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Abstract

Our previous data demonstrated that Friend leukemia virus integration 1 (Fli-1), an ETS 

transcription factor, governs pericyte loss and vascular dysfunction in cecal ligation and puncture-

induced murine sepsis by regulating essential pyroptosis markers including caspase-1. However, 

whether Fli-1 regulates caspase-1 expression levels in vitro and how Fli-1 regulates caspase-1 

remain unknown. Our present work further demonstrated that overexpressed Fli-1 significantly 

increased caspase-1 and IL-18 expression levels in cultured mouse lung pericytes. Bacterial outer 

membrane vesicles (OMVs) have been found to induce cell pyroptosis through transferring LPS 

intracellularly. Using OMVs to induce an in vitro model of pyroptosis, we observed that OMVs 

significantly increased protein levels of Fli-1 in mouse lung pericytes. Furthermore, knockdown of 

Fli-1 by siRNA blocked OMVs-induced caspase-1, caspase-11 and IL-18 expression levels. As 

caspase-1 was predicted as a potential target of Fli-1, we cloned murine caspase-1 promoter into a 
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luciferase construct. Our data demonstrate for the first time that Fli-1 regulates caspase-1 

expression by directly binding to its promoter regions measured by chromatin 

immunoprecipitation (ChIP) assay and luciferase reporter system. In summary, our findings 

demonstrated a novel role and mechanism of Fli-1 in regulating caspase-1 expression in lung 

pericytes.
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1. Introduction

Pericytes are embedded in the basement membrane of the microvasculature which wrap 

around the microvascular endothelial cells (EC) [1]. LPS-induced pericyte loss has been 

associated with microvascular dysfunction and mortality; however, this loss is not caused by 

apoptosis [2]. Our previous study demonstrated that cecal ligation and puncture (CLP)-

induced lung pericyte loss was attributed to pyroptosis [3]. Pyroptosis, an inflammatory 

form of programmed cell death, is dependent on caspases 1 and 11 and is accompanied by 

the release of pro-inflammatory cytokines including IL-18 [4-7]. Pyroptosis can be induced 

by intracellular stimulation with LPS [8]. Recent studies have demonstrated that Gram-

negative bacteria outer membrane vesicles (OMVs), contain abundant LPS and can induce 

pyroptosis of host cells [9]. In addition, OMVs induce inflammasome activation and pro-

cytokine release in macrophages in a caspase-1 dependent manner [10]. As an inflammatory 

caspase and the most important pyroptosis marker, caspase-1 can be activated by 

inflammasomes, and processes pro-IL-18 into the active form and cleaves gasdermin D to 

trigger pyroptosis [11]. Circulating microvesicular caspase-1 activity was higher in septic 

patients and plays a critical role in sepsis-induced endothelial cell injury [12, 13]. 

Caspase-1-dependent pyroptosis of peripheral blood mononuclear cells predicts the 

development of sepsis in severe trauma patients [14]. Inflammasome NLRP3/caspase-1 

pathway also mediated cognitive deficits in a CLP-induced murine septic model [15]. 

However, inhibition of caspase-1 by either antimicrobial cathelicidin peptide LL-37 or its 

inhibitor was associated with reduced inflammation, improved organ injury and increased 

survival in animal sepsis [6,16] Therefore, signaling pathways controlling caspase-1 

expression may provide beneficial effects in sepsis.

Friend leukemia virus integration 1 (Fli-1), an ETS transcription factor, regulates a wide 

spectrum of biological processes including cancer development, fibrosis, vasculopathy and 

inflammation [17-22]. Fli-1 is expressed in endothelial cells, macrophages, B cells and T 

cells, and regulates expression of several important cytokines and chemokines including 

monocyte chemoattractant protein-1 (MCP-1), IL-6, granulocyte colony stimulating factor 

(G-CSF) and CCL5 by directly binding to these respective promoters [18, 19, 23-28]. Our 

previous study suggested that Fli-1 mediated lung pericyte loss and vascular function via 

regulating expression levels of essential pyroptosis markers including caspase-1 and IL-18 in 

CLP-induced septic mice [3]. However, the role and mechanism of Fli-1 in regulating 

caspase-1 expression in lung pericytes remains unknown. We hypothesized that Fli-1 
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transcription factor regulates caspase-1 gene expression in lung pericytes by directly binding 

and activating the caspase-1 promoter.

