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Abstract

Recently, more and more attention is drawn to the field of medical image synthesis across 

modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted 

magnetic resonance (MR) image is of great importance, although the mapping between them is 

highly complex due to large gaps of appearances of the two modalities. In this work, we aim to 

tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network 

(DECNN). Specifically, we generate the feature maps from MR images, and then transform these 

feature maps forward through convolutional layers in the network. We can further compute a 

tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative 

CT synthesis result back to the feature maps. This embedding operation results in better feature 

maps, which are further transformed forward in DECNN. After repeating this embedding 

procedure for several times in the network, we can eventually synthesize a final CT image in the 

end of the DECNN. We have validated our proposed method on both brain and prostate imaging 

datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that 

our DECNN (with repeated embedding operations) demonstrates its superior performances, in 

terms of both the perceptive quality of the synthesized CT image and the run-time cost for 

synthesizing a CT image.
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1. Introduction

Computed tomography (CT) and structural magnetic resonance (MR) images are both 

important and widely applied in the treatment planning of radiotherapy (Balter et al., 1998; 

Chen et al., 2004; Khoo et al., 1997; Schad et al., 1987). Recently, it has become desirable to 

synthesize CT image from the corresponding MR scan. For example, quantitative positron 

emission tomography (PET) requires CT image for attenuation correction (Carney et al., 

2006; Kinahan et al., 1998; Pan et al., 2005). The approach for CT-based attenuation 

correction is to transform the CT image, which is expressed in Hounsfield units, into an 

estimate of the linear attenuation map. This map is then projected to obtain the attenuation 

correction factors for PET (Carney et al., 2006). However, unlike the traditional PET/CT 

scanner, the MR signal in the cutting-edge PET/MR scanner is not directly correlated with 

the tissue density and thus cannot be applied to attenuation correction after simple intensity 

transform (Wagenknecht et al., 2013). As a possible solution, one may segment MR images 

to identify different tissues first. This is often challenging because some parts in the MR 

images, e.g., bone and air-filled cavities, are presented in similar intensities while they have 

different attenuation properties. With the CT image synthesized from the T1-weighted MR 

image, however, the challenge can be greatly alleviated.

In this work, we aim to address the problem of synthesizing CT from T1 MR. But these two 

modalities differ largely regarding their image appearances, which makes this synthesis 

problem challenging to solve. Examples of the T1-weighted MR images and their 

corresponding CT images are shown in Fig. 1. These images are acquired from the same 

patients, i.e., (a) for the brain, and (b) for the prostate, respectively. In the MR images, the 

intensity values of ‘air’ and ‘bone’, as pointed by the blue arrows and orange arrows, are 

both low. However, in the CT images, the ‘air’ appears dark, while the ‘bone’ turns to be 

bright. In general, the intensity mapping between these two modalities of MR and CT is 

highly complex, encoding both spatial and context information in non-linear mapping.

There are several reports in the literature focusing on inter-modality medical image 

synthesis, i.e., from MR to CT. These methods can be mainly categorized into the following 

three classes.

a. Atlas-based methods. In the atlas-based methods (Arabi et al., 2016; Hofmann et 

al., 2008; Kops and Herzog, 2007), a set of atlases are prepared in advance, each 

of which consists of both MR and CT acquisitions. Given a new subject with the 

MR image only, all atlases are first registered with the new subject by referring 

to their respective MR images. Then, the resulted deformation fields are applied 

to warp the respective CT images of the atlases to the new subject space, from 

which the subject CT image can be synthesized through the fusion of aligned 

atlas CT images (Burgos et al., 2014). Clearly, the performances of the above 

methods are highly related with the registration accuracy, and the quality of the 

synthesized CT image also relies on the sophisticated strategies to fuse the 

warped CT images. Note that the atlas-based methods may also cost high 

computational time for registering all images.
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b. Sparse-coding-based methods. These methods (Yang et al., 2012; Yang et al., 

2008) usually involve several steps in the respective pipelines. First, the 

overlapping patches are extracted from the new subject MR image. These subject 

MR patches are then encoded by a MR patch dictionary that is built from the 

linearly aligned MR atlases. The obtained sparse representation coefficients are 

transferred to the coupled CT patch dictionary (also built from the linearly 

aligned CT atlases), to fuse the respective CT atlas patches for finally 

synthesizing the subject CT image. Roy et al. (2010) applied this framework for 

predicting FLAIR image from T1- and T2-weighted MR images. Similarly, (Ye 

et al., 2013) estimates T2- and diffusion-weighted MR images from T1-weighted 

MR. But one main drawback of these methods is that the estimation is 

computationally expensive (Dong et al., 2016a) due to the need of sparse coding 

optimization upon all image locations. Because each location needs extract patch 

and go through all the operations to get its corresponding predicted patch. And 

constructing a global dictionary means the dictionary needs to be of big size for 

ensuring the final prediction performance, which obviously adds the cost time for 

solving the sparse representation coefficients (Dong et al., 2016a; Yang et al., 

2008).

c. Learning-based methods. These methods learn the complex mapping from the 

local detailed appearances of MR images to those of CT images in the same 

subjects (Huynh et al., 2016; Johansson et al., 2011; Roy et al., 2014). In order to 

address the issue of expensive computation in sparsity learning based methods, 

Huynh et al. (2016) presented an approach to estimate CT image from MR using 

the structured random forest and the auto-context model. Vemulapalli et al. 

