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Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and
degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to
disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia
overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction
after CCH. Tripchlorolide (TRC) is an herbal compound with potent neuroprotective effects. The potential of TRC to improve
CCH-induced cognitive impairment has not yet been determined. In the current study, we employed behavioral techniques,
electrophysiology, Western blotting, immunofluorescence, and Golgi staining to investigate the effect of TRC on spatial learning
and memory impairment and on synaptic plasticity changes in rats after CCH. Our findings showed that TRC could rescue
CCH-induced spatial learning and memory dysfunction and improve long-term potentiation (LTP) disorders. We also found
that TRC could prevent CCH-induced reductions in N-methyl-D-aspartic acid receptor 2B, synapsin I, and postsynaptic density
protein 95 levels. Moreover, TRC upregulated cAMP-response element binding protein, which is an important transcription
factor for synaptic proteins. TRC also prevented the reduction in dendritic spine density that is caused by CCH. However, sham
rats treated with TRC did not show any improvement in cognition. Because CCH causes disturbances in brain energy
homeostasis, TRC therapy may resolve this instability by correcting a variety of cognitive-related signaling pathways. However,
for the normal brain, TRC treatment led to neither disturbance nor improvement in neural plasticity. Additionally, this
treatment neither impaired nor further improved cognition. In conclusion, we found that TRC can improve spatial learning and
memory, enhance synaptic plasticity, upregulate the expression of some synaptic proteins, and increase the density of dendritic
spines. Our findings suggest that TRC may be beneficial in the treatment of cognitive impairment induced by CCH.

1. Introduction

Chronic cerebral hypoperfusion (CCH) is a critical mecha-
nism in the development of vascular cognitive impairment
and dementia. It is the common underlying pathophysio-
logical mechanism that contributes to cognitive decline
and degenerative processes in dementia and other neurode-
generative diseases [1]. CCH promotes the progression of
vascular cognitive impairment to dementia and accelerates
the development of Alzheimer’s disease (AD). Low cerebral
blood flow (CBF) in CCH changes the homeostasis of

hemodynamics and reduces the availability of oxygen, glu-
cose, and other nutrients in the brain. This leads to distur-
bances in the homeostasis of energy metabolism [2, 3],
which in turn leads to cerebrovascular remodeling, degen-
eration of the neurovascular unit and trophic coupling
[4], energy loss in neurons, and vulnerability to the internal
and external environment.

Previous studies have shown that CCH exacerbates
neurodegeneration via multiple mechanisms, including
the induction of oxidative stress which involves fatty acids,
proteins, DNA, and mitochondria, blood-brain barrier
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disruption, increases in neuronal Ca2+ [5], Aβ accumulation
and aggravation [6], tau hyperphosphorylation, synaptic dys-
function, neuronal loss, white matter lesions, release of neu-
roinflammatory cytokines [7–9], excessive autophagy [10],
and overactivation of microglia in the hippocampus [11, 12].
These events lead to mitochondrial dysfunction via activation
of mitophagy, changes in mitochondrial morphology due to
imbalance in fusion and fission events [10, 13, 14], distur-
bances in lipid metabolism [15], disruption of the integrity
of the white matter and fiber disarrangement of the white mat-
ter [16, 17], alterations in growth factor expression [15], inhi-
bition of neurogenesis [18], and neurotransmitter system
dysfunction [2]. Furthermore, CCH can lead to the downreg-
ulation of synaptic proteins and demyelination and the reduc-
tion of dendritic spines in the hippocampus, which then leads
to a reduction in synaptic transmission and neuroplasticity
[12, 19, 20]. Eventually, these pathophysiological mechanisms
can result in the development of cognitive dysfunction.

Tripchlorolide (TRC), an herbal extract of Tripterygium,
is a small molecule that is modified by chloride and has a
molecular weight of 397. It has potent anti-inflammatory
and immunosuppressive functions. Given that TRC has good
lipophilicity and small molecular weight characteristics, TRC
can easily pass through the blood-brain barrier and play a
role in the brain [21–23]. Treatment with TRC may inhibit
lipopolysaccharide-induced release of inflammatory proteins
in the brain [24]. TRC may also suppress BACE1 activity
which may attenuate β-amyloid generation [25], as well as
protect neurons from microglia-mediated beta-amyloid
neurotoxicity by attenuating neuroinflammatory responses
[23]. Moreover, TRC has been shown to protect dopaminer-
gic neurons from neurotoxicity induced by 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) in a Parkinson’s
disease (PD) model and prevent the reduction in dopamine
levels in the striatum [26]. This neuroprotective effect is
thought to be due to the anti-inflammatory and antioxidant
properties of TRC [22]. In addition, TRC treatment also ame-
liorated defective spatial learning and memory and increased
the expression of synapse-related proteins in familial AD
(5XFAD) mice [27]. TRC has also been shown to improve
age-associated cognitive deficits, impaired hippocampal
long-term potentiation (LTP), and synapse-related receptor
dysfunction in senescence-accelerated transgenic mice [21].

