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SUMMARY

Propensity score matching is a common tool for adjusting for observed confounding in observational
studies, but is known to have limitations in the presence of unmeasured confounding. In many settings,
researchers are confronted with spatially-indexed data where the relative locations of the observational
units may serve as a useful proxy for unmeasured confounding that varies according to a spatial pattern. We
develop a new method, termed distance adjusted propensity score matching (DAPSm) that incorporates
information on units’ spatial proximity into a propensity score matching procedure. We show that DAPSm
can adjust for both observed and some forms of unobserved confounding and evaluate its performance
relative to several other reasonable alternatives for incorporating spatial information into propensity score
adjustment. The method is motivated by and applied to a comparative effectiveness investigation of power
plant emission reduction technologies designed to reduce population exposure to ambient ozone pollution.
Ultimately, DAPSm provides a framework for augmenting a “standard” propensity score analysis with
information on spatial proximity and provides a transparent and principled way to assess the relative
trade-offs of prioritizing observed confounding adjustment versus spatial proximity adjustment.
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1. INTRODUCTION

Methods based on propensity score matching are widely used to estimate causal effects with observa-
tional data. Such methods rely crucially on the assumption of no unmeasured confounding. In settings of
spatially-indexed data, unobserved confounders may exhibit a spatial pattern, inviting the use of spatial
information to serve as proxy for similarity of units with respect to unmeasured confounding factors.
Methods for confounding adjustment with spatially-indexed data have been most often considered in the
context of regression adjustment, as in Paciorek (2010) and in related work that does not target confound-
ing adjustment per se, but has been used for modeling spatially correlated residuals via spatial random
effects (Hodges and Reich, 2010; Lee and Neocleous, 2010; Congdon, 2013; Chang and others, 2013;
Lee and Sarran, 2015).

In this article, we unite the use of spatially-indexed data with propensity score matching while preserving
the most salient benefits of using propensity scores. These benefits include the explicit comparison of
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Fig. 1. Map of facilities, colored by whether they are treated (yellow) or control (red), and map of ozone concentration
surrounding power plants.

treatments or policy interventions to estimate policy-relevant estimands such as the average treatment
effect on the treated, as well as the oft-cited virtues of propensity score analysis related to the hypothetical
“design” of a randomized study, for example, the ability to check observed covariate balance and overlap
(Rubin, 2008). Augmenting such benefits with the notion that geographically closer units may exhibit
similar unmeasured confounding profiles presents a methodological challenge.

The methods here are motivated by the threat of unmeasured spatial confounding that arises in studies
of air pollution, where complex climatological and atmospheric processes are known to vary spatially
and have strong associations with ambient air pollution, but are often unmeasured. For example, consider
ambient ozone pollution, which has been previously linked to adverse health outcomes (Bell and others,
2004; Jerrett and others, 2009). A variety of regulatory strategies in the USA are designed to reduce
ambient ozone pollution through incentivizing power-generating facilities (i.e. “power plants”) to reduce
emissions of nitric oxide and nitrogen dioxides (NOx). When combined with sunlight and in the presence
of available volatile organic compounds, NOx emissions initiate atmospheric chemical reactions to form
ambient ozone pollution (Allen, 2002). What’s more, regions where conditions tend to encourage the
formation of ozone might be more likely to impose stricter rules on NOx emissions. Thus, evaluating the
effectiveness of emission-control strategies installed at power plants is met with the challenge that complete
data on all relevant climatological, atmospheric, and regulatory confounders is almost never available but
are expected to vary spatially. The goal of this article is to employ a matching procedure anchored to the
propensity score to investigate whether, among coal or natural gas power plants, installation of selective
catalytic or selective non-catalytic reduction (SCR/SNCR) NOx emission control technologies is more
effective than alternatives for reducing ambient ozone. The treatment assignment and outcome of interest
are depicted in Figure 1. Propensity scores are particularly useful for this type of policy evaluation because
of the ability to adjust for confounding without strong reliance on a parametric model and the ability to
empirically assess covariate balance and overlap. However, unmeasured spatial confounding presents a
strong threat to the validity of a standard propensity-score analysis.

To confront these challenges, we present a new methodology, termed distance adjusted propensity
score matching (DAPSm), which incorporates information from spatially-indexed data with the known
virtues of propensity score matching. DAPSm incorporates observations’spatial proximity into a matching
procedure designed to adjust for observed confounders while adjusting for unmeasured spatial confounders
by emphasizing, to varying degrees governed by a tuning parameter, the spatial proximity of matches.
The central challenge of incorporating spatial proximity into propensity score matching is that proximity
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is a relative measure between two units, not a unit-specific measure like a confounder or the propensity
score itself.