(2015) proposed an unsupervised approach to maximize both global mutual 

information and local spatial consistency for inter-modality image synthesis. But, 

such methods often have to first decompose the whole input MR image into the 

overlapping patches, and then map each MR patch to the corresponding CT 

patch. Also, the additional computation cost can be high in order to assemble the 

overlapping CT patches into a single output image.

Recently, the convolutional neural network (CNN) has shown its tremendous popularity and 

good performance in the computer vision and medical image computing fields (Liao et al., 

2013; Ren et al., 2018; Xiang et al., 2017; Xu et al., 2016). CNN is capable of modeling 

non-linear mapping between different image spaces, without defining hand-crafted features. 

Also, CNN-based method can overcome time-consuming problem of the patch-based 

method by taking whole image as input and outputting its whole image prediction during 

testing stage. Successful applications can be found by reconstructing high-resolution images 

from low-resolution images (Dong et al., 2016a), and by enhancing PET signals from the 

simultaneously acquired structural MR (Li et al., 2014). (Han, 2017) also proposed a deep 

convolutional neural network method for CT synthesis from MR image, which achieved 

reasonable performance compared to the atlas-based methods. However, this method can 

only process a single slice through each forward mapping. To handle the problem of 3D 

MR-to-CT synthesis, this method had to process multiple slices independently, which could 

often cause discontinuity and artifacts in the synthesized CT images. Besides CNN-based 
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network, Van Nguyen et al. (2015) proposed the location-sensitive deep network (LSDN) for 

synthesizing images across domains by integrating intensity features from image voxels and 

their spatial information.

In this paper, we propose a deep embedding convolutional neural network (DECNN) to 

synthesize CT images from T1-weighted MR images. Concerning the examples in Fig. 1, 

the mapping from MR to CT can be highly complex, as the appearances of these two 

modalities vary significantly across spatial locations (Wagenknecht et al., 2013). This large 

inter-modality appearance gap challenges the accurate learning of CNN. To this end, we 

decompose the CNN model into two stages: 1) the transform stage and 2) the reconstruction 
stage. The transform stage is a collection of the convolutional layers that are responsible for 

forwarding the feature maps, while the reconstruction stage aims to synthesize the CT image 

from the transformed feature maps. Besides, we also propose a novel embedding block. Note 

that the embedding block is able to synthesize the CT image from the tentative feature maps 

in the CNN. Next, the tentative CT synthesis is embedded with the feature maps, thus the 

newly embedded feature maps become more related to the CT images and can be further 

refined by the subsequent layers in the CNN. More importantly, we insert multiple 

embedding blocks into the transform stage to derive our DECNN accordingly. Note that the 

embedding block is similar to deep supervision (Lee et al., 2015) which has been adopted by 

many computer vision tasks (Chen et al., 2016; Xie and Tu, 2015). Holistically-nested edge 

detection (HED) method (Xie and Tu, 2015), for example, leverages multi-scale and multi-

level feature learning to perform image-to-image edge detection. This method results in 

multi-outputs and then fuses them in the end of the network. DCAN (Chen et al., 2016) 

takes advantages from the auxiliary supervision by introducing multi-task regularization 

during training. Our embedding block goes beyond deep supervision since the midway 

feature maps are further embedded into the subsequent layers of the network. The 

embedding block thus provides consistent supervision to facilitate the modality synthesis 

and improve the quality of the final results. This embedding strategy also resembles the 

auto-context model (Tu and Bai, 2010). We note that auto-context model generally requires 

independent learning for each stage, while our DECNN can integrate all embedding blocks 

into a unified network for end-to-end training.

The advantage of the embedding block is that it has greatly strengthened the inter-modality 

mapping capability of DECNN regarding MR and CT images. In particular, the tentatively 

synthesized CT images are embedded to generate better feature maps, which will be 

transformed forward in the purpose of refining the synthesis of the CT image. Also, through 

the experiments we find that the embedding block contributes to faster convergence when 

training the deep network in back-propagation. Moreover, DECNN allows us to process all 

test subjects in a very efficient end-to-end way.

Our main contributions can be summarized as follows.

• We propose a very deep network architecture for estimating CT images from MR 

images directly. The network consists of convolutional and concatenation 

operations only. It can thus learn an end-to-end mapping between different 

imaging modalities, without any patch-level pre- or post-processing.
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• To better train the deep network and refine the CT synthesis, we propose a novel 

embedding strategy, to embed the tentatively synthesized CT image into the 

feature maps and further transform these features maps forward for better 

estimation of the final CT image. This embedding strategy helps back-propagate 

the gradients in the network, and also make the training of the end-to-end 

mapping from MR to CT much easier and more effective.

• We carry out experiments on two real datasets, i.e., human brain and prostate 

datasets. The experimental results show that our method can be flexibly adapted 
to different applications. Moreover, our method outperforms the state-of-the-art 

methods, in terms of both the accuracy of estimated CT images and the speed of 

synthesis process.