2. Materials and methods

2.1. OMVs isolation and characterization

OMVs were purified from E. coli K12 as previously described [9]. Briefly, the bacterial 

strain was grown in 600 ml of LB to an OD600 of 0.4-0.6 and centrifuged at 4000 g for 20 

min at 4 °C. The bacteria-free supernatant was filtered through a 0.22 μm filter and OMVs 

were pelleted by ultracentrifugation at 400,000 g for 2 h at 4 °C. After removing the 

supernatant, OMVs were resuspended in 500 μl sterile PBS. The total protein concentration 

of the OMVs was measured by protein assay (Bio-Rad, Hercules, CA). The LPS 

concentration of OMVs was measured by Pierce LAL Chromogenic Endotoxin (Thermo 

Fisher Scientific, Rockford, IL). The size distribution and the total number of OMVs were 

analyzed by nanoparticle tracking analysis software (ZetaView 8.04.02).

2.2. Mouse lung pericyte isolation, culture and stimulation

Mouse lung pericytes were isolated as described previously [29, 30]. Briefly, single-cell 

preparations from whole lung digests were expanded, negatively selected by CD31, CD45 

and CD326 magnetic beads (Miltenyi Biotec Inc., Auburn, CA), and positively selected by 

PDGFRβ magnetic beads (Miltenyi Biotec Inc., Auburn, CA). PDGFRβ positive lung 

pericytes were cultured in pericyte medium (ScienCell Research Laboratories, Carlsbad, 

CA) supplemented with pericyte growth supplement, 2% fetal bovine serum and 1% 

penicillin/streptomycin (ScienCell Research Laboratories, Carlsbad, CA). Pericytes were 

transfected with control plasmid or Fli-1 plasmid at different concentration (0.25-4 μg/ml) 

for 48 h. In another set of experiment, pericytes were transfected with Fli-1 siRNA or 

scrambled siRNA for 24 h and further stimulated with OMVs (25 μg/ml, containing 5.2 

μg/ml LPS) for 16 h. Total RNA and protein were collected for further analysis. To 

determine intracellular LPS levels after OMVs treatment, the mouse pericytes were seeded 

into six-well plates and treated with 25 μg/ml OMVs (containing 5.2 μg/ml LPS) for 16 h. 

Then cells in each well were washed three times with PBS and lysed by 500 μl RIPA lysis 

buffer. The intracellular LPS in the lysate was measured by Pierce LAL Chromogenic 

Endotoxin (Thermo Fisher Scientific, Rockford, IL).

2.3. Real-time reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was extracted from cultured pericytes with RNeasy plus mini kit (Qiagen, 

Germantown, MD). cDNA was synthesized with High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Foster City, CA). Quantitative real-time PCR was 

performed by CFX96 Real-Time PCR system (Bio-Rad, Hercules, CA, USA) using SYBR 

Green PCR Kit (Qiagen, Germantown, MD) in a final reaction volume of 25 μl with each 

primer (Qiagen, Germantown, MD). Data were analyzed with 2 −ΔΔCt value calculation 

using GAPDH for normalization.
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2.4. Western blot analysis

Lung pericytes were lysed with ice-cold RIPA lysis buffer (Cell Signaling, Danvers, MA). 

Western blot was performed as described [31]. All lysed samples were kept on ice for 30 

min, and centrifuged for 10 min at 4°C at 12,000 g. Cell lysates were subjected to 10% SDS-

PAGE and transferred onto a polyvinylidene difluoride membrane. The membranes were 

blocked with 7% milk in TBST (20 mM Tris, 500 mM NaCl, and 0.1% Tween 20) for 1 h. 