Given these neuroprotective effects, it is reasonable to
hypothesize that TRC may improve CCH-induced cognitive
impairment, although to date, no relevant investigations
have been conducted. Therefore, in order to determine
whether TRC can improve cognitive impairment induced
by CCH, we examined the effect of TRC on spatial learning
and memory impairment, as well as on changes in synaptic
plasticity in rats exposed to CCH.

2. Materials and Methods

2.1. Antibodies and Chemicals. The mouse monoclonal
antibody (mAb) against total β-actin used in this study
was purchased from Abcam (Cambridge, CB, UK), while
the rabbit polyclonal antibody (pAb) against vesicular
glutamate transporter (vGLUT) used was purchased from

Synaptic Systems (Göttingen, Germany). The rabbit pAb
for N-methyl-D-aspartic acid (NMDA) receptor 2A
(NR2A) used in this study was also obtained from Abcam
(Cambridge, CB, UK). The rabbit pAb for postsynaptic den-
sity protein 95 (PSD95), postsynaptic density protein 93
(PSD93), NMDA receptor 2A (NR2A), NMDA receptor 2B
(NR2B), glutamate receptor 1, and synapsin I, as well as
the mouse mAb against NMDA receptor 1 (NR1), the mouse
mAb against cAMP-response element binding protein
(CREB), the phosphorylated CREB (p-CREB), the goat
anti-rabbit IgG (H+L) secondary antibody Alexa Fluor 488
conjugate, and the goat anti-mouse IgG (H+L) secondary
antibody Alexa Fluor 647 conjugate were all purchased from
Cell Signaling Technology, Inc. (Beverly, MA, USA). The
mouse mAb against glutamate receptor 2 (GluR2) used in
the study was purchased from Millipore Corp. (Billerica,
MA, USA). The goat anti-rabbit and anti-mouse IgG conju-
gated to IRDye™ (800CW) were purchased from LI-COR
Biosciences (Lincoln, NE, USA). The BCA protein assay kit
used in the study was from Pierce Chemical Company
(Rockford, IL, USA).

Tripchlorolide was purchased from Seebio Biotechnology,
Ltd. (Shanghai, China) and dissolved in saline to a concentra-
tion of 0.1μg/ml for use.

2.2. Animals, Chronic Cerebral Hypoperfusion (CCH) Model,
and Drug Treatment. Adult Sprague-Dawley rats (male,
220-240 g) were obtained from Hunan SJA Laboratory
Animal Co., Ltd. and were housed with accessible food and
water ad libitum. Rats were kept on a 12h light/dark cycle
with the light on from 7:00 am to 7:00 pm. The Ethics
Committee of Renmin Hospital of Wuhan University
approved all animal care protocols and experiments.

For anesthesia, rats were intraperitoneally injected with
chloral hydrate (0.4 g/kg). The permanent bilateral common
carotid artery occlusion or two-vessel occlusion (2VO) pro-
cedure was performed as previously described [28]. After a
ventral midline incision, both common carotid arteries were
gently separated from the carotid sheath and vagus nerve
[11] on a 37°C heating pad. The bilateral common carotid
arteries were doubly ligated with a 4-0 silk suture just below
the carotid bifurcation. In control rats, a similar surgery was
performed but the vessel was not ligated. After the surgery
was completed, the rats were kept in a room maintained at
a temperature of 37°C until they recovered. A laser Doppler
system was used to detect the level of blood flow and ensure
that it had been reduced to 70% below normal, which is an
important criterion of the 2VO model. CBF was measured
in the cortices to reflect the perfusion of the whole brain
before and after the 2VO surgery. After the rats were
anesthetized with urethane (1.6 g/kg, i.p.), the skull skin
was cut to expose the skull. The laser Doppler flowmetry
probe was placed directly on the skull, 3.0mm posterior to
the bregma and 3.2mm lateral to the midline, to record
the CBF perfusion level.

On the third day following the 2VO surgery, the rats
were intraperitoneally injected with 1μg TRC/kg every day
for 28 days [21, 26, 27]. The same volume of saline was used
for the sham-treated rats.
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2.3. Morris Water Maze. After 30 days of cerebral hypoperfu-
sion, all rats completed spatial memory training in theMorris
water maze. The experiment was conducted as previously
described [29]. The rats were trained in the water maze to
find a hidden platform. This training is comprised of four tri-
als per day with a 30 s intertrial interval between 2:00 and
8:00 pm for seven consecutive days. Each trial started with
the rat placed in the middle of the outer edge of one quadrant
and facing the wall of the pool and ended when the animal
climbed onto the platform. Rats that could not find the plat-
form in 60 s were guided to the platform. The Morris water
maze video tracking analysis system (Shanghai, China) was
used to record the activity trajectory of the rats. The swim-
ming paths of the rats and latencies of the rats to find the hid-
den platform were recorded [30]. The time the rat spent
before arriving at the platform during the first trial on each
day over a seven-day period was recorded as the latency time.
Upon removal of the platform, which occurred during the
fourth trial on each day over the seven-day period, the num-
ber of times the rats passed through the platform area was
recorded. The latency time and the number of times the rat
crossed the platform area were used to evaluate learning abil-
ity. After one day of rest, the short-term memory retention
test was performed. The platform was either present or
absent, and rats were put into the third quadrant of the maze.
The latency to reach the platform area, the number of times
that the platform area was crossed, and the total time that
the rat spent in the platform quadrant were recorded.