The rest of this paper is organized as follows. In Section 2, we present the details of our 

proposed DECNN for estimating CT image from MR image. Then, in Section 3, we conduct 

extensive experiments, evaluated with multiple metrics, on both real brain and prostate 

datasets. Finally, we conclude this paper in Section 4.

2. Method

CNN is capable of learning the mapping between different image spaces. We adopt the CNN 

model similar to Dong et al. (2016a) for the task of MR-to-CT image synthesis, and then 

develop our DECNN accordingly. As mentioned above, we decompose the CNN model into 

two stages, i.e., (1) the transform stage and (2) the reconstruction stage, as also illustrated in 

Fig. 2(a). The transform stage is used to forward the feature maps (i.e., derived from MR 

images), such that the CT image can be synthesized in the reconstruction stage, Our 

proposed DECNN is featured by the embedding block, which embeds the tentative synthesis 

of the CT image into the feature maps. This embedding block is a key factor of our DECNN 

for more accurately mapping from T1-weighted MR images to CT images.

2.1. Transform Stage, and reconstruction stage

Transform Stage: The transform stage in CNN consists of several convolutional layers, 

which derive the feature maps from the input MR images and forward them for later CT 

synthesis in the reconstruction stage. Denoting the input feature maps to the jth 

convolutional layer as Fj–1 (corresponding to the output of the early layer, the (j – 1)th 

layer), we can then compute the output of the jth layer as

F j = σ(W j ∗ F j − 1 + B j), (1)

where Wj and Bj represent the kernels associated with the jth convolutional layer, and 

‘*‘ denotes the convolution operator. We choose the parametric rectified linear unit (PReLU) 

(He et al., 2015b) as the activation function due to its outstanding generalization 

performance in similar tasks (Dong et al., 2016b; Hui et al., 2016). Here, σ is defined as:

σ(x) = max(0, x) + α min (0, x), (2)
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where α is a learnable parameter.

Reconstruction Stage: The CNN model ends with the reconstruction stage that 

synthesizes CT images from the feature maps outputted by the last layer of the transform 

stage. The reconstruction can be attained by a single convolutional layer by following

FR = WR ∗ FT + BR . (3)

Here, FT is the feature map outputted by the transform stage, and FR is the synthesis 

estimated by the reconstruction stage. Note that there is no activation function employed in 

the reconstruction stage. We also require the size of FR to be equal with the size of the initial 

input to the transform stage.

The training of the convolutional layers is conducted in a patch-by-patch way in order to 

alleviate the demand of many subjects for training. Given a center location in a training 

subject with his/her carefully aligned MR and CT images, we extract the corresponding 64 × 

64 ×3 surrounding MR and CT patches, from 3 consecutive axial slices. The MR patch can 

thus be perceived as 3 feature maps, each with the size of 64 × 64, and are input to the first 

convolutional layer of the network. Specifically, 128 feature maps are generated from these 

initial input MR patch and forwarded across all convolutional layers in the transform stage. 

To this end, there are 128 kernels in each convolutional layer, while the support of each 

kernel is 3 × 3 × 128 (and 3 × 3 × 3 for the first convolutional layer only). Our experiments 

show that the 3 × 3 axial receptive field of the kernel is enough to complete the mapping 

from MR to CT. Note, we apply zero-padding such that the sizes of all feature maps are 

always 64 × 64 in the transform stage. In the final, the transform stage yields 128 feature 

maps of the size 64 × 64, from which the CT patch of the size 64 × 64 × 3 can be 

synthesized in the reconstruction stage.

Note that a single convolutional layer is needed in the reconstruction stage. We particularly 

adopt 3 kernels of the support 3 × 3 × 128 to complete the reconstruction. The output of each 

kernel is associated with a certain 64 × 64 axial slice in the synthesized CT patch. Note that 

the 64 × 64 axial size is only required upon the training patches. In the testing phase, the 

network can directly apply convolutional operations upon 3 consecutive axial MR planes of 

arbitrary size. Thus, the entire CT field-of-view can be synthesized efficiently by the end-to-

end mapping of CNN.

2.2. Embedding block and DECNN

The embedding block estimates the CT synthesis given the latest feature maps, and then 

embeds the tentatively synthesized CT image into better feature maps. The architecture of 

the embedding block is shown in Fig. 2(b), as stated before. The embedding blockconsists of 

4 steps.

1. The CT image corresponding to the input MR image is tentatively synthesized 

from the feature maps that are input to the embedding block under consideration. 
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The synthesis is accomplished by applying Eq. (3) to the input feature maps; 

note that this step is the same as in the reconstruction stage.

2. The input feature maps are transformed through a single convolutional layer in 

the embedding block. The number of the kernels and the support of each kernel 

are the same as the convolutional layers in the transform stage, which has been 

described in Section 2.1.

3. The tentatively synthesized CT image is perceived as 3 additional feature maps, 

and then concatenated with those 128 feature maps yielded by Step 2 to obtain 

131 feature maps.

4. These 131 concatenated feature maps are transformed through a subsequent 

convolutional layer. This layer reduces the number of the feature maps from 131 

to 128, implying that there are 128 kernels of the support 3 × 3 × 131 in this 

layer.