DAPSm shares important commonalities with the recently-proposed work of Keele and others (2015)
in that both are matching methods that aim to leverage spatial proximity of units. We evaluate DAPSm
relative to the method of Keele and others (2015) throughout, but note here that, despite similar conceptual
goals, these methods are not directly comparable. The most salient difference has to do with reliance on
the propensity score; DAPSm combines spatial proximity with propensity scores, whereas Keele and
others (2015) provides an integer programing method that matches directly on covariates (i.e. not using
propensity scores). Our goal here is not to investigate the relative merits of exact versus propensity score
matching, but rather to isolate features related specifically to methods’ account of spatial confounding.
DAPSm offers a tuning parameter governing the relative prioritization of observed covariate distances
(measured through similarity of propensity score estimates) and spatial proximity. Keele and others (2015)
entails a tuning parameter that governs the trade-off between spatial proximity of matches and the number
of matches selected within a certain tolerance of observed covariate balance.

Both DAPSm and the method of Keele and others (2015) are evaluated in a simulation study alongside
several other reasonable alternatives for incorporating spatial information into propensity score analysis.
The methods are then deployed to compare the effectiveness of SCR/SNCR, relative to other strategies,
for reducing NOx emissions and ambient ozone measured across 473 power plants and 921 air pollution
monitoring locations in the USA. Ultimately, we show that incorporating spatial information in the match-
ing can lead to substantively different conclusions when evaluating interventions on spatially-indexed
observational units.

2. NOTATION, ESTIMAND OF INTEREST, AND OUTLINE OF PROPENSITY SCORE MATCHING

Let Zi denote the indicator of whether the ith of n observations is subject to treatment, for example, the
indicator of whether a power plant is treated with SCR/SNCR (Zi = 1) or not (Zi = 0). Let Yi be a
continuously-scaled outcome, for example, ambient ozone concentration in the area surrounding power
plant i.

Each unit or observation is assumed to have two potential outcomes (Rubin, 1974), one under each
value of the treatment. We denote Yi(0), Yi(1) as the potential outcome of ambient ozone concentration in
the area around unit i under value of z = 0, 1 respectively. Assuming that the indexing of the observations
is done at random, the index i is suppressed. Interest often lies in the estimation of the average treatment
effect in the treated population, defined as ATT = E[Y (1) − Y (0)|Z = 1].

Among the assumptions required to estimate the ATT with observational data is that of “ignorable
treatment assignment,” stating that observed covariates are sufficient to adjust for confounding of the
treatment-outcome relationship. More formally, let C be a minimal set of confounding variables such
as power plant characteristics, weather and atmospheric variables, and area-level demographics. The
assumption of ignorability can be stated as:

Y (z) � Z |C, z = 0, 1 (2.1)

under which the ATT can be estimated with observed-data comparisons between outcomes on treated and
untreated units, conditional on C. Since C is assumed minimal, the ignorability assumption in (2.1) does
not hold for any strict subset of C, implying that observed-data comparisons will not estimate the ATT
when conditioning on a strict subset of C.

As the dimensionality of C increases, investigators often use the propensity score to condense the
information in C into a “balancing score” that can be used to adjust for confounding when comparing
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treated and untreated units. The propensity score is defined as the conditional probability of receiv-
ing treatment given the covariates, P(Zi = 1|Ci). The balancing property of the propensity score
(Rosenbaum and Rubin, 1983) implies that the ignorability assumption in (2.1) can be translated to
Y (z) � Z |P(Z = 1|C), z = 0, 1.

An overview of the various ways in which propensity scores can be used for confounding adjustment
can be found in Stuart (2010), but we discuss methods in the context of 1:1 matching without replace-
ment using a caliper. Such a procedure uses propensity score estimates to match one treated unit to one
control unit with a similar propensity score estimate. A threshold, called a “caliper,” can be used to avoid
matching observations with insufficiently similar propensity scores. For example, specifying a caliper of
0.1 prevents the matching of any two observations with propensity scores that differ by more than 0.1
standard deviations of the propensity score distribution. Matching produces a data set of matched treated
and control observations with similar propensity score distributions, and thus more similar distributions
of the covariates in C and a treatment indicator that is, under ignorability, unconfounded. The resulting
matched data set can be used to estimate the ATT provided that all elements of C are observed and used
to construct the propensity score.

However, it is often the case with observational data that the vector of true confounders C can be
partitioned into two categories, C = (X, U), where X denotes the confounders available in the observed
data, and U denotes confounders that are unobserved. In the presence of unobserved confounders U, the
ignorability assumption in (2.1) cannot be satisfied by conditioning solely on the observed X, and the
treatment effect is not identifiable from the data.

In many settings it is expected that some elements of U vary spatially so that locations that are geo-
graphically close are similar with regard to U. In this sense, the notion of prioritizing spatial proximity of
matches has points of contact with the notion of a spatial “bandwidth” in a geographic regression discon-
tinuity design (such as that in Keele and others (2015)), where only observations within the bandwidth
are regarded as comparable on observed (and unobserved) factors. The method outlined below regards U
as unmeasured variables with a distribution over the whole geography of interest that is continuous as a
function of space, with closer observations having more similar U.

