticancer drugs
such as paclitaxel, hydroxyurea, colchicine, wortmannin,
and LY294002. This strategy partially mimics the intratu-
moral heterogeneity found in tumors in terms of stemness,
proliferation rate, and chemoresistance. 2-Deoxy-D-glucose
(2-DG) is a relatively specific inhibitor of glycolysis by bind-
ing to the enzyme hexokinase that triggers glucose depriva-
tion without altering other nutrients or metabolic pathways
[21]. WZB inhibits the uptake of glucose by inhibiting the
activity of the GLUT-1 transporter [22].

2. Materials and Methods

2.1. Drugs. Metformin (MET), 2-deoxy-D-glucose (2-DG),
and necrostatin 1 (Nec1) were purchased from VWR. Bufor-
min hydrochloride (BUF) was purchased from Santa Cruz
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Figure 1: Metformin (MET) and buformin (BUF) preferentially inhibit viability of human H460 cancer cells compared to human noncancer
Beas-2B cells. Cells growing under RCCs were incubated with the indicated concentrations of drugs for 72 h. Control cells (DMSO) were
incubated with equivalent concentration of DMSO. The viability was measured by the MTT assay.
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Biotechnology (Dallas, TX). z-VAD-FMK (zVAD), chloro-
quine (CQ), and MTT (thiazolyl blue tetrazolium bromide)
were purchased from Sigma-Aldrich (St. Louis, MT). The
stock solution of MET and 2-DG and BUF (100mM) was
prepared in distilled sterile water and stored in aliquots at
-20°C. WZB-117 was purchased from Sigma-Aldrich (St.
Louis, MO), prepared as a stock solution (10mM) in DMSO
and stored in aliquots at -20°C. Stock solutions of Nec1
(10mM) and zVAD (10mM) were done in DMSO and
stored in aliquots at -20°C. CQ was prepared as a stock solu-
tion (10mM) in distilled sterile water, filter sterilized, and
stored in aliquots at -20°C.

2.2. Cell Culture. The human lung epithelial cancer cell line
NCI-H460 (ATCC Cat# HTB-177, RRID:CVCL_0459) and
the normal human bronchial epithelial Beas-2B cell line
(ATCC Cat# CRL-9609, RRID:CVCL_0168) were obtained
from the American Type Culture Collection (Manassas,
VA). H460 cells are considered highly resistant to chemo-
therapy [23]. To standardize culture conditions, all cell lines
were cultured in RPMI 1640 supplemented with 5% FBS,
2mM L-glutamine, 100U/ml penicillin, and 100mg/ml
streptomycin. As previously reported, NCI-H460 [24] and
Beas-2B cells [25] are able to grow well in a RPMI-1640
medium. All cells were cultured in a 5% CO2 environment
at 37°C.

2.3. Short-Term Viability Assay for Adherent Cells. Cells
(~2,000 cells per well) were plated in 96-well cell-culture
microplates (Costar, USA) and incubated overnight in a cell
culture medium to allow them to adhere. Cells were then
exposed to the appropriate concentration of drug or vehicle
for 72 hours. Cell viability was evaluated by the MTT assay.
The absorbance of solubilized formazan was read at 570nm
using an ELISA reader (Bio-TEK, Synergy-1). In all cases,
the highest concentration of DMSO was used in the control
and this concentration was maintained at ~0.25% (v/v). This
DMSO concentration did not show any significant antiprolif-
erative effect on the cell line in a short-term assay.

2.4. Colony-Forming Assay. Colony-forming assay was per-
formed as previously described [26, 27]. Briefly, 200 cells/well
were plated in 6-well plates and allowed to adhere overnight.
Cells were then treated with drugs at the indicated concentra-
tion or with vehicle alone for 72h in complete media (CM:
DMEM containing 5% FBS). After drug exposure, cells were
incubated with complete media for 9 days (media were chan-
ged every 72 h). Then, cells were fixed with 3.7% formalde-
hyde for 60min, stained with 0.01% crystal violet, and
photographed. Colonies were counted using ImageJ software
(ImageJ 1.49 v, http://imagej.nih.gov/ij/).