In general, the feature maps are processed through two convolutional layers and one 

concatenation layer in the embedding block. The sizes of the input and the output feature 

maps for the embedding block are identical. Thus, the embedding block can be seamlessly 

integrated into the aforementioned CNN model.

We insert several embedding blocks in the late part of the transform stage, and thus derive 

our proposed DECNN model as shown in Fig. 2(c). Note that, after each embedding block, 

an additional convolutional layer is appended to refine the feature maps. Finally, the feature 

maps arrive at the reconstruction stage, where the CT image is eventually synthesized. In 

general, with k embedding blocks, the total number of the convolutional layers in DECNN 

will be 3k + 5.

Note that the embedding blocks are essentially important to tackle the highly complex 

mapping from MR to CT. The deep network with many convolutional layers transforms 

feature maps forward. The representations captured by shallow layers are more related with 

the input MR appearances, while the representations captured by deep layers are more 

related with the CT appearances. The embedding blocks in the late part of the transform 
stage can first synthesize CT images tentatively, and then inject the tentative CT estimation 

into the feature maps for refined CT synthesis. In this way, these embedding blocks help fill 

the large appearance gap between the two modalities and also speed up the MR-to-CT 

mapping within the flow of feature maps. The CT synthesis can also be refined across 

individual embedding blocks. Therefore, the learning of DECNN tends to yield more 

accurate and effective modeling for the mapping from MR to CT.

2.3. Implementation details

The introduction of the embedding blocks also allows us to compute the auxiliary loss, 

which helps improve the robustness of DECNN against the vanishing gradients and also 

strengthens the learning of the network parameters during back-propagation. For the k-th 

embedding block in DECNN, the tentatively synthesized CT image is denoted by FEk. 

Concerning the ground-truth F, we can compute the overall loss function of DECNN as
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L(θ) = FR − F 2 + β∑
k

FEk
− F 2 + α φ(θ) . (4)

Here, θ encodes all parameters of the network, and ϕ(θ) is the L2-norm regularization upon 

the parameters. We set β = 0.5 in our experiments, which balances the losses computed from 

the tentative CT estimation of individual embedding blocks and also the output of the final 

reconstruction stage, and α = 0.001 for the regularization term.

In DECNN, we transform the input feature maps through 5 convolutional layers empirically, 

such that the feature maps are ready for the first embedding block to synthesize CT images 

tentatively. More embedding blocks can be flexibly appended, according to the need in 

different applications, as described in Section 3 below.

Our network processes the input MR patches covering 3 axial slices, and estimates the 

output CT patches of the same size. In the training, the axial size is fixed to 64 × 64 for 

convenient implementation. In the testing, the 3 consecutive axial slices, covering the entire 

slices, can be processed as a whole. Therefore, each axial slice of the subject CT image can 

be reconstructed 3 times, which will be averaged for the final CT synthesis. Note that more 

axial slices can be considered simultaneously, although the learning of DECNN may become 

more challenging. Note, with the 3 axial slices consecutively synthesized, the superior-

inferior continuity of the synthesized CT image can be preserved, which will be confirmed 

by experimental results in Section 3.5.

3. Experimental result

In this section, we evaluate the performance of our method on two real CT datasets, i.e., (1) 

brain dataset and (2) prostate dataset, which are the same datasets used in (Huynh et al., 

2016; Nie et al., 2016). We first describe the datasets used for training and testing our 

method. Next, more detailed training setup is given. Subsequently, we analyze the effect of 

the embedding blocks in our architecture. We also present both qualitative and quantitative 

comparisons between our DECNN model and state-of-the-art methods. After that, we show 

the superiority of our designed quasi-3D mapping in keeping the appearance consistency in 

each dimension. Finally, we analyze the learned feature maps in our model, to explain why 

our DECNN model can iteratively get better synthesized CT results.

3.1. Datasets

We apply DECNN to the two real datasets for demonstrating its capability. The two datasets 

are introduced below.

1. Brain dataset. The brain dataset consists of 16 subjects, each with both MR and 

CT scans. The CT images were acquired with a Siemens Somatom scanner. The 

voxel size of the images is 0.59 × 0.59 × 0.59mm3. The MR images were 

acquired using a Siemens Triotim scanner, with the voxel size 1.2 × 1.2 × 1mm3, 

TE 2.95 ms, TR 2300 ms, and flip angle 9°.
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2. Prostate dataset. The prostate dataset consists of 22 subjects. The voxel sizes of 

the CT and MR images are 1.17 × 1.17 × 1mm3 and 1 × 1 × 1mm3, respectively. 

The CT images were acquired using a Philips scanner, and the MR images were 

acquired by a Siemens Avanto scanner with TE 123 ms, TR 2000 ms, and flip 

angle 150°.