2.4. Novel Object Recognition Test (NOR Test). The NOR test
was performed as previously described [31]. The NOR test,
which is based on the natural tendency to explore a novel
object more than a familiar one [32], was used to evaluate
short-term memory deficits. The rats were placed in a 55
cm × 55 cm × 38 cm open-field box made of black Plexiglas.
On day 1, two objects were symmetrically placed in the
box, and the rats were allowed to habituate to these objects.
They were also allowed to explore and familiarize themselves
with the open-field arena for 20min. On day 2, two novel
objects were placed at diagonal corners in the box, and the
rats were allowed to explore these two similar objects for
5min. On day 3, one of the two familiar objects from day 2
was replaced with a novel object to form a pair of novel and
old objects. To evaluate the memory retention of the familiar
and novel objects, the rats were allowed to explore the two
objects for 5min. The new object recognition experimental
video analysis system (Shanghai, China) was used to record
the time spent exploring each object. The ratio of the time
spent exploring the novel or old object to the total time spent
exploring both objects was calculated. The exploration dis-
crimination index was calculated as the time exploring the
novel object versus the old object over the total time spent
exploring both objects ((time exploring the novel object -
time exploring the old object)/(time exploring the novel
object + time exploring the old object) ∗ 100%) [33, 34].

2.5. Electrophysiology. Synaptic plasticity is the critical phys-
iological basis of learning and memory. Enhancement or
weakening of synaptic plasticity can improve or reduce

learning and memory abilities. LTP is an important form
of synaptic plasticity. Therefore, to investigate the underly-
ing mechanisms of cognitive impairment, we recorded the
field potential of the brain in order to analyze the changes
in LTP. After the spatial memory retention test, rats were
anesthetized with urethane (1.6 g/kg, i.p.). The electrophysi-
ological procedure was performed as previously described
[28]. Electrodes were implanted at the following coordinates:
3.3mm posterior to the bregma and 3.6mm lateral to the
midline for the recording electrode and 6.9mm posterior
to the bregma and 4.0mm lateral to the midline for the stim-
ulating electrode. The ground electrode was connected to the
muscle contralateral to the electrode sites. Recordings of
field excitatory postsynaptic potentials (fEPSPs) were made
from pyramidal neurons of the Cornu Ammonis (CA) 3
region in response to the stimulation of the perforant path
(PP). The data acquisition system was triggered simulta-
neously to record all events. The sampling frequency was
3 kHz for fEPSP recordings. The high frequency stimulation
(HFS) protocol for inducing long-term potentiation (LTP)
consisted of 10 trains of 15 stimuli (200Hz, 0.5mA) with
5 s intervals. This rather weak LTP induction protocol was
chosen to prevent saturation of LTP and to thus allow for
the possibility of detecting improvements or impairments.
The slope of a 10min fEPSP recording prior to the applica-
tion of the HFS was used as the baseline fEPSP slope. LTP
was measured as normalization of the 40min fEPSP slope
recorded after the application of the HFS over baseline
fEPSP slope. And the relative values of post-HFS were fur-
ther analyzed. Data were analyzed with Igor Pro 6.1 (Wave-
Metrics, Lake Oswego, Oregon) software.

2.6. Western Blotting. For Western blotting, rats were decap-
itated and the hippocampi were rapidly removed and
homogenized. The extract was mixed with sample buffer,
heated for 10min and then centrifuged at 12,000 × g for
10min at 25°C. The protein concentration was estimated
using a bicinchoninic acid (BCA) kit. Proteins were sepa-
rated using 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and were subsequently trans-
ferred onto nitrocellulose membranes. The membranes were
blocked with 5% nonfat milk and probed overnight with a
primary antibody at 4°C, incubated with anti-rabbit or
anti-mouse IgG conjugated to IRDye™ (800CW) (1 : 10000)
for 1 h at 4°C, and visualized using the Odyssey Infrared
Imaging System (LI-COR Biosciences, Lincoln, NE, USA).

2.7. Immunofluorescence. Rats were anesthetized with an
overdose of chloral hydrate (1 g/kg) and perfused. Their
brains were then fixed and embedded with paraffin. Brains
were cut into 5μm thick sections and placed on slides. The
sections of rat brains were blocked with 0.3% H2O2 in abso-
lute methanol for 10min, followed by antigen retrieval with
citric acid buffer. Nonspecific sites were blocked with
bovine serum albumin (BSA) for 30min at room tempera-
ture. The sections were then incubated overnight at 4°C
with primary antibodies (1 : 200). After washing with PBS,
the sections were subsequently incubated with Alexa Fluor
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488 conjugated secondary antibody to allow for observation
of neurons under a fluorescence microscope.