2.5. Generation of Lung Tumorspheres (LTs) and
Determination of Tumorsphere Viability. A detailed protocol
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Figure 2: Metformin (MET) and buformin (BUF) in combination with 2-DG have a synergistic effect on cell viability of H460 lung
cancer cells. Cells growing under RCCs were incubated with the indicated concentrations of drugs for 72 h. Control cells (DMSO)
were incubated with equivalent concentration of DMSO. The viability was measured by the MTT assay. ∗ indicates P < 0 001 and
P < 0 05, respectively (ANOVA).
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for the generation of floating lung tumorspheres (LTs) grown
in the absence of any external mitogenic stimulation and the
determination of tumorsphere viability by the CCK assay can
be found in [18]. Briefly, H460 cells grown in CM (70-80%
confluency) were cultured overnight in serum-free media
(SFM: same as CM but without FBS). Then, cells were trypsi-
nized and incubated in SFM for at least 14 days in poly-
HEMA-coated plates to prevent attachment. For mainte-
nance of LTs, the SFM was replaced every 3-4 days. LTs
grown in SFM for 14-21 days were used for subsequent
experiments. The viability of floating LT cells growing in
poly-HEMA plates was measured by the CCK assay (Dojindo
Laboratories) as follows: FTs were collected in 15ml Falcon
tubes, centrifuged at 700 rpm × 3 min and resuspended in
fresh SFM. In order to plate the same number of cells, this cell
suspension was split into 1ml aliquots. Vehicle or drugs were
added to each aliquot, and then, 150μl cell suspension was
loaded into each microwell (in a 96-well plate) and incubated
for 72h. After incubation, 15μl of the WST-8 solution was
added to each microwell, incubated for 60-120min and the
absorbance was read at 450nm using an ELISA reader
(Bio-TEK, Synergy-1).

2.6. Western Blotting. Preparation of cell lysates and Western
blotting was performed as described previously [28].
Antibodies for TFAM (transcription factor A, mitochondrial;

aka TCF6; Cell Signaling Technology Cat# 8076S RRID:AB_
10949110), SOD2 (manganese superoxide dismutase (Mn
SOD, Cell Signaling Technology Cat# 13141, RRID:AB_
2636921)), CDK2 (Cell Signaling Technology Cat# 2546S;
RRID:AB_2276129), cyclin E (Cell Signaling Technology
Cat # 20808S), AMPKα (Cell Signaling Technology Cat#
5831S, RRID:AB_10622186), AMPKα (Thr172 (Cell Signal-
ing Technology Cat# 2535S, RRID:AB_331250)), and GAD
PH (Santa Cruz Biotechnology Cat# sc-25778, RRID:AB_
10167668) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Peroxidase-conjugated secondary anti-
body (Cell Signaling Technology Cat# 7074 RRID:AB_209
9233) was purchased from Cell Signaling (Danvers, MA,
USA). The immune complexes were detected by chemilumi-
nescence and quantified using analyst/PC densitometry soft-
ware (Bio-Rad Laboratories, Hercules, CA).

2.7. Flow Cytometry. Flow cytometry experiments were done
as previously described [29]. Briefly, cells grown in 100mm
Petri dishes were treated with drugs or vehicle for 24 hours
and collected by trypsinization, washed twice with PBS, and
fixed overnight in 70% ethanol at 4°C. After two washes with
PBS, cells were treated with DNAse-free RNAse (100μg/ml)
and stained with propidium iodide (50μg/ml). Cell cycle
analysis was performed using the ACEA NovoCyte 2060
instrument (ACEA Biosciences, San Diego, CA) and Novo
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Figure 3: Metformin and buformin in combination with WZB-117 have a synergistic effect on cell viability of H460 lung cancer cells. Cells
growing under RCCs were incubated with the indicated concentrations of drugs for 72 h. Control cells (DMSO) were incubated with
equivalent concentration of DMSO. The viability was measured by the MTT assay. ∗ and ∗∗ indicate P < 0 001 and P < 0 05, respectively
(ANOVA).
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Express (version 1.0.2) software. The cell cycle distribution is
shown as the percentage of cells containing G0/G1, S, and
G2/M DNA as identified by propidium iodide staining.

2.8. Statistical Analysis. The IC50 (drug concentration inhibit-
ing cell growth by 50%)was determined by interpolation from
the dose-response curves using a sigmoidal logistic 3 parame-
ter equation. Each point represents the mean ± standard
deviation (SD) of sextuplicate wells (see Figures 1–7 for
details). Curve fitting and all pairwise multiple comparison
procedures (analysis of variance (ANOVA) and Student–
Newman–Keuls method) and Student’s t-test have been done
using SigmaPlot (version 11.0) software.

3. Results

3.1. Biguanides in Combination with 2-Deoxy-D-glucose Has
Synergistic Effect on the Viability of Lung Cancer Cells. We
first characterized the inhibitory effect of MET, BUF, 2-DG,

and WZB-117 as single agents on the viability of Beas-2B
and H460 cells growing as monolayers under routine culture
conditions. While MET, BUF, and WZB-117 were more
effective against H460 cancer cells compared to Beas-2B cells,
2-DG showed similar potency against both Beas-2B and
H460 cells (Figure 1). We next evaluated the effect of MET
or BUF in combination with 2-DG or WZB-117. Both MET
and BUF in combination with 2-DG showed a synergistic
effect and showed similar potency toward H460 and to
Beas-2B cells (Figure 2). When MET and BUF were used in
combination with WZB-117, the synergistic effect was mini-
mum but more efficient toward H460 cells compared to
Beas-2B (Figure 3).