After washing with TBST twice, membranes were incubated with primary antibody 

overnight at 4°C. Fli-1 primary antibody was provided by Dr. Xiankui Zhang (Medical 

University of South Carolina). Primary antibodies α-tubulin were from Cell Signaling. The 

membranes were washed twice with TBST and incubated with HRP conjugated secondary 

antibody in blocking buffer for 1 h. After washing three times with TBST, immunoreactive 

bands were visualized by incubation with ECL plus detection reagents (GE Healthcare, 

Waukesha, WI). The densitometry of bands was quantified with Image J2 software.

2.5. Chromatin immunoprecipitation (ChIP) assay

ChIP assay was performed using an anti-Fli-1 rabbit polyclonal antibody and normal IgG 

control (Cell Signaling, Danvers, MA) using EpiTect ChIP OneDay Kit (Qiagen, 

Germantown, MD) as described [17]. The primers used in the ChIP assay are available upon 

request. Briefly, mouse lung pericytes (106) were cross-linked with 1% formaldehyde at 

room temperature and lysed in IP lysis buffer (Qiagen, Germantown, MD). DNA was 

sheared by sonication and immunoprecipitation was performed by using Fli-1 specific 

antibody and normal IgG control. After immunoprecipitation, the DNA was purified and 

amplified by PCR according to the manufacturer’s instructions (Qiagen, Germantown, MD).

2.6. Reporter and expression constructs

Mouse caspase-1 (GeneID: 12362) was predicted as a potential target of Fli-1 analyzed by 

the Genomatix online software. We found 14 potential binding sites of Fli-1 in the mouse 

caspase-1 promoter. The −2410 to +30 region of the mouse caspase-1 promoter, which 

covers all the potential Fli-1 binding sites, was cloned into the pGL3 basic vector upstream 

of the luciferase gene. The mouse Fli-1 gene cloned into the pcDNA3.0 expression vector 

has been described previously [28].

2.7. Luciferase reporter assays

To measure the luciferase activity for the transient transfection experiments, the luciferase 

assay systems (Promega, Madison, WI) was employed. Briefly, mouse lung pericytes were 

transfected with caspase-1/pGL3 luciferase reporter construct (1 μg) along with increased 

amounts of Fli-1/pcDNA3.0 plasmid (0.25, 0.5, 1, 2 and 4 μg) for 48 h. Luciferase activity 

was determined by a plate reader (Biotek, Winooski, VT). All experiments were normalized 

using the fold activation of luciferase activity compared to the control luciferase reporter 

construct.

2.8. Data analyses

Data are expressed as means ± standard error of the mean (SE). Statistical significance was 

determined by analysis of variance (ANOVA) with Fisher’s probable least-squares difference 
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test or Student's t-test using GraphPad Prism software. A value of p<0.05 was considered 

statistically significant.

3. Results

3.1. Fli-1 regulates caspase-1 gene expression in mouse lung pericytes

Our previous study showed that Fli-1 regulates caspase-1 expression levels in lung pericytes 

of septic mice in vivo [3]. Here we sought to determine if Fli-1 regulates caspase-1 gene 

expression using an in vitro system. Isolated mouse lung pericytes were transfected with 

control or Fli-1 plasmid for 48 h. Fli-1 mRNA levels were significantly increased after 

transfection with Fli-1 plasmid (p < 0.05; Fig. 1A). Increased Fli-1 further significantly 

upregulates caspase-1 and IL-18 expression levels (p < 0.05; Fig. 1B-C).