3. DISTANCE ADJUSTED PROPENSITY SCORE MATCHING

We propose a procedure that is anchored to the propensity score for matching on observed confounders,
but augments confounding adjustment by incorporating spatial (geographical) information as a proxy for
unobserved spatial variables, U, such as weather and atmospheric conditions. In the presence of such U,
prioritizing matched units that are geographically close to each other could yield better covariate balance
on C = (X, U), thus (approximately) recovering the ignorability assumption and reducing bias of causal
estimates. Formally, the variables U ∈ U are such that ∀ε > 0 and point s0 in the geography of interest
∃Nε(s0) open set including s0 such that |U (s) − U (s0)| < ε, s ∈ Nε(s0), wp1.

We define the distance adjusted propensity score (DAPS) as a new quantity for identifying good
matches between treated and control units. In contrast to the propensity score which has a value for each
unit, the DAPS is defined for every (i, j) pair of treated, control observations. Specifically, for treated
unit i and control unit j, the DAPS combines propensity score estimates and relative distances to define:
DAPSij = w ∗ |PSi − PSj| + (1 − w) ∗ Distij, where w ∈ [0, 1], PSi, PSj are propensity score estimates
from modeling the treatment conditional on the observed confounders, and Distij is a distance measure
capturing the proximity of units i, j. DAPS is a weighted average of the propensity score difference used
in “standard” propensity score matching and a measure of the distance between treated-control pairs.
Therefore, it is a transparent measure of similarity between treated and control units, with an (i, j) pair
having small DAPSij regarded as comparable on the basis of a combination of propensity score difference
and spatial proximity.
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3.1. Choosing the weight w

Setting w = 1 corresponds to setting DAPS equal to the absolute propensity score difference, and similarity
of treated and control units is based solely on the observed confounders, without regard to spatial proximity.
Setting w = 0 ignores X, defining similarity of units based solely on distance. In practice, w could be
specified in the range [0, 1] depending on contextual prioritization of observed confounding and the threats
due to any suspected unobserved spatial confounding, with values closer to 0 for settings where unobserved
spatial confounding is of particular concern. Data-driven procedures, such as the one described in Section
3.5 can be useful in choosing a w.

3.2. Choosing the distance measure

The quantity Distij could be specified in many ways to quantify spatial proximity of units i and j. A
natural distance measure is the geographical distance between units i, j. A key consideration in choosing
a distance measure is that its scale must be made comparable to that of the propensity score to ensure that
one quantity does not arbitrarily dominate the calculation of DAPS. Since the absolute propensity score
difference of two units can vary across the range [0, 1], the distance measure should also vary between 0
and 1, or on a range similar to the range of estimated propensity score differences (alternatively, instead
of standardizing Distij, one could scale w).

One distance measure we consider is the standardized Euclidean distance (for simulations) or the
standardized geo-distance (for the application). Specifically, if i ∈ St = {1, 2, . . . , Nt} is a treated unit,
and j ∈ Sc = {1, 2, . . . , Nc} is a control unit, the standardized distance of i, j is defined as:

Distij = dij − minTCd

maxTC d − minTC d
, (3.2)

where dij is the Euclidean (or geo) distance between i, j, and minTC d, maxTC d are the minimum and
maximum distances of all the treated-control pairs.

Other choices of distance measure can also arise in practice. For example, only permitting matches
within certain boundaries (e.g. within states) corresponds to setting Distij = ∞ for i, j located in different
states. Appendix A of the supplementary material available at Biostatistics online presents an alternative
definition relying on the empirical CDF of treated-control pairwise distances.

3.3. Selecting matches

We provide an R package that performs matching based on DAPS using an optimal or a greedy algo-
rithm. The optimal algorithm uses the optmatch R package, and the greedy algorithm is described in
Appendix B of the supplementary material available at Biostatistics online. Gu and Rosenbaum (1993)
found that optimal matching performed better than greedy matching in returning matched pairs with small
Mahalanobis covariate distance, but returned similarly balanced matched data sets.

3.4. Specifying calipers

In DAPSm, a caliper can be defined as the number of DAPS standard deviations beyond which a value of
DAPS is deemed too large to produce an appropriate match. In this situation, a treated-control pair cannot
be matched if the corresponding DAPS of the pair is larger than the caliper. That is, the caliper is directly
applied to the entire DAPS quantity.

Calipers could be alternatively defined to pertain separately to each component of DAPS. For example,
one type of caliper could prevent any match with propensity score difference exceeding some threshold
regardless of DAPS value, with an analogous caliper defined only for distance.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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Note that when a caliper is not used, there is an equivalence between DAPSm with w = 1 and standard
1-1 nearest neighbor propensity score matching. When a caliper is specified these procedures may not
be exactly equivalent due to the definition of the caliper for the two procedures. Standard matching uses
the standard deviation of propensity score estimates, while DAPSm uses the standard deviation of DAPS
w=1= |PS difference|.

3.5. Data-driven choice of w

In DAPS, there is a transparent interplay between distance of observed covariates (as measured through
the difference in the propensity score estimates) and distance of matched pairs. Automated data-driven
procedures may be useful for selecting an appropriate value of w. We implement an automated procedure
that re-calculates DAPS and performs matching across a range of possible w.As w increases, balance of the
observed covariates can be assessed, and the smallest value of w that maintains the absolute standardized
difference of means (ASDM) of the observed confounders below a pre-specified cut-off is used.A different
balance criterion can also be used. This choice of w assigns the largest possible weight to proximity (and,
by extension, to the unmeasured spatial confounders), while still maintaining balance of the observed
confounders.