In both datasets, CT images are aligned to the corresponding MR images through intra-

subject registration and inter-subject registration, and CT images are resampled to the same 

size of MR images. The intra-subject registration means to align each pair of CT and MR 

images of the same subject. In particular, for brain dataset, we apply FLIRT (Jenkinson and 

Smith, 2001) with 12 degrees of freedom to perform linear registration, because there is only 

small deformation in brain images and linear registration is sufficient. But for prostate 

dataset, there is often a large deformation on soft tissues. So we choose B-Splines (Klein et 

al., 2010) which uses mutual information as similarity measure to perform intra-subject 

deformable registration. Finally, rigid-body inter-subject registration is performed to roughly 

bring all subjects onto a common space. For the brain images, their backgrounds are 

removed and the final images have the size of 234 × 181 × 149. For prostate images, since 

this study only focuses on the prostate, the bladder and the rectum, we crop the original 

images to include just these three organs, thus obtaining the size of 153 × 193 × 50 for each 

cropped image.

Pre-processing steps include intensity inhomogeneity correction, abnormal intensity 

exclusion, intensity histogram matching, and intensity normalization. Intensity 

inhomogeneity correction is performed in all MR images with N3 method (Sled et al., 1998) 

to reduce the impact of intensity inhomogeneity. For abnormal intensity exclusion, we sort 

all the intensity values in the image and set the top 1% voxels to the maximum value. In this 

way, the artefacts caused by external elements in CT images can be effectively suppressed. 

Histogram matching is applied to make the intensity distribution for the same tissues across 

different subjects as consistent as possible. We perform intensity normalization using 

Inorm = I − min(I)
max(I) − min(I)  where Inorm is the normalized image intensity, I is the input image 

intensity, max(I) is the maximal intensity value in the image, and min(I) is the minimal 

intensity value in the image. Typical examples of the pre-processed MR and CT images from 

the brain dataset and the prostate dataset are shown in Fig. 1.

3.2. Experimental setting

Various studies have found that, with more data, the performance of a deep model can get 

better (Dong et al., 2016a; Timofte et al., 2014). So, in order to make full use of the dataset, 

we adopt a data augmentation strategy similar to (Timofte et al., 2015; Wang et al., 2015). 

All images are left-right flipped. In this way, we are able to have more available images for 

training the deep model in each leave-one-out case. We implement the CNN-based learning 

with CAFFE (Jia et al., 2014) in this work. The kernels in the convolutional layers are 

initialized following (He et al., 2015a). Similar to (Hui et al., 2016; Jain and Seung, 2009), 

we set the learning rate to 10−5, and adopt “Adam” as the solver for the optimization during 

back-propagation. The momentum is set to 0.9, and the L2-norm regularization upon the 

learned parameters is set to 10−3. The batch size is set to 16.

Xiang et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2019 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Instead of using large-size image for training, patches are generated by dividing each image 

into a regular grid of small overlapping patches. Specifically, we extract patches of the size 

64 × 64 from the pre-processed MR and the ground-truth CT with the stride of 8. As we use 

leave-one-out strategy to verify our model, we can get enough samples for training such very 

deep architecture. Specifically, we extract almost 600,000 patches for brain dataset, and 

100,000 patches for prostate dataset.

To quantitatively evaluate the synthesis performance, we use two popular metrics: (1) mean 

absolute error (MAE) and (2) peak signal-noise ratio (PSNR). The MAE and PSNR are 

computed as

MAE =
FR − F

N , (5)

PSNR = 10 ln N ⋅ Q2

FR − F 2 . (6)

where N is the number of voxels in each image, and Q is the maximal intensity value of FR 

and F. Here, F is the ground-truth CT that has been co-registered with the MR image. In 

general, a higher PSNR indicates better perceptive quality of the synthesized CT image. 

Note that, in order to compare quantitative results with other methods (Huynh et al., 2016) in 

terms of MAE, we rescale the normalized intensity value back by reversing the 

normalization step.

3.3. Role of embedding block

It is necessary to verify the importance of the embedding blocks in DECNN. The embedding 
blocks can be flexibly appended to the transform stage. With 5 simple convolutional layers 

prior to the first embedding block, we show the PSNR and MAE changes with respect to 
different numbers of embedding blocks in Fig. 3 (a–d), when applied to the brain and 

prostate datasets, respectively. Specifically, “Ebd k” indicates k embedding blocks used in 

DECNN, where the overall number of the convolutional layers for transforming feature 

maps is (3k + 5) as in Fig. 2(c).

From Fig. 3(a) and (c), we can observe that the PSNR measures increase quickly to the best 

performances with more embedding blocks and thus deeper networks. However, the 

performance starts to drop once the DECNN model becomes too deep to be well trained, 

partially due to the small size of each dataset. Specifically, the highest average PSNR metric 

occurs at “Ebd 2” on the brain dataset, while at “Ebd 4” on the prostate dataset, respectively. 

The use of less embedding blocks for the brain dataset is mainly because the brain CT 

images are relatively easy to synthesize. On the other hand, a deeper network (with more 

embedding blocks) is needed to map from MR to CT, due to more pelvic anatomical details 

in the prostate CT images. We also show the comparison with MAE measurement in Figs. 
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3(b) and 3(d). Similar observations can be seen that “Ebd 2” and “Ebd 4” also get the lowest 

value on brain dataset and prostate dataset, respectively, which shows again that they are the 

optimal setting.