3.2. Fli-1 regulates bacterial OMVs-induced caspase-1 expression in mouse lung 
pericytes

To further determine if Fli-1 regulates caspase-1 gene expression in activated lung pericytes 

in vitro, OMVs were isolated from E.coli K12 as previously described [9]. The isolated 

OMVs were characterized by nanoparticle tracking analysis (NTA) with Zetaview PMX 120 

(Particle Metrix, Meerbusch, Germany). The size distribution and the total number of OMVs 

were analyzed by nanoparticle tracking analysis software (ZetaView 8.04.02). We isolated 

6.5 × 1010 particles (containing 0.3 mg protein and 62.5 μg LPS) from 600 ml bacterial 

supernatant with a concentration of 1.3 × 1011 particles/ml. More than 90% of OMVs are 

within 70-130 nm range (Fig. 2A). Bacterial OMVs were reported to induce pyroptosis by 

transferring LPS intracellularly with increased caspase-1 [9]. We further determined 

intracellular LPS levels after OMV treatment, 25 μg/ml OMVs (containing 5.2 μg/ml LPS) 

were used to treat mouse pericytes for 16 h. Our results showed that 568 ± 32.4 ng/ml of 

intracellular LPS was detected in the 500 μl lysate from each well of pericytes. To 

investigate the role of Fli-1 in the regulation of caspase-1 expression under OMVs 

stimulation, we first determined the effect of OMVs on Fli-1 protein levels. Our data 

demonstrated that treatment with OMVs for 16 h significantly increased Fli-1 protein levels 

in mouse lung pericytes (p < 0.05; Fig. 2B). Lung pericytes were transfected with Fli-1 

siRNA or scrambled siRNA and treated with bacterial OMVs (25 μg/ml) for 16 h. Fli-1 

mRNA levels were significantly reduced by transfecting Fli-1 siRNA into pericytes (data not 

shown). Exposure of lung pericytes to OMVs significantly increased mRNA levels of 

pyroptosis markers including caspase-1, caspase-11 and IL-18, which were mitigated in cells 

transfected with Fli-1 siRNA (p < 0.05; Fig. 3A-C).

3.3. Fli-1 binds to the caspase-1 promoter in mouse lung pericytes

To determine if Fli-1 directly regulates caspase-1 expression levels, we used MatInspector 

Software (Genomatix) analysis to predict potential Fli-1 binding sites on the murine 

caspase-1 promoter. We identified 14 putative Fli-1 binding sites on the caspase-1 promoter 

and 9 pair primers were designed to cover these sites (Fig. 4A). After immunoprecipitation 

of the cultured lung pericytes with a Fli-1 specific antibody and normal IgG control, ChIP1, 

ChIP2, ChIP7 and ChIP9 were significantly enriched for Fli-1 specific antibodies (8.1 ± 0.6 
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fold for ChIP1, 4.8 ± 1.3 fold for ChIP2, 9.3 ± 1.7 fold for ChIP7 and 13.5 ± 2.3 fold for 

ChIP9, respectively, p < 0.05) compared to the IgG negative control (Fig. 4B-C).

3.4. Fli-1 drives transcription from the caspase-1 promoter

To further confirm that Fli-1 regulates the expression of caspase-1, transient transfection 

assays were performed. The Fli-1 transcription factor was transfected into mouse lung 

pericytes along with the mouse caspase-1 promoter/pGL3 reporter construct. We determined 

the Fli-1 protein expression levels after transfection by immunoblot. As shown in Fig. 5A, 

Fli-1 protein expression corresponds with increasing amounts of the Fli-1 plasmid 

transfected into the cells. Furthermore, the Fli-1 transcription factor strongly induced 

activation from the caspase-1 promoter in a statistically significant manner when compared 

to the activation of the reporter construct (Fig. 5B). The results demonstrate that Fli-1 drives 

transcription from the caspase-1 promoter in a concentration-dependent manner, with as 

little as 500 ng of Fli-1 needed to significantly activate transcription from the caspase-1 

promoter.