2.8. Golgi Staining. For Golgi staining, rats were anesthetized
and perfused through the aorta for 30min continuously with
100ml 0.9% NaCl containing 0.5% NaN2O, 250ml 4%
paraformaldehyde solution, followed by 250ml 4% parafor-
maldehyde solution containing 5% potassium bichromate
and 5% chloral hydrate (Golgi stain). Brains were removed,
cut into small pieces of tissue with volumes of 5mm3, and
postfixed in Golgi stain for three days. After rinsing three
times, the dye solution on the surface of the tissue block
was rinsed off and the blocks were dried using a filter paper.
Subsequently, the blocks were immersed into a 1.5% silver
nitrate solution for another three days. The silver nitrate
solution was changed every 24 hours. Afterwards, the silver
particles on the surface of the tissue block were brushed
off, and the blocks were cut into 50μm thick sections. After
the sections were dehydrated, cleared, and mounted, they
were observed under oil immersion microscopy. Two to
three dendrites from each of the 10 different cells per animal
were analyzed. Spines were counted while manually chang-
ing the focus in order to identify all spines on a particular
dendrite. Spine density was defined as the density of all
spines counted per animal divided by the total length of
the dendrite. It was expressed as the number of spines iden-
tified per μm dendrite. The number of mushroom and filo-
podia spines was counted and divided by the total length
of the dendrite and expressed as the number of spines iden-
tified per 100μm of dendrite. This was used as a measure of
the density of mushroom and filopodia spines.

2.9. Statistics Analysis. Data were expressed as mean ±
standard error of mean (SEM) and analyzed using SPSS 12.0
statistical software (SPSS Inc., Chicago, Illinois, USA). A
repeated measures analysis of variance (ANOVA) was used
to determine the statistical significance of differences in learn-
ing latency among the three groups. A one-way ANOVA
followed by Dunnett’s t-test was used to determine the statis-
tical significance of differences in all other experiments. A p
value of <0.05 was considered statistically significant.

3. Results

3.1. TRC Treatment Rescues Spatial Learning and Memory
Impairment in a Morris Water Maze Test after CCH. To
determine whether TRC can ameliorate cognitive impairment
caused by CCH, rats were exposed to 30 days of chronic cere-
bral hypoperfusion induced by a 2VO surgery, followed by 28
days of TRC treatment (Figure 1), after which their spatial
learning and memory abilities were examined using a Morris
water maze test. The results showed that rats which underwent
2VO surgery had a noticeably longer latency time to reach the
platform from the third to the seventh training day than rats
which underwent sham surgery (p < 0 01) (Figure 2(a)). Rats
which underwent 2VO surgery and TRC treatment (2VO
+TRC group) had a shorter latency time from the third
to the seventh training day than rats that only underwent
2VO surgery (2VO group) (days 3-4, p < 0 05; days 5-7, p
< 0 01) (Figure 2(a)). During the seven-day maze learning
task, the training heatmap showed that the number of times
the 2VO rats crossed the platform area in 60 s was signifi-
cantly less than that of the sham animals (p < 0 01)
(Figure 2(b)), but the rats that underwent 2VO surgery
and TRC treatment crossed the platform area more times
than rats that underwent 2VO only (days 3, 6, and 7, p <
0 01; days 4-5, p < 0 05) (Figure 2(b)). After seven days of
training and one day of rest, the short-term memory test
revealed that rats which underwent 2VO surgery had a sig-
nificantly longer latency time to reach the platform than
sham rats (p < 0 01), whereas rats which underwent 2VO
surgery and TRC treatment took significantly less time to
reach the platform (p < 0 05) (Figure 2(c)). Once the plat-
form was removed, rats which underwent 2VO surgery
spent less time in the platform quadrant than sham rats
(p < 0 01), and rats which underwent 2VO surgery and
TRC treatment spent more time in the platform quadrant
than rats that underwent only 2VO surgery (p < 0 01)
(Figure 2(d)). Furthermore, rats that underwent 2VO sur-
gery crossed the platform area fewer times than sham rats
(p < 0 01), and rats that underwent 2VO surgery and were
subsequently treated with TRC crossed the area more times
than 2VO rats that did not undergo TRC treatment
(p < 0 01) (Figure 2(e)).
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Figure 1: A schematic diagram of the experimental design timeline. The bilateral common carotid arteries of rats were doubly ligated just
below the carotid bifurcation, which resulted in cerebral hypoperfusion. On the third day, the rats were injected intraperitoneally with
1μg tripchlorolide/kg every day for 28 days. Spatial learning and memory were then tested using the Morris water maze and novel object
recognition tests. Electrophysiological tests were then performed to record the fEPSP and evaluate LTP. Finally, biochemistry,
immunofluorescence, and Golgi staining were performed to detect the expression of synaptic proteins and their distribution and to
evaluate the dendritic spine density.
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3.2. TRC Treatment after CCH Rescues Spatial Learning and
Memory Impairment in the Novel Object Recognition Test.
In order to further understand the effect of TRC on the spa-
tial learning and memory abilities of rats, the novel object
recognition (NOR) test was used. The results showed that
rats that underwent 2VO surgery spent significantly more
time with the old object than the sham-treated rats
(p < 0 01), but rats that underwent 2VO surgery and TRC
treatment spent significantly less time with the old object
than rats that underwent 2VO surgery only (p < 0 05)
(Figure 3(a)). Accordingly, the rats that underwent 2VO sur-
gery spent much less time with the new object than the sham
rats (p < 0 01), but rats that underwent 2VO surgery and
TRC treatment spent less time with the new object than rats
that underwent 2VO only (p < 0 05) (Figure 3(b)). The final
calculations revealed that rats that underwent 2VO surgery
had a markedly low recognition discrimination index when