The DECNN model is further compared to the CNN model without embedding of the 

feature maps. Since we apply our proposed method with “Ebd 2” to the brain dataset, we 

compare it to the CNN model with the same number of convolutional layers (i.e., 11 layers 

in the transform stage), which is referred to as “11-layer CNN” in Fig. 3. The average PSNR 

is 27.3 dB with embedding, while 26.7 dB without embedding. Similarly, for the prostate 

dataset, we compare our proposed method with “Ebd 4” to “17-layer CNN”. The average 

PSNR of these two models is 33.5 dB and 33.1 dB, respectively. The improvements of our 

proposed DECNN are statistically significant for both datasets (with p-values of 0.0078 and 

0.0029 in two-sided Wilcoxon signed rank test, respectively). The above results show that, 

compared with CNN with the same depth, our DECNN can encode the mapping from MR to 

CT more effectively.

The use of embedding blocks is also helpful for easier convergence of the network, which is 

fundamentally important when training the DECNN model for practical usage. In Fig. 4(a) 

and (b), we show the testing performance changes in PSNR, when training the network with 

more epochs of patches. On both brain and prostate datasets, DECNN converges faster than 

the CNN model without embedding, even using the same number of the convolutional 

layers. In particular, while the depth becomes deeper to handle for the prostate images than 

the brain images, DECNN leads to a wider margin ahead of the CNN model without 

embedding. All the observations above imply that the use of embedding strategy upon the 

feature maps is effective in the optimization of parameters in the convolutional network, 

especially when the deep network is used to encode the highly complex end-to-end mapping.

The CT estimation results by using different ‘Ebd i’ are shown in Fig. 5 for brain dataset, 

and Fig. 6 for prostate dataset. In Fig 5, the first and the second columns show the MR 

image input to the DECNN and the ground-truth CT image, respectively, in the axial, sagittal 

and coronal views. ‘Ebd 0′ can estimate the contour of the bone, but also generate many 

artifacts in the synthesized CT image. With the use of one embedding block, the result of 

‘Ebd 1′ becomes better. When using ‘Ebd 2′, we can get the most satisfying result 

compared to the ground-truth. Similar observations can also be found for the prostate dataset 

in Fig. 6. Note that more embedding blocks are needed for synthesizing the prostate CT 

images, as the MR-to-CT mapping is more complex for the pelvic region.

3.4. Quasi-3D mapping

In DECNN, we implement the input as 3 consecutive axial slices from MR. The 3 MR slices 

are jointly considered as part of the feature maps since the first convolutional layer in the 

network. The output consists of 3 axial slices that correspond to the input. We synthesize 

every 3 consecutive axial slices for the subject CT image, and combine the outputs into the 

final result by simple averaging. We regard this joint synthesis of the 3 consecutive slices as 

quasi-3D mapping. Examples of the synthesized brain CT images are denoted by “ × 3 

slices” for the implemented DECNN, and compared with the cases of fewer (“ × 1 slice”) or 

more (“ × 5 slices”) input slice(s) in Fig. 7.
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The comparisons are two-fold. First, concerning the quality within the axial plane (c.f. the 

red boxes in the first row of the figure), “ × 3 slices” is comparable to “ × 5 slices” and better 

than “ × 1 slice”. Second, the outputs of “ × 3 slices” and “ × 5 slices” are relatively 

continuous in the superior-inferior direction (c.f. both the yellow and the purple boxes 

highlighted on the sagittal and the coronal views). This implies that, with more than one 

axial slices as input, DECNN models the MR-to-CT mapping in the quasi-3D way. The 

mapping benefits not only the intra-slice quality, but also the inter-slice continuity. Fewer 

artifacts are observable within and between the axial planes. We note that, with “ × 5 slices”, 

the outputs are mostly comparable to “ × 3 slices” visually (as shown in Fig. 7) and 

quantitatively (in terms of average PSNR: 27.4 dB for “ × 5 slices” and 27.3 dB for “ × 3 

slices” on the brain dataset). Accordingly, we adopt the “ × 3 slices” setting for the proposed 

DECNN, to reduce the complexity of the computation.

3.5. Comparisons with state-of-the-art methods

In this section, we conduct comprehensive comparisons between our DECNN and state-of-

the-art methods, including the atlas-based method (“Atlas”), the sparse representation 

method (“SR”), and the random forest with the auto-context model (“RF + ACM”) (Huynh 

et al., 2016). The results of the CNN models without embedding, which are designated by 

“CNN” for short, are also summarized. A 3D CNN result termed as “FCN” is also provided 

for comparison (Nie et al., 2016). While there are many variants of atlas-based (Burgos et 

al., 2014; Hofmann et al., 2008; Kops and Herzog, 2007) and sparse representation based 

methods (Iglesias et al., 2013; Roy et al., 2011; Roy et al., 2010; Wright et al., 2009), we 

only chose one standard implementation for these two approaches for demonstration 

purpose:

• “Atlas”: When testing a subject, all other training images are used as atlases; that 

is, we are using leave-one-out cross validation here. To synthesize the CT image 

of a test subject, the MR image of each training atlas is first aligned to the 

subject MR image. The deformation field will be applied to warp the CT image 

of each training atlas. Then, we can have the final CT synthesis by fusing the 

warped CT images of all training atlases.