4. Discussion

Our previous data showed that Fli-1 regulates both mRNA and protein levels of caspase-1 in 
vivo. This study demonstrates several novel and important discoveries. First, Fli-1 regulates 

caspase-1 and IL-18 expression in cultured lung pericytes with or without stimulation in 
vitro. Secondly, we provide the first molecular evidence that the Fli-1 transcription factor 

directly drives transcription from the murine caspase-1 promoter. Collectively, these findings 

reveal a novel mechanism for Fli-1 in the regulation of the inflammatory response and 

pyroptosis. Thus, Fli-1 may be a novel target for treating pyroptosis/inflammation-related 

diseases including sepsis

Recent studies highlight a critical role of pyroptosis in sepsis. Sepsis-associated pyroptosis 

occurred widely in the various type of cells including peripheral blood mononuclear cells, 

neurons, macrophages, pericytes, endothelial cells and liver cells in patients and animal 

models [3, 6, 12, 14, 15, 32]. During sepsis, pyroptosis is required for defense against 

invasive pathogenic bacteria and microbial infections; however, when overactivated it can 

result in the inflammatory response, multi-organ dysfunction and septic shock [33-35]. In 

addition, circulating microvesicular caspase-1 activity and IL-18 levels were significantly 

higher in septic patients [12, 35]. However, inhibition of pyroptosis has been proven 

beneficial in reducing the inflammatory response, organ injury and mortality in animal 

models [6, 15, 16, 32]. Consistently, our previous study demonstrated that inhibition of lung 

pericyte pyroptosis was associated with reduced lung vascular leak and decreased mortality 

in CLP-induced murine sepsis; this beneficial effect was mediated by knockout of Fli-1 in 

pericytes [3]. Our present data further showed that Fli-1 upregulated caspase-1 and IL-18 

gene expression by directly binding to the caspase-1 promoter. Pericyte Fli-1 levels were 

elevated in CLP-induced septic mice [3]. Thus, the beneficial effects of Fli-1 pericyte 

knockout in sepsis may be partly attributed to attenuated caspase-1 expression. Similar, 

inhibition of caspase-1 was also found to improve sepsis outcomes in animal models [6, 15, 
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16]. Therefore, Fli-1 is a potential novel target for inhibition of pyroptosis via controlling 

caspase-1 expression.

Besides pyroptosis, the uncontrolled inflammatory response is another hallmark of sepsis. 

LPS-induced overwhelming production of inflammatory mediators during sepsis was 

thought to be mediated by activation of the Toll-like receptor (TLR) 4 signaling pathway 

[34, 36]. However, recent studies suggest that TLR4-independent recognition of intracellular 

LPS leads to non-canonical activation of the inflammasome and caspase-1 which, coupled 

with pyroptosis, triggers further inflammatory response [34, 37, 38]. Our previous data 

demonstrated that extracellular LPS increased Fli-1 expression levels in cultured lung 

pericytes; while inhibition of Fli-1 expression by transfecting Fli-1-specific siRNA blocked 

extracellular LPS-induced production of sepsis-related pro-inflammatory cytokines 

including G-CSF and IL-6 [3]. The present study further showed that intracellular LPS, the 

major components of OMVs, significantly upregulated Fli-1 protein levels in lung pericytes; 

while knockdown of Fli-1 expression attenuated OMVs-induced caspase-1 and IL-18 

expression levels. Thus, inhibition of Fli-1 can block both extracellular and intracellular 

LPS-mediated inflammation in lung pericytes. Taken together, these findings provide new 

insights into the mechanisms by which Fli-1 exacerbates the inflammatory response: 1) Fli-1 

transcription factor directly regulates the transcription of several important cytokines and 

chemokines including MCP-1, IL-6, G-CSF, chemokine C-X-C motif ligand 2 (CXCL2) and 

CCL5 through direct binding to their respective promoters [17-19, 23, 28]; 2) Fli-1 mediates 

extracellular LPS-induced inflammatory response; 3) Fli-1 mediates intracellular LPS-

induced inflammatory caspase-1 and IL-18 expression. Therefore, blockade of Fli-1 may 

exert multiple beneficial effects to inhibit inflammation during sepsis.

There are several limitations to our study. We demonstrated that both extracellular and 

intracellular LPS stimulate Fli-1 expression levels; however, the specific mechanism of how 

LPS induces Fli-1 expression needs further investigation. Although we found that Fli-1 

transcription factor directly regulates caspase-1 gene expression by binding to its promoter, 

activated caspase-1 is the key factor for producing active IL-18 and inducing pyroptosis. 