Even though this choice of w is such that it ensures observed covariate balance with respect to a specific
criterion, w can be specified alternatively if subject-matter knowledge is available on an unmeasured
spatial confounder. For example, there may be a known but unmeasured confounder (e.g. volatile organic
compounds, baseline NOx emissions in an air pollution study) that is regarded as more important than
any measured variable. The value of w could be chosen such that DAPSm prioritizes spatial proximity
of matched pairs to maximize the chance of balancing the unmeasured spatial confounder, even at the
cost of balance on observed covariates. Ability to make such a judgment transparently is a key feature of
DAPSm.

4. SIMULATION AND COMPARISON WITH ALTERNATIVES

We conduct a simulation study to explore the performance of DAPSm and several reasonable alternatives
for incorporating spatial information, with a focus on how different methods perform across a variety
of unmeasured spatial confounding settings, as dictated by the spatial surface of simulated unmeasured
confounding. We evaluate methods with respect to mean squared error (MSE) of ATT estimates, balance
of observed and unobserved confounders, and number of matches. Data are simulated across the locations
of 800 power generating facilities to represent a realistic spatial patterning of units reflecting that of the
study of power plant emissions and ozone. Specifically, for each simulated data set, each of 800 fixed
locations are simulated to have one unmeasured confounder U generated as a Gaussian Process with
Matérn correlation function, four observed confounders Xi, i = 1, 2, 3, 4 uncorrelated with U , binary
treatment Z , and continuous outcome Y . The specifics of the data generating mechanism can be found in
Appendix C of the supplementary material available at Biostatistics online.

The Matérn correlation function of the spatial confounder is governed by two parameters, the smooth-
ness, ν, and range, r. The range, r, measures how quickly the correlation of U between two locations
decays with distance. When ν is small, the spatial process is rough, and when it is large the process is
smooth. See Minasny and McBratney (2005) for a detailed description. Appendix D of the supplementary
material available at Biostatistics online shows four generated surfaces of a spatial variable with Matérn
correlation function for combinations of small and large values of smoothness and range.

The situation presented here assumes that U is uncorrelated with X to highlight the impact of completely
unobserved spatial confounders. Situations where U is simulated to have correlation with X produce
similar results with less pronounced gains of incorporating spatial information.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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4.1. Methods for comparison with DAPSm

We consider alternative approaches belonging to two general strategies for incorporating spatial infor-
mation with propensity scores: (i) incorporating spatial information in the matching procedure and (ii)
incorporating spatial information in the propensity score estimates themselves. The former methods esti-
mate the propensity score using X, then perform matching based in part on distance, as done in DAPSm.
The latter methods estimate propensity scores that vary according to a spatial pattern by construction, then
matches on these “spatial propensity scores.” After matching is performed, ATT estimates are acquired
through a difference in means of the matched pairs. Further regressions adjustments could be performed
in practice.

The previously described method of Keele and others (2015) is one method that incorporates spatial
information in the matching. Even though Keele and others (2015) advocate for matching directly on
covariates, in the simulation study this method was implemented performing exact matching on five
categories of the propensity score, such that any difference in performance could be attributed solely to
the methods’ ability to adjust for unmeasured spatial confounding. Simulation results for this method
implemented to match directly on covariates are shown in Appendix E of the supplementary material
available at Biostatistics online.

We further considered another method that incorporates spatial information into the matching pro-
cedure, which we refer to as “Matching within Distance Caliper.” For this method, a distance caliper
is chosen as the maximum distance of potential matched pairs. Within the distance caliper, matching is
performed based solely on the propensity score estimated with X. A caliper on the propensity score can
be used in addition.

Methods that incorporate spatial information into the propensity score estimates include parametric and
non-parametric incorporation of spatial information in the treatment assignment model.A simple approach
is the introduction of fixed effects for locations’ latitude and longitude coordinates in the propensity score,
in addition to the observed covariates. We refer to this as “Naïve with Coordinates”. A more flexible
extension is to use gradient boosting models (GBM; Friedman, 2001) to estimate the propensity score,
including the coordinates and the observed covariates X. Estimation of the model is performed using the
gbm R package (Ridgeway, 2007).

While the “Naïve with Coordinates” and GBM approaches are not spatial methods per se, an alternative
approach is to augment the propensity score model with a spatial random effect, as implemented using
the spBayes R package (Finley and others, 2007). Specifically, the propensity score is estimated by fitting
P(Z = 1|X) = f (X, W ; θW ), W ∼ GP(0, C), where C = C(λ) is the spatial random effect correlation
matrix with parameters λ. Such approach was not pursued in detail here due to its computational intensity
and its poor performance in initial investigations.