• “SR”: When all the training atlases are warped to the subject MR image, a non-

local sparse representation is carried out. That is, a small MR patch in the subject 

MR image is represented as a sparse liner combination of non-local MR patches 

from the aligned training atlas MR images. Then, the representation coefficients 

are applied to the respective aligned training atlas CT images to obtain the final 

synthesized CT.

• “RF + ACM”: This is a learning-based method which uses the structured random 

forest to directly estimate a CT image as a structured output from the input MR 

image. Each leaf node of the trees in the random forest yields an estimate, which 

can be integrated for the final output. Moreover, the auto-context model is used 

for further refining the synthesized CT image.

The detailed MAE and PSNR measures are shown in Table 1 (brain) and Table 2 (prostate), 

respectively. Note that the results of the existing methods are consistent with Huynh et al. 
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(2016). DECNN and CNN clearly outperform the other three methods under comparison, 

which imply the powerfulness of deep convolutional networks in mapping from MR to CT. 

Further, with the same depth (or the number of convolutional layers), the proposed DECNN 

is superior to the CNN model without embedding, by producing higher PSNRs and lower 

MAEs. When compared to FCN model, our DECNN results in better predictions on brain 

dataset and equal performance on prostate dataset. In general, our DECNN is able to attain 

the highest performance among state-of-the-art methods.

Visual comparisons for different methods are also provided in Fig. 8 for brain dataset and 

Fig. 9 for prostate dataset. For each dataset, we give two exemplar subjects. We can observe 

that the CT images synthesized by DECNN are more similar to the ground truth in both 

datasets. The structural similarity is high, while more anatomical details are preserved in the 

results of DECNN. The CT images synthesized by “Atlas” and “RF + ACM”, however, are 

relatively fuzzy (c.f. the bone boundaries highlighted in the figure). The CT images 

synthesized by CNN has much noise in it (see Fig. 8). The statistic results on prostate 

dataset are almost the same in Table 2, i.e., 33.5 (ours) vs 33.4 (Nie et al.). But the visualized 

result by FCN is not as good as ours, i.e., the zoomed in part in Fig. 8 shows that the bone is 

not accurately synthesized, and also the zoomed part in Fig. 9 shows that the bone boundary 

is not clear. Another advantage for our DECNN compared to FCN is that we do not need any 

post-processing in the testing stage, while FCN needs to pad the input image to get the 

desired output size due to the used architecture that makes the output size smaller than the 

input size. Moreover, our DECNN is more efficient compared to FCN method as our output 

size is equal to the input size. Therefore, the proposed DECNN method yields better 

perceptive quality of the synthesized CT images than other state-of-the-art methods.

DECNN is featured by the end-to-end mapping capability that allows us to process each test 

subject very efficiently. On the contrary, the conventional methods are usually time-

consuming. For example, “RF + ACM” synthesizes the CT images by extracting features 

first and then processing through random forest regressors with auto-context. Even though 

the PSNRs of “RF + ACM” are relatively higher than both “Atlas” and “SR” method, its 

computation efficiency still falls short significantly compared to both “CNN” and 

“DECNN”. Specifically, “RF + ACM” takes about 20 min to synthesize a CT image for the 

test subject. With “DECNN”, we can complete the computation of a brain subject (of the 

size 234 × 181 × 149) in 46 s, and a prostate subject (of the size 153 × 193 × 50) in 28 s. The 

high speed performance provides the potentials for clinic applications of our method. The 

above experiments are carried out on a computer with an Intel Core i7 4.00 GHz processor, 

16 GB RAM, and an NVIDIA GeForce GTX Titan X GPU.

3.6. Evolution of feature maps

For further understanding the mapping from MR image to the corresponding CT image, we 

analyze the evolving feature maps after several convolutional layers in DECNN. First, we 

use the structural mutual information (SMI) (Pluim et al., 2000) metric to compute the 

similarity between the feature map A and the ground-truth CT image B as we want to learn 

feature maps related to the final predicted CT image:
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SMI = H(A . ∗ G(A)) + H(B . ∗ G(B)) − H(A . ∗ G(A), B . ∗ G(B)) (7)

where G(A) and G(B) are the gradient maps of A and B, respectively. H(·) computes the 

joint entropy of the input images. We sort these feature maps in descending order by the 

SMI values, and then select 8 feature maps (column) for brain dataset and 7 feature maps 

(column) for prostate dataset. The exemplar feature maps are selected for visualization in 

Fig. 10 for the brain dataset, and in Fig. 11 for the prostate dataset. For the brain dataset, in 

addition to the 3 consecutive MR slices as input and the 3 CT slices as ground-truth output 

in Fig. 10(a), we also show the feature maps produced by the individual layers of the 

adopted ‘Ebd 2’ model. In particular, the layers of ‘Conv 1’, ‘Conv 3’, ‘Conv 5’, ‘Conv 8’ 

and ‘Conv 11’ are selected for visualization, where ‘Conv 1–5’ indicate the convolutional 

layers prior to the first embedding block, and ‘Conv 8’ and ‘Conv 11’ are in the end of the 

two embedding blocks, respectively.