compared to sham-treated rats (p < 0 01), but rats that
underwent 2VO surgery and TRC treatment had a signifi-
cantly higher recognition discrimination index than rats that
underwent 2VO surgery only (p < 0 01) (Figure 3(c)).

3.3. TRC Treatment Improves the LTP Deficit after CCH.
Long-term potentiation (LTP) reflects synaptic plasticity
which was the physiological basis for hippocampus-
dependent spatial learning and memory [35] and is indis-
pensable for hippocampus-dependent spatial learning and
the formation and retrieval of hippocampus-dependent
spatial memory [36]. To investigate the underlying electro-
physiological mechanisms of the effect of TRC on cognitive
impairment induced by CCH, we performed in vivo electro-
physiology. After high frequency stimulation (HFS), we
recorded the field excitatory postsynaptic potentials
(fEPSPs). The fEPSP amplitudes were remarkably lower in
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Figure 2: TRC treatment rescues CCH-induced spatial learning and memory impairment in the Morris water maze test. After a 30-day
cerebral hypoperfusion, the rats were trained to learn and remember the location of the platform in the Morris water maze. The latency
time to find the platform (a) and the number of times the platform area was crossed (b) from the first to the seventh day were recorded to
evaluate the learning ability of rats. After one day of rest, the rats were retested and the latency time to find the platform (c), the time
spent in the platform quadrant (d), and the number of times the platform area was crossed were recorded to evaluate short-term memory
(d). Con: sham group (n = 12); 2VO: the group with bilateral common carotid artery ligation (n = 10); 2VO+TRC: the 2VO group treated
with 1μg tripchlorolide/kg (n = 12); TRC: the sham group treated with 1 μg tripchlorolide/kg (n = 11). Data are expressed as mean ± SEM.
∗p < 0 05, ∗∗p < 0 01 compared with the Con group, #p < 0 05, ##p < 0 01 compared with the 2VO group.
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the 2VO group ((145 38 ± 9 29) %) than in the sham group
((206 72 ± 12 45) %) (p < 0 01), but the fEPSP amplitudes
were significantly higher in the 2VO+TRC group
((180 75 ± 11 08) %) than in the 2VO group (p < 0 05)
(Figures 4(a) and 4(b)).

3.4. TRC Treatment Prevents CCH-Induced Downregulation
of Synaptic Proteins. Synaptic proteins are important com-
ponents of synaptic structure formation. They are involved
in vesicle synthesis, transport, and release and normal syn-
aptic function. Synaptic protein expression is critical for
synaptic plasticity and the maintenance of normal learning
and memory [37]. To explore the potential molecular
mechanism of CCH-induced learning and memory impair-
ment, we used Western blotting to examine the expression
of synapse-related molecules. Our data showed that NR1,
NR2A, PSD93, GluR1, and GluR2 in the 2VO group did
not change significantly compared to those in the sham
group (p > 0 05) (Figures 5(a) and 5(b)). The NR2B, synap-
sin I, and PSD95 levels in the 2VO group were significantly
lower than those in the sham group (p < 0 01), but the
expression of these same proteins in the 2VO+TRC group
was significantly higher than in the 2VO group (p < 0 01)
(Figures 5(a) and 5(b)).

3.5. TRC Treatment Prevents CCH-Induced Downregulation
of Phosphorylated CREB. CREB is a transcription factor that
controls the expression of many synaptic proteins. It plays a
key role in neuronal excitability and controls the hippocam-
pus and cortex plasticity circuits [38, 39]. CREB is very
important for memory formation [40]. Moreover, CREB
downregulation leads to cognitive decline [41, 42]. To clarify
whether CREB plays a role in the spatial cognitive impair-
ment induced by CCH, we examined CREB expression

using Western blotting. We did not find any change in the
CREB level. Because phosphorylated CREB (p-CREB) is
the active form of CREB, we further evaluated the p-CREB
level. The data showed that p-CREB levels in rats which
underwent 2VO surgery were significantly lower than those
in sham-treated rats (p < 0 01), but rats that underwent
2VO surgery and TRC treatment had much higher
p-CREB levels than rats that underwent 2VO surgery only
(p < 0 01) (Figures 6(a) and 6(b)). To further understand
the distribution of p-CREB in the subregions of the hippo-
campus, we performed immunofluorescence staining of
p-CREB in brain slices and found that rats that underwent
2VO surgery had a significantly lower mean optical inten-
sity of p-CREB staining in the CA3 and CA1 regions, den-
tate gyrus, and cortex than sham-treated rats (p < 0 01),
whereas rats that underwent 2VO surgery and TRC treat-
ment had a significantly higher mean optical intensity of
p-CREB staining in these regions (p < 0 01) (Figures 6(c)
and 6(d)).