We compare the propensity-score matching with spatial information methods to the gold standard
which uses the data generating outcome model, and the gold standard propensity score (“Gold PS”)
which uses the true propensity score model conditional on X and U . Finally, the naïve approach performs
propensity-score matching using estimates from a model solely on the observed confounders X.

All methods are implemented with 1-1 nearest neighbor optimal matching without replacement. For
DAPSm, we present results for the definition of standardized distance defined in (3.2). For GBM, we
considered 3rd degree interactions. Results for Matching within Distance Caliper are presented with the
distance caliper equal to the 10th percentile of pairwise treated-control distances (the method indicated
sensitivity to the choice of distance caliper, other specifications were considered, but are not shown here).
The method of Keele and others (2015) was implemented across a range of values for λ, representing
different compromises between the number of returned matches and the distance between matched pairs.
As Keele and others (2015) do not provide specific guidance on the selection of λ, we present results
for two values meant to represent two different points in the space of compromises between distance and

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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the number of matches: λ = 0.382, the median pairwise distance of treated and control units (as done in
Keele and others (2015)), and λ = 0.05, which was determined in simulation to yield fewer matches and
lower MSE for this range of simulation scenarios. For implementing DAPSm, w was chosen based on the
algorithmic procedure described in Section 3.5.

4.2. Simulation results

Figure 2 shows the relative MSE of the effect estimates calculated with a subset of the methods with respect
to the Gold PS and for different specifications of smoothness and range of U . MSE is calculated over the
subset of simulated data sets for which each method returned matches. Table 1 describes the percentage of
simulated data sets for which no matching was achieved for each of the methods. As expected, the naïve
approach has the highest relative MSE ranging from 24.4 to 46.6. Relative MSE for the gold standard
varied from 0.16 to 0.32, indicating that specifying the correct outcome model is more efficient than using
the correctly specified propensity score. These approaches did not indicate patterning when varying the
spatial structure. Relative MSE for the Naïve with coordinates ranged from 6 to 41.3, and indicated similar
patterning as the other spatial methods with respect to the smoothness and range of U , but performed
worse in terms of MSE than its more flexible form (GBM) and is emitted from Figure 2.

For all methods incorporating spatial information, relative MSE decreases as the surface gets smoother
(larger values of smoothness ν) or the spatial correlation remains positive at longer distances (larger values
of range r). Similar results are observed for the absolute bias. Among the methods considered based on
propensity scores, DAPSm had the lowest MSE across all specifications of range and smoothness, apart

Fig. 2. Estimates of relative mean squared error over 100 simulated data sets for each specification of smoothness ν
(x-axis) and range r (y-axis) for the Matérn correlation function of the unobserved confounder. The baseline MSE
corresponds to the Gold PS. Printed values are rounded to the first decimal.
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Table 1. Percentage of simulated data sets that each method returned no matches (% fail), average number
of treated units that were dropped when matches where returned (Dropped), the interquartile range of
number of dropped treated units (IQR), and average distance of matched pairs (Distance)

Gold PS Naïve N.Coords GBM DistCal 10% DAPSm Keele-0.05 Keele-0.382

% fail 1.5 0.5 0.96 27.67 33.29 0.04 0 0
Dropped 0.06 0.06 0.06 0.23 0 0 55.98 2.11
IQR (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (50,62) (0,3)
Distance (×100) 37.4 40.5 36.4 36.1 8.4 2.6 1.9 3.7

from the method of Keele and others (2015) when λ = 0.05 was chosen such that it reduces simulation-
based MSE compared to λ = 0.382. Results for the method of Keele and others (2015) implemented to
match directly on the observed covariates, instead of the propensity score, can be found in Appendix E
of the supplementary material available at Biostatistics online, and showed lower relative MSE than the
methods presented here.

We also evaluated methods with respect to the balance of observed and unobserved covariates. Figure 3
shows the standardized difference of means of X1, X2, U (balance of X3, X4 was similar to the balance of X1,
X2) for the scenarios where ν = r = 0.1 (rough uneven surface), and ν = 1.46, r = 1 (smooth surface).
First, the full data ASDM shows that all variables were imbalanced in most simulated data sets. Using the
correctly specified propensity score model (Gold-PS) achieved balance of all confounders at the 0.1 cut-off.
The naïve approach does not incorporate any spatial information, and the unobserved confounder remains
imbalanced. Incorporating coordinates in the estimation of the propensity score improves on balancing
U , especially in smoother surfaces. Matching within Distance Caliper performed similarly to Naïve with
coordinates in the rough surface. In smooth surfaces Matching within Distance Caliper performed well in
balancing both X and U , although the balance of U is sensitive to the choice of the distance cut-off. The
GBM approach exhibited poor balance for all covariates in both scenarios. DAPSm with weight w chosen
as described in Section 3.5 balanced all observed covariates, while improving balance of U in both rough
and smooth surfaces. The method of Keele and others (2015) for λ = 0.382 returned matches for which
balance of the observed variables was better than for λ = 0.05, but λ = 0.05 returned matched data sets
with better balance on U .