3.2. Biguanides Alone or in Combination with 2-DG or
WZB-117 Inhibit the Clonogenicity of H460 Cells. The effect
of BGs alone or in combination with 2DG or WZB on the
ability of H460 cells to form colonies was evaluated by the
colony-forming assay. As single agents, both MET and BUF
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Figure 4: Metformin and buformin alone or in combination with 2-DG decrease clonogenicity of H460 cells. Cells were incubated with the
indicated concentration of drugs for 72 hours followed by incubation in drug-free media for ~9 days. Data (mean ± SD) is representative of
two independent experiments performed in triplicates.
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were able to reduce the number of colonies compared to con-
trols. The concentration required to decrease the number of
colonies was much lower compared to the IC50 measured
by viability assays. For instance, while the IC50 for BUF using
the MTT assay was ~1mM, only 0.1mM was able to reduce
the number of colonies to approximately 10-20%. In agree-
ment with the viability assays (Figures 2 and 3) when MET
or BUF were used in combination with either 2-DG or
WZB-117, a synergistic effect was observed (Figure 4).

3.3. Biguanides in Combination with 2-Deoxy-D-glucose Has
Synergistic Effect on the Viability of Lung Cells with
Increased Chemoresistance. The effects of BGs alone or in
combination with 2DG or WZB on cells with increased
stemness were evaluated in LTs that are enriched for

CSCs/CS-LCs. As single agents, both BGs and 2DG and
WZB significantly inhibited the viability of LTs. However,
BUF showed a more potent effect compared to MET. MET
or BUF in combination with 2DG showed a strong potentia-
tion effect on cell viability of LTs. This effect was minor when
MET or BUF was used in combination with WZB (Figure 5).
We also evaluated the ability of these drugs on cells growing
under PPSS that showed a similar trend (Figure 6) confirm-
ing that BGs in combination with 2DG can effectively target
cells with increased chemoresistance.

3.4. Biguanides and WZB-117 Do Not Induce Mitochondrial
Dysfunction or Cell Death but Induce Cell Cycle Arrest. In
order to investigate the mechanism involved in the effect
of BGs and WZB-117 on cell viability, cells grown in
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Figure 5: Metformin and buformin in combination with 2-DG orWZB-117 inhibit the viability of H460 lung cancer cells growing as floating
tumorspheres (anchorage-independent). The bars indicated the mean OD of sphere-forming H460 cells after treatments with different
concentrations of drugs measured by the CCK assay. ∗ indicates P < 0 001 and P < 0 05, respectively (ANOVA).

6 Stem Cells International



100mm Petri dishes were incubated with MET (2.5mM),
BUF (0.5mM), WZB (25μM), MET (2.5mM)+WZB
(25μM), or BUF (0.5mM)+WZB(25μM) for 24 h and pro-
tein lysates were collected for Western blot analysis. Control
cells were treated with equivalent concentrations of vehicle
(DMSO+H2O). Figure 7(a) shows that each drug alone or
in combination did not significantly alter the expression of
mitochondrial function markers (SOD and TFAM) or key
apoptosis or autophagy markers (data not shown). However,
BUF alone or in combination with WZB decreased the
expression of pAMPKα, a key regulator of fatty acid and
glucose metabolism. This effect was clearly observed after
48 h treatment (Figure 7(c)). In addition, pharmacological
inhibition of apoptosis, autophagy, or necroptosis with
zVAD, CQ, or Nec1 at concentrations that effectively inhibit
these pathways in H460 cells [30] did not have any effect on
the inhibitory effect of WZB±BGs. Cell cycle analysis by
flow cytometry showed that exposure to WZB+BUF for
48 h increased the percentage of cells in the S phase
(Figures 8(a) and 8(b)). This result was supported by West-
ern blot analysis that showed increased expression of the
S-phase markers CDK2 and cyclin E (Figure 8(c)).

4. Discussion

The effects of BGs such as MET and to a lesser extent BUF in
combination with 2-DG have been evaluated in few cancer
types [31–34]. At present, there is no information in lung
cancers and there are no studies of the use of these BGs in
combination with WZB. In this study, we investigated the
effects of MET and BUF alone or in combination with
2-DG or WZB-117 in the H460 lung cancer cell line and in
the Beas-2B noncancerous lung cell line.