3.6. TRC Treatment Rescues the Reduction in Dendrite Spine
Density after CCH. Dendritic spines are important locations
for the formation of neuronal circuits and network struc-
tures. A reduction in dendritic spine density is bound to
reduce synapse formation and thus impair cognitive function
[43]. Our previous study showed that CCH can lead to a
reduction in dendritic spines. We thus chose to investigate
whether TRC treatment could regulate the density and mor-
phology of dendritic spines after CCH by using the Golgi
stain to label and display dendritic spines. The data showed
that rats that underwent 2VO surgery had a noticeably lower
density of dendritic spines in hippocampal neurons than
sham-treated rats (p < 0 01), but the rats that underwent
2VO surgery and TRC treatment had a higher density of
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Figure 3: TRC treatment rescues spatial recognition learning and memory impairment in the novel object recognition test after CCH. Upon
completing the Morris water maze test, the novel object recognition test was used to evaluate spatial recognition learning and memory. The
time spent exploring familiar and novel objects was recorded. The ratio of the time spent exploring the novel or old object to the total time
spent exploring both objects was calculated (a, b). The exploration discrimination index was calculated as the time spent exploring the novel
object versus the old object to the total time spent exploring both objects (c). Con: sham group (n = 12); 2VO: the group with bilateral
common carotid artery ligation (n = 10); 2VO+TRC: the 2VO group treated with 1μg tripchlorolide/kg (n = 12); TRC: the sham group
treated with 1 μg tripchlorolide/kg (n = 11). Data are expressed as means ± SEM. ∗p < 0 05, ∗∗p < 0 01 compared with the Con group,
#p < 0 05, ##p < 0 01 compared with the 2VO group.
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dendritic spines than rats that underwent 2VO surgery only
(p < 0 01) (Figures 7(a) and 7(b)). Mushroom spines are
mature spines and are necessary for neuronal synapse forma-
tion. The density of mushroom spines can determine the
number of synapses that have formed. Our data showed that
rats which underwent 2VO surgery had a noticeably lower
density of mushroom spines than sham-treated rats
(p < 0 01), whereas rats that underwent 2VO surgery and
TRC treatment had a higher density of mushroom spines
than rats which underwent 2VO surgery only (p < 0 01)
(Figures 7(c) and 7(d)).

4. Discussion

In the present study, we show that TRC can rescue
CCH-induced spatial learning and memory dysfunction
and improve LTP disorders. Additionally, we found that
TRC can prevent the reduction in NR2B, synapsin I, and
PSD95 expression that occurs in response to CCH. More-
over, TRC leads to an upregulation in p-CREB levels.
p-CREB is an important transcription factor for synaptic
proteins. TRC prevented the CCH-induced reduction in
dendritic spine density.

LTP of synaptic transmission is a form of long-term
synaptic plasticity [44] and is important for circuit refine-
ment during memory formation and behavioral changes
[45]. LTP can be quickly induced with a persistent increase

in synaptic efficacy after high frequency stimulation [46].
Learning can enhance LTP [47], and LTP have also been
shown to enhance learning and memory in transgenic
models [48]. Impairment of LTP can lead to spatial memory
deficits [49]. Alleviating deficits in hippocampal long-term
potentiation improved memory in a rat model of Alzheimer’s
disease [50]. In our study, we found that TRC treatment
improves CCH-induced LTP impairment, which suggests that
TRC increased the efficacy of synaptic transmission in neuro-
nal circuits and rescued the CCH-induced synaptic plasticity
deficits. Previous studies have shown that TRC can stimulate
brain-derived neurotrophic factor (BDNF) mRNA expression
[26]. Endogenously secreted BDNF affects synaptic plasticity
[51], regulates synaptic transmission and long-term potentia-
tion (LTP) in the hippocampus, and plays a role in the forma-
tion of memory [52]. This suggests that TRC may improve
the CCH-induced impairment in synaptic plasticity by
regulating the expression of hippocampal endogenous BDNF.
This will be explored and verified in future research. In our
previous study, we demonstrated that chronic neuroinflam-
mation in brain tissues after CCH treatment can impair
cognition. Moreover, CCH induces memory impairment
and accelerates Aβ generation [9, 53]. Interestingly, TRC pro-
duces anti-inflammatory effects by downregulating extracel-
lular signal-regulated protein kinases 1/2 (ERK1/2) nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and JAK/STAT signaling pathways [24, 54]. TRC
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Figure 4: TRC treatment improves the CCH-induced LTP deficit. After completing the behavioral tests, the rats were anesthetized, and
recording and stimulating electrodes were implanted with stereotaxic localization. The baseline fEPSP and the fEPSP after HFS were
recorded (a). The relative fEPSP slope was then calculated (b). Con: sham group (n = 11); 2VO: the group with bilateral common carotid
artery ligation (n = 10); 2VO+TRC: the 2VO group treated with 1μg tripchlorolide/kg (n = 10); TRC: the sham group treated with 1 μg
tripchlorolide/kg (n = 11). Data are expressed as means ± SEM. ∗p < 0 05, ∗∗p < 0 01 compared with the Con group, #p < 0 05, ##p < 0 01
compared with the 2VO group.
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also attenuates Aβ generation by inhibiting BACE1 activity
and protects neurons against microglia-mediated Aβ neuro-
toxicity by suppressing NF-κB and JNK signaling [23, 25].
These indicate that TRC is a potentially effective neuropro-
tective agent. In future research, we will conduct systematic
analyses on the anti-inflammatory effects of TRC in CCH.