Lastly, the methods considered exhibited substantial variability in terms of the number of achieved
matches. Optimal matching algorithms often return no matched pairs. Table 1 shows the percentage of
simulated data sets that each method failed to return any matches, and the average and IQR of number
of treated units that were dropped when matching was achieved. GBM and matching in distance calipers
failed to return matches for a high proportion of simulated data sets, but when matching was achieved, they
failed to match, on average, less than 1, or 0 treated units accordingly. DAPSm failed to return matches
for 0.04% of simulated data sets, but matched all treated units otherwise. On the other hand, Keele and
others (2015) returned matches with a significant amount (λ = 0.05) or a small number (λ = 0.382) of
dropped treated units. Differences in the number of obtained matches should be viewed in light of the fact
that confining effect estimation to subsets of the available data can change the causal estimand of interest.

5. COMPARING THE EFFECTIVENESS OF SCR/SNCR EMISSION REDUCTION TECHNOLOGIES FOR REDUCING

NOx EMISSIONS AND AMBIENT OZONE

Regulatory strategies impacting USA power plants are predicated on the knowledge that reducing NOx

emissions reduces ambient ozone, prompting many policies that incentivize the installation of emission
control technologies at power plant smokestacks. While many technologies are available, SCR, and SNCR

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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Fig. 3. Average and (2.5%, 97.5%) intervals of standardized difference of means of (X1, X2, U ) for the scenarios
where ν = r = 0.1 (top), and ν = 1.46, r = 1 (bottom) over 100 Monte Carlo simulations.

technologies are believed to be among the most efficient for reducing NOx. However, no study has, to our
knowledge, empirically compared the effectiveness of these strategies to evaluate whether the supposed
efficiency gains of SCR/SNCR for reducing NOx emissions actually translate to greater reductions into
ambient ozone concentrations.
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We compiled a national data source linking information on power plants, ambient pollution, population
demographics, and weather. The resulting data set consists of 473 power generating facilities powered by
either coal or natural gas during June, July, and August 2004, which represents the peak ozone season
in a year following the institution of important NOx and ozone regulations. Covariate information (X)
on each facility includes power plant operating characteristics such as operating capacity and heat input,
as well as area level characteristics such as temperature and population demographics. As a measure of
ozone in the area surrounding each power plant (Y ), we use the fourth highest daily ozone concentration,
averaged across all monitoring locations within a 100 km radius. This measure is chosen to mimic the
National Ambient Air Quality Standard for ozone, which is based on the annual fourth-highest daily
maximum 8-hour average ozone concentration. Appendix F of the supplementary material available at
Biostatistics online has a detailed description on the exact construction of the data set used in the final
analysis, including references to publicly-available raw data sets and R scripts used for data construction
and linkage.

We consider as “treated” the power plants for which at least 50% of the heat input is to facility units
with at least one SCR or SNCR technology installed (Z = 1, 152 facilities), with the remaining plants
regarded as untreated (Z = 0, 321 facilities). 67.7% of facilities have either 0% or 100% of their heat
input used by units with installed SCR or SNCR control technologies, suggesting robustness to the 50%
cut-off. Figure 1 shows maps of the power plants’ treatment assignment and ozone measurements for the
surrounding area, and Appendix F of the supplementary material available at Biostatistics online discusses
the emission control actions of the control group Z = 0.

To estimate the effect of SCR/SNCR technologies relative to alternatives, we implement the “naïve”
approach, Matching within Distance Caliper (distance caliper was set to 354 miles, the 15th percentile of all
treated-control distances), GBM, the method of Keele and others (2015), and DAPSm (with standardized
geo-distance). While the method of Keele and others (2015) was implemented with the propensity score
for the performance comparison in Section 4, here it is implemented in a manner more consistent with the
intent of integer programming methods, matching directly on covariates. The tolerance level for Keele and
others (2015) was set to 0.15 standard deviations for all continuous covariates. Multiple values were tried
for the tuning parameter λ, and results are presented with λ = 800 (41st quantile of pairwise distances)
such that the number of matched pairs will be similar to that of DAPSm. The caliper used for each method
was decided such that methods would balance observed covariates, where “balance” is judged by an
ASDM less than 0.15 (the same value used as the tolerance for the method of Keele and others (2015)).

The variables that are included in the propensity score model are listed in Figure 4 andAppendix G of the
supplementary material available at Biostatistics online. Characteristics of the power plants (e.g. energy
consumed, compliance scheme) are not expected to exhibit strong spatial patterns, but characteristics of
the surrounding areas (e.g. temperature, population demographics) are.

5.1. Covariate balance, number, and distance of matched pairs

Covariate balance was assessed by comparing the covariate distribution of treated and control units.
Without adjustment, 10 out of 18 covariates were imbalanced between the treated and control facilities,
as evidenced by the leftmost values of each panel in Figure 4. DAPSm was performed with values of w
ranging from 0 to 1, with covariate balance evaluated for each w, and depicted in the remaining portions of
Figure 4. Note the change in covariate balance between the unadjusted setting and the setting with DAPSm
(w = 0), which matches observations based solely on proximity. Most area level characteristics achieve
balance when matching only on proximity, but imbalance for power-plant level characteristics persists.
Increasing values of w place more emphasis on observed propensity score differences, and balance for
covariates representing power-plant characteristics improves, without a strong sacrifice in balance for
the area-level covariates. Using the procedure described in Section 3.5, w ≈ 0.513 was chosen for the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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Fig. 4. Absolute standardized difference of means for covariates that are included in the propensity score model for
the full data before any matching, and for various specification of the DAPSm weight. Balance of covariates on power
plant characteristics is described on the left, and balance of area-level variables is shown on the right.