Whether Fli-1 has the impact on activated caspase-1 remains unknown and could be an 

interesting topic for future study.

In summary, the Fli-1 transcription factor drives transcription from the murine caspase-1 

promoter in a dose-dependent manner and affects the regulation of the pyroptosis and 

inflammation. Further, our previous study demonstrated that inhibition of Fli-1 reduces 

inflammatory response, attenuates vascular leak and increases survival in cultured lung 

pericytes and in CLP-induced sepsis [3]. Thus, we provide evidence that signaling pathways 

reducing Fli-1 expression may represent a novel potential way for inhibiting pyroptosis and 

inflammation during sepsis.
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Highlights

• Fli-1 induces caspase-1 and IL-18 expression in cultured lung pericytes.

• Knockdown of Fli-1 inhibits intracellular LPS-induced caspase-1 and IL-18 

expression.

• Fli-1 transcription factor drives transcription of the murine caspase-1 

promoter.
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Figure 1. 
Fli-1 overexpression increases caspase-1 in mouse lung pericytes. Lung pericytes were 

isolated from normal C57/BL6 mice and transfected with control or Fli-1 plasmid for 48 h. 

The mRNA levels of (A) Fli-1, (B) caspase-1 and (C) IL-18 were determined by Real-time 

PCR. *p < 0.05 compared to control plasmid group. Con: control.
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Figure 2. 
Bacterial outer membrane vehicles (OMVs) increased Fli-1 protein levels in lung pericytes. 

(A) OMVs were purified from E. coli K12. The number of OMVs particles vs. particle size 

was generated by nanoparticle tracking analysis with ZetaView. Lung pericytes were 

stimulated with OMVs (25 μg/ml) for 16 h. (B) The effect of OMVs on Fli-1 protein levels 

were determined by western blot. *p < 0.05 compared to control group.
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Figure 3. 
Fli-1 regulates OMVs-induced caspase-1 expression in lung pericytes. Lung pericytes were 

transfected with Fli-1 specific siRNA or scrambled siRNA and further stimulated by OMVs 

(25 μg/ml, E.coli K12) for 16 h. The mRNA levels of (A) caspase-1, (B) caspase-11 and (C) 

IL-8 in lung pericytes were measured. N=3 experiments. Data are expressed as means ± SE. 

*p < 0.05 compared to scrambled siRNA control group; #p < 0.05 compared to scrambled 

siRNA LPS group. SCR: scramble.
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Figure 4. 
Fli-1 regulates caspase-1 expression in lung pericytes by binding to its promoter. The 

potential Fli-1 binding sites on murine caspase-1 promoter region were determined by ChIP 

assay. A schematic diagram (A) showing the location of the fourteen putative Ets binding 

sites and nine primers designed for ChIP. ChIP analysis (B) of Fli-1 binding to the 

Caspase-1 promoter was performed. Representative agarose gel results (C) for ChIP1, 2, 7 

and 9 were showed. N=3 independent experiments. *p < 0.05 compared to control IgG 

group.
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Figure 5. 
Fli-1 drives transcription from the caspase-1 promoter. (A) Fli-1 protein concentrations after 

transfection into the pericytes. (B) Graph illustrating that Fli-1 drives transcription from the 

caspase-1 promoter in mouse lung pericytes. Transfections were carried out using increasing 

amounts of Fli-1 plasmid (0.5 μg, 1 μg, 2 μg and 4 μg) and mouse caspase-1 promoter/pGL3 

reporter construct (1 μg). A luciferase assay was performed to determine activation from the 

caspase-1 promoter. Data presented are shown as fold activation over the activation of the 

empty reporter construct. N=3 independent experiments. *p < 0.05 compared to the 

activation of the reporter construct. C: control; R: reporter; R+EV: reporter + Empty vector.
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