N-Methyl-D-aspartate receptors (NMDARs) are funda-
mental to learning, memory, and excitatory postsynaptic
potential. Triheteromeric NR1/NR2A/NR2B receptors con-
stitute the major NMDARs in adult hippocampal synapses
[55, 56]. NR1 is important for the maintenance of normal
cognition and reduction in the NMDAR-subunit NR1 (also
known as GluN1) that impairs spatial reference memory
[56, 57]. The antibody against NR1 contributed to severe
cognitive impairment [58]. In our study, we did not observe
changes in NR1 after CCH, which suggests that NR1 is not
involved in spatial learning and memory impairment after
CCH. NR2A is required for memory, and attenuation of
the expression of NR2A has been shown to be associated
with cognitive decline [59]. Given that the level of NR2A
did not change in our study, NR2A may also not be involved

in CCH-induced cognitive impairment. The NMDAR sub-
unit NR2B is important for synaptic plasticity and memory.
An increase in the surface expression of NR2B has been
shown to facilitate synaptic transmission and improve mem-
ory formation in vivo [60]. NR2B degradation has also been
shown to impair synaptic plasticity and learning [61]. In
contrast, upregulation of the expression of the NR2B subunit
can enhance synaptic plasticity and memory function [62].
The current study suggests that a reduction in NR2B levels
may be involved in CCH-induced spatial cognitive impair-
ment and that TRC can upregulate the expression of
NR2B. Previous studies also showed that TRC could upreg-
ulate synapse-related proteins including the NMDA receptor
and improve cognition impairment in an AD transgenic
model [21, 27]. This implies that TRC may improve spatial
memory and synaptic plasticity by upregulating the
expression of NR2B. Synapsin I is an important presynaptic
protein that is located on synaptic vesicles and contributes to
neurotransmitter release [63, 64], which, in turn, regulates
synaptic plasticity and memory strength [65, 66]. Postsynap-
tic density protein 95 (PSD95) and PSD93, major
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Figure 5: TRC treatment prevents the CCH-induced downregulation of synaptic proteins. After the electrophysiological tests, some rats were
euthanized and their brain tissues were homogenized for Western blot analysis of NR1, NR2A, NR2B, synapsin I, PSD93, PSD 95, GluR1,
GluR2, and β-actin (a), and the relative intensity of protein bands was normalized to β-actin (b). Con: sham group (n = 3); 2VO: the
group with bilateral common carotid artery ligation (n = 4); 2VO+TRC: the 2VO group treated with 1μg tripchlorolide/kg (n = 4); TRC:
the sham group treated with 1μg tripchlorolide/kg (n = 3). Data are expressed as means ± SEM. ∗p < 0 05, ∗∗p < 0 01 compared with the
Con group, #p < 0 05, ##p < 0 01 compared with the 2VO group.
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postsynaptic proteins, are also critical for synaptic plasticity
[67]. Deficient synapsin I, PSD95, and PSD93 have been
shown to be associated with cognitive impairments [68–
70]. In our study, synapsin I and PSD95, but not PSD93
levels were reduced by CCH. This reduction, however, was
prevented by TRC treatment, which suggests that synapsin
I and PSD95 may be involved in the CCH-induced cognitive
impairment and the protective effects of TRC treatment.

GluR1 and GluR2 are major subunits of important
excitable glutamate amino-acid-3-hydroxy-5-methyl-isoxazol-

4-propionic acid receptors (AMPARs), which regulate synaptic
plasticity and memory [71, 72]. GluR1 and GluR2 levels were
not altered in our study. However, the activity of GluR2A
and GluR2 is regulated by phosphorylation, and their involve-
ment in CCH-induced cognitive impairment can therefore not
be excluded. Future investigations should therefore seek to
address whether GluR2A and GluR2 are involved in
CCH-induced cognitive impairment.