Table 2. Balance of covariates assessed by the ASDM

Naive Distance Caliper Keele et al. DAPSm Full-data

Number of imbalanced variables 0 0 0 0 10
Mean ASDM 0.067 0.052 0.065 0.045 0.189
Max ASDM 0.148 0.134 0.145 0.150 0.480
Number of matches 137 116 124 124
Mean distance (in miles) 1066 198 146 141

analysis. Table 2 summarizes the covariate balance for all methods. GBM failed to return a balanced
matched sample and is excluded from the results.

Table 2 also presents the number and mean distance of matched pairs. Number of matches ranged
between 116 and 137, indicating that not all of 152 treated units were matched. Nonetheless, all methods
should closely approximate theATT in a manner that is comparable across methods, since most treated units
are matched in all implementations. Characteristics of the matched population according to each method
can be found in Appendix H of the supplementary material available at Biostatistics online. Dropped
treated units were smaller, mostly gas-operating facilities in urban areas compared to the matched treated
units. Maps of the matched pairs are shown in Figure 5.

5.2. Effect estimates for NOx and ozone

We evaluate the effectiveness of SCR/SNCR technology for reducing NOx emissions and ambient ozone.
Since emissions are measured at the power plant, the analysis of NOx emissions is not expected to suffer
from unmeasured spatial confounding. Since the formation of ambient ozone in the areas surrounding
power plants is determined in part by atmospheric conditions, the analysis of ozone is expected to be
susceptible to unmeasured spatial confounding. Confidence intervals (CIs) are constructed conditional
linear models fit to the matched data sets (Ho and others, 2007). Results from all methods are reported in
Table 3 and Figure 6.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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Fig. 5. Maps of matched pairs for naïve, distance caliper, Keele and others (2015), and DAPSm approaches. Each
line segment connects one treated power plant to its matched control.

Table 3. Estimates and 95% CIs for the effect of SCR/SNCR compared to alternative strategies
on total NOx emissions (in tons) and 4th maximum ozone measurement (in parts per billion)

NOx emissions Ozone
LB Estimate UB LB Estimate UB

Naive −343.7 −187.9 −32.0 0.26 1.97 3.68
Distance Caliper −449.6 −224.6 0.4 −2.04 −0.24 1.55
Keele et al. −250.9 −90.5 70 −1.88 −0.06 1.76
DAPSm −406.1 −205.1 −4.1 −2.1 −0.27 1.56

5.2.1. Effects of SCR/SNCR on power plant NOx emissions. Point estimates for the effect of SCR/SNCR
on NOx emissions were below zero across all methods, with the naïve and DAPSm returning significant
results at the 95% CI level. Power plants with installed SCR/SNCR emission control technologies emitted
on average 205 tons of NOx less (95% CI 4–406 tons of NOx according to DAPSm) than what they would
have had emitted had they adopted an alternative NOx control strategy.
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Fig. 6. Effect estimates and 95% CIs for SCR/SNCR emission control technology installation on NOx emissions and
4th maximum ozone concentration during June–August 2004, using the naïve, Matching within Distance Caliper,
Keele and others (2015), and DAPSm approaches.

5.2.2. Effects of SCR/SNCR on ambient ozone. In the analysis of ambient ozone concentrations, for
which unmeasured spatial confounding is a concern, the naïve approach estimates a significant posi-
tive effect of SCR/SNCR installation on ambient ozone, which is inconsistent with the knowledge that
SCR/SNCR reduces NOx emissions and the documented relationship between NOx and ozone. This result
corroborates suspicion of unmeasured confounding. In contrast, estimates from all methods that incorpo-
rate spatial information provide estimates very close to zero (DAPSm: −0.27 parts per billion, 95% CI
−2.1 to 1.56), indicating that SCR/SNCR does not reduce ambient ozone more than alternative strategies.
For reference, these effect estimates can be compared against the national ozone air quality standard of
70 parts per billion.

5.2.3. Comparison of effect estimates across methods. As mentioned earlier, since NOx emissions are
measured at the power plants’smokestacks, we do not expect unobserved spatial predictors of the outcome
for this analysis. In fact, estimates across all methods are similar.

However, in the analysis of ozone concentrations, we see that the spatial methods return results that are
inconsistent with the naïve method. In Appendix I of the supplementary material available at Biostatistics
online, we provide additional evidence of the potential of unobserved spatial confounding in the analysis
of ozone, by performing a sensitivity analysis of the DAPSm effect estimates as a function of w. The
sensitivity analysis corroborates the existence of an unmeasured spatial confounder, with effect estimates
that increase with w (for w > 0.513) and approach the estimates from the naïve analysis when w = 1 and
no adjustment for spatial proximity is made. In contrast, the sensitivity analysis of the effect of SCR/SNCR
on NOx emissions indicates that spatial confounding is not an issue.