Consistent with others, we found that MET (IC50~
2.9mM) or BUF (IC50~1mM) alone at mM concentrations
has an inhibitory effect on the viability of H460 cells. H460
cancer cells seem to be less sensitive to BUF alone compared
to other cancers. For comparison, Kilgore et al. recently
reported that MET and BUF inhibited the viability of two
endometrial cancer cells (ECC-1 and Ishikawa cell lines) with
IC50 of 1.6 and 1.4mM for MET and IC50 of 0.15 and
0.08mM for BUF. The BUF concentration necessary to
inhibit the viability of H460 cells was also in the mM range
(IC50~1mM).

Both BGs showed less toxicity toward noncancer Beas-2B
cells. In Beas-2B cells, the IC50 for MET and BUF were
>10mM and ~2.5mM, respectively (Figure 1). While 2-DG
was found to have a similar effect on cancer (H460) and non-
cancer cells (Beas-2B), WZB showed stronger effects on
Beas-2B cells. MET in combination with 2-DG showed sim-
ilar toxicity to both cell types. This is likely because Beas-2B
cells were slightly more sensitive to 2-DG compared to
H460 cells.

BUF inhibited the clonogenicity of H460 cells at a very
low concentration: only 0.1mM was required to inhibit the
number of colonies by approximately 50%. This result indi-
cates that in addition to its ability to decrease cell viability,
BUF is even more potent in inhibiting the ability of H460
cells to produce progeny. This effect was also potentiated
when used in combination with 2-DG or WZB (Figure 4).
We also analyzed the effect of MET or BUF alone or in com-
bination with 2-DG or WZB in two models of multidrug-
resistant cells: (i) cells growing under PPSS (anchorage-de-
pendent) and (ii) lung tumorspheres (anchorage-indepen-
dent) that are enriched for CSCs/CS-LCs. At present, there
are few reports on the effect of BUF alone on cancer cells
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and there is no information on the effect of BUF on lung
CSCs/CS-LCs. We are the first to report a strong effect of
BUF alone on the cell viability of lung tumorspheres. In both
multidrug-resistant experimental models, MET and BUF in
combination with 2-DG or WZB significantly decreased cell
viability. At the molecular level, we examined the effect of
MET and BUF in combination with WZB. Since BGs are
known inhibitors of mitochondrial oxidative phosphoryla-
tion and they have been shown to increase reactive oxygen
species (ROS), we analyzed mitochondrial function by
assessing the expression of TFAM and SOD2. TFAM plays
an essential role in ATP production by maintaining mtDNA
integrity [35]. SOD2 is a mitochondrial detoxification
enzyme that catalyzes the conversion of superoxide to hydro-
gen peroxide and a key component antioxidant defense from
ROS [36]. Neither MET nor BUF alone or in combination
significantly altered the expression of TFAM or SOD2
(Figure 7) indicating that these drugs do not significantly
impair mitochondrial function. On the other hand, none of
the treatments altered the expression of key apoptotic
markers such as PARP or caspase 9 (data not shown). We

observed that BUF alone or in combination with WZB
induced an important downregulation of the expression of
phosphorylated AMPKα (p-AMPKα Thr172). Such effect
was not observed in cells treated with MET 2.5mM
(Figure 7(c)). Guo et al. showed that in H460 cells, MET, only
at concentrations higher than 4-6mM, significantly
increased the expression of pAMPK [37] that is in agreement
with our observation. It is also important to notice that the
effect of MET on pAMPKα may be time dependent since it
was reported in the AGS gastric cancer cell line that MET
(10mM) induced a transient increase of pAMPKα peaking
at 8 h and returning to basal levels after 24 h [38]. Flow
cytometry and Western blot analysis of the S-phase protein
markers CDK2 and cyclin E (Figure 8) demonstrated that
WZB+BUF arrested cells at the S-phase. Regarding MET,
we observed a small increase of the G1 fraction at the concen-
tration tested (2.5mM). This result is in agreement with Guo
et al. who reported that 5 and 10mM induced a G0-G1 arrest
of approximately 5% and 15%, respectively [37]. Microscopic
observation showed extensive cell death after prolonged
exposure (>7 days) to MET, BUF, MET+WZB, or BUF
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mitochondrial function nor induce cell death. (a) Cells were treated with the indicated concentrations of drugs for 48 h, and the
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+WZB (data not shown). These results suggest that these
drugs at relatively low concentration exert an early cytostatic
effect followed by late activation of cell death by mechanisms
yet to be identified.

5. Conclusions

In this study, we demonstrated that the BGs MET and BUF
inhibited the viability of human H460 lung cancer with rela-
tively more potency when compared to the human noncan-
cer lung epithelial cell line Beas-2B. BGs in combination
with either 2-DG or WZB-117 showed “broad-spectrum”
anticancer activities targeting cells with varying degrees of
chemoresistance. These results warrant further studies to

evaluate their potential to overcome the inherent chemore-
sistance of lung cancer due to intratumoral heterogeneity.

Data Availability

The data used to support the findings of this study are
included within the article.
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