Synaptic plasticity can mediate memory storage [73],
during which new mRNA and protein syntheses are
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Figure 6: TRC treatment prevents the CCH-induced downregulation of phosphorylated CREB. CREB expression was detected by Western
blotting (a), and the relative intensity of the band was normalized to β-actin (b). Brains were also fixed with 4% paraformaldehyde, embedded
with paraffin, cut into 5 μm thick sections, and placed on slides. The sections were incubated with the CREB and p-CREB antibody to detect
CREB and p-CREB distribution (c), and the mean optical intensity of p-CREB positive neurons in the CA1 and CA3 regions of the
hippocampus, dentate gyrus (DG), and cortex was measured and analyzed (d). Bar = 50 μm. Con: sham group (n = 3); 2VO: the group
with bilateral common carotid artery ligation (n = 4); 2VO+TRC: the 2VO group treated with 1μg tripchlorolide/kg (n = 4); TRC: the
sham group treated with 1 μg tripchlorolide/kg (n = 3). Phosphorylated CREB: p-CREB. Data are expressed as means± SEM. ∗p < 0 05,
∗∗p < 0 01 compared with the Con group, #p < 0 05, ##p < 0 01 compared with the 2VO group.
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required [74]. The transcription factor CREB regulates
many genes involved in synaptic plasticity [75] and is criti-
cal for hippocampus-dependent learning and memory [76].
Inhibition or downregulation of CREB can lead to cognitive
impairment [73, 77]. Our studies have shown that TRC can
prevent the CCH-induced inhibition of CREB, which sug-
gests that TRC may enhance the transcription and synthesis
of learning and memory-related proteins in hippocampal
neurons after CCH, thereby improving synaptic plasticity
and cognitive dysfunction.

Dendritic spines are postsynaptic structural compo-
nents of excitatory synapses that receive excitatory input
from axons at the synapse. Dendritic spines mediate trans-
mission of electrical signals to the neuron. They contain

NMDA receptors and AMPA receptors [78]. The dendritic
spine geometry is AMPA receptor and NMDA receptor-
dependent Ca2+ signaling currents in dendrites [79–81].
In our study, we observed a reduction in the expression
of the NMDA receptor subunit NR2A. This suggests that
the level of NR2A in the dendritic spine may be reduced,
which would thus affect the excitatory signal current that
is mediated by the dendritic spine. To our knowledge,
however, this has not yet been investigated, and further
experiments are needed for clarification. Dendritic spines
are also important sites for neuronal plasticity and synaptic
activity that induces hippocampal dendritic morphogenesis
[82, 83]. Long-term enhancement of hippocampal synaptic
efficacy promotes the formation of new spines while
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Figure 7: TRC treatment rescues the CCH-induced reduction in dendrite spine density. Rats were anesthetized and perfused through the
aorta with a solution containing both Golgi staining and the perfusion solution for fixation. The brain tissue block was then stained with
the Golgi staining solution for three days, cut into 50μm thick slices, and placed on the slide for observation of dendritic spine under the
microscope (1000x) (a). The dendritic spines were then counted and the density of dendritic spines and mushroom spines were calculated
(b, c). Bar = 2 5 μm. Con: sham group (n = 3); 2VO: the group with bilateral common carotid artery ligation (n = 3); 2VO+TRC: the 2VO
group treated with 1 μg tripchlorolide/kg (n = 3); TRC: the sham group treated with 1μg tripchlorolide/kg (n = 3). Data are expressed as
means ± SEM. ∗p < 0 05, ∗∗p < 0 01 compared with the Con group, #p < 0 05, ##p < 0 01 compared with the 2VO group.
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inhibition of long-term potentiation significantly reduces
the number of new spines that are generated [84]. Hippo-
campal activity-dependent structural remodeling, namely,
structural plasticity, can reconstruct neural circuits and
has been regarded as a critical cellular basis for learning,
memory, and synaptic plasticity [85]. Normal brain func-
tion is required for the regulation of the balance between
spine formation and spine elimination [86]. Excessive den-
dritic spine elimination leads to a reduction in spines,
which contributes to defective hippocampus-dependent
memory [87]. On the contrary, an increase in the density
of dendritic spines can improve memory and neuronal
plasticity [88]. The present study shows that treatment with
TRC can prevent the CCH-induced reduction in the density of
dendritic spines, which suggests that TRC treatment can pre-
vent deficits in the structural plasticity of hippocampal neu-
rons that are caused by CCH. Structural plasticity is closely
correlated with learning and memory ability and synaptic
plasticity. This also suggests that TRC treatment improves
structural plasticity and thus improves one of the mechanisms
by which CCH leads to cognitive impairment.

5. Conclusion

We found that TRC can improve spatial learning, memory,
and synaptic plasticity; upregulate the expression of several
synaptic proteins; and increase the density of dendritic
spines. Our findings suggest that administration of TRC
may be an important therapy for the treatment of
CCH-induced cognitive impairment.
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