6. DISCUSSION

Unobserved confounding is a ubiquitous issue in the analysis of observational studies. Settings with
spatially-indexed data provide an opportunity to recover information on unobserved spatial confounding,
but most methods have been confined to regression-based approaches. We propose a method that extends

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx074#supplementary-data
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the benefits of propensity score matching procedures to settings with spatially-indexed data and pro-
vide a transparent and principled framework for assessing the relative trade-offs of prioritizing observed
confounding adjustment and spatial proximity adjustment.

The simulation study showed the potential for DAPSm to recover information on unobserved spatial
confounding. When deployed to evaluate the effectiveness of emission control technologies, DAPSm
balanced all observed covariates in the resulting matched data set while providing protection against the
existence of unobserved spatial confounders. The importance of incorporating spatial information was
underscored by the ability of DAPSm (and other methods accounting for proximity) to return estimates
that are more in line with subject-matter knowledge, in contrast to the naïve approach that ignores the
possibility of spatial confounding. Whereas the naïve approach indicated that clear reductions in NOx

were accompanied by increases in ambient ozone, analysis with DAPSm (and other methods) provided
the more credible result that SCR/SNCR do not decrease ambient ozone more than other strategies.

While we compare DAPSm against Keele and others (2015) for illustration, it is important to remember
the important fundamental distinction between these methods: DAPSm uses the propensity score while
Keele and others (2015) propose an integer programming method that matches on covariates directly.
While a comparison between propensity score methods and integer programing methods is not the goal
of this article, it is worth noting that the most salient operational difference of the two methods relates to
their respective tuning parameters that govern the amount of emphasis placed on matching observations
that are geographically close. DAPSm involves the tuning parameter (w) that offers a characterization of
the price paid (in terms of observed covariate distance) by increasing emphasis on spatial proximity. This
was evident in the ability to offer a practicable way to select a value of w (as described in Section 3.5), and
the transparent trade off between spatial proximity and observed covariate distance is an important feature
of DAPSm that aligns with a scientific goal at the forefront of air pollution (and other) studies. On the
other hand, the method of Keele and others (2015) entails a tuning parameter (λ) that balances emphasis
on spatial proximity against number of obtained matches for a fixed tolerance of covariate imbalance.
Keele and others (2015) provide an approach where, for a fixed tolerance, λ could be chosen to obtain a
target number of matches. Further extensions growing from the mixed integer programing literature could
give rise to alternative ways of prioritizing covariate balance, the number of matches, and the relative
proximity of matches.

Furthermore, we evaluated the method of Keele and others (2015) in simulations and in comparison
with other reasonable approaches, in addition to DAPSm. These simulations showed that, across a variety
of spatial confounding surfaces, DAPSm with an appropriately chosen w performed comparably or better
than the method of Keele and others (2015) based on the propensity score, at least for some choices of λ.

While the comparison of different methods in the analysis of power plant emission controls highlights
the potential for DAPSm to adjust for unmeasured spatial confounding, there are several important lim-
itations to the analysis. First, unmeasured (spatial or non-spatial) confounding may persist due to power
plant or area level characteristics not contained in the data sources used. Second, we considered an “active
control” group of power plants that did not install SCR/SNCR, but may have employed other strategies
that could, in principle, be installed alongside SCR/SNCR (211 out of 311 control units employed a NOx

control strategy other than SCR/SNCR). Finally, the analysis relied on a simplification that linked each
power plant to ambient ozone concentrations within a 100 km radius. Importantly, this does not fully
capture the phenomenon of long-range pollution transport whereby emissions from a particular source
travel across large distances during conversion to ambient pollution. Thus, installation of control tech-
nologies at a given power plant could affect ambient pollution concentrations around power plants located
at distances greater than 100 km, a phenomenon referred to as “interference”. While interference is not
expected in the analysis of NOx emissions, ignoring interference in the analysis of ozone concentrations
has potential consequences. The simplifications used here are expected to yield estimates that are closer to
zero than any true effect of SCR/SNCR on ambient ozone, as installation of these technologies is likely to
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reduce ambient ozone even around power plants that were considered in the “control group” for this anal-
ysis. Methods for causal inference with interference have been recently considered with spatially-indexed
data (Verbitsky-Savitz and Raudenbush, 2012; Zigler and others, 2012), including our own current work
on methods advances to address interference in this specific setting (Papadogeorgou and others, 2017).
Furthermore, the analysis relies on some extent on correct specification of the propensity score model,
and King and Nielsen (2016) argue against the use of propensity score for matching altogether. For that
reason, checking covariate balance in the design phase (Rubin, 2008) without evaluating outcomes, is an
important component of propensity score matching.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org. R Software is available at
https://github.com/gpapadog/DAPSm.
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