In ‘Conv 1’, the original MR slices are transformed to a series of feature maps, each of 

which aims to synthesize brain CT image. That is, the soft tissue structures are discarded 

while the bone regions of the brain boundaries are focused. Note, the original MR slices are 

decomposed into many feature maps according to intensity values, and the feature maps with 

very dark bone regions will be preserved as they are associated with the bone regions of the 

brain CT image (the last few columns in ‘Conv1’ of Fig. 10(b)). Their shape and location are 

corresponding to those of ground-truth CT image, but the intensity values in the bone mask 

are not changed compared to the input MR (both dark). So the latter layers are mainly to 

seek the intensity mapping on this corresponding region. Specially, in ‘Conv 3′, the feature 

map (indicated by the green box) has changed to the bone values (white) in the bone mask 

region. This verifies the transform mapping from MR space to CT space is almost learned. 

In the end of transform block (Conv 5), we can see more CT-like feature maps (as indicated 

by the blue box).

Similar observations can be also found on the prostate dataset in Fig. 11 (a,b). But, there are 

a few differences compared to the brain images, i.e., the decomposition way in earlier 

convolutional layers, as well as using more embedding blocks for prostate such as using the 

‘Ebd 4 (proposed)’ model. For the case of brain image, the network decomposes MR image 

according to its intensity value while ignoring structure information in the middle of the 

brain. However, for the case of prostate CT image, there is also complex boundary 

information between different soft tissues in the CT image. Therefore, all the decomposed 

feature maps preserve boundary information from the MR image (as shown in the first row 

‘Conv 1′ in Fig. 10(a)). Also, prostate CT image has more structural details compared to 

brain CT image. Therefore, it needs more embedding blocks to complete the MR-to-CT 

mapping. Similarly, feature maps in the latter convolutional layers are getting more related 

to CT image, and details are becoming clearer compared to earlier layers. For example, both 

feature maps in the blue box of row ‘Conv 14′ and in the red box of row ‘Conv 17′ are 

related to the bone structures, while the boundary in ‘Conv 17′ is much clearer than the 

boundary in ‘Conv 14′, which can thus yield more accurate CT image prediction results.
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All obtained examples show how the information in MR image can be gradually transformed 

to CT image through serial layers. Also, these examples show why prostate dataset needs 

more embedding blocks for CT synthesis. This is mainly because more structural 

information on the boundaries of soft tissues need to be estimated in the prostate CT than in 

the brain CT.

In order to demonstrate the difference of feature maps learned by our proposed DECNN and 

basic CNN, we also show some feature maps from the last layer of these two models in Fig. 

12. Figs. 12(a) and 12(b) show feature maps learned by CNN and DECNN on brain dataset, 

respectively. We find that, in the feature maps in Fig. 12(a), there are unrelated patterns (i.e., 

the white part in the center) that are not related to CT image. We argue that these are 

redundant information for the desired CT image. When it goes to the feature maps (Fig. 

12(b)) from DECNN, they are mostly related to CT image and have much clearer boundary. 

Similar observations could also be found on the prostate dataset (Figs. 12(c) and 12(d)).

4. Discussion

We have presented a novel MR-to-CT mapping method for different modality transform on 

both brain and prostate datasets. Compared with the traditional learning based method, our 

DECNN model not only achieves the best synthesis result, but also performs several times or 

even orders of magnitude faster in the testing stage. There are also some limitations for our 

method. First, our method costs lots of time for training, which generally takes 2–3 days to 

get a model, while traditional methods mostly spend less than a day. Future work on this 

aspect should consider the training efficiency on how to reduce network capacity without 

sacrificing the accuracy. Second, the noise in the training dataset could affect the 

performance in the testing stage. As shown in coronal view of Fig. 5, there are some bone 

intensity noises in the predicted results. Also, the slight misalignment for preparing the 

paired MR-CT images for training DECNN could also cause inaccurate CT prediction. In 

the future, we may also focus on how to train a robust model with such dataset to handle 

with this small misalignment.

In current work, we perform MR-to-CT mapping in bone window on brain dataset, as we 

just focus on bone part. In the future, we could also extend the work on all ranges of 

intensity values, including the soft tissue contrast. Regarding the prostate dataset, we mainly 

focus on three organs, i.e., prostate, bladder and rectum, in this work. More work needs to be 

done in the future to comprehensively assess the robustness of our method on the whole 

images, as well as its applicability to clinical usage. Moreover, in other applications, we 

could also conduct segmentation on the synthesized CT images for evaluating the quality of 

synthesized images. For example, (Lay et al., 2013) conducted multi-organ segmentation on 

whole-body CT scan. Since segmentation is expected to be more accurate for the 

synthesized images with higher quality, the accuracy of image segmentation on synthesized 

images could act as a metric to evaluate the quality of image synthesis.

There is also a trend in the research field that using unsupervised method (Zhu et al., 2017) 

to perform image transformation, including different modality mapping. Currently, our 

method still needs a sufficient number of paired training samples. We would explore the 
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unsupervised (or semi-supervised) method that requires less number of paired training 

samples and uses abundant unpaired training samples on this task. This could lead to the 

interesting study as we could seek for the latent relationship between different modalities. 

Another advantage for introducing unsupervised method might be that it does not need much 

effort on preparing paired training samples, thus not causing the bias derived by imperfect 

alignment between different modalities of same subject.

5. Conclusion

In this paper, we propose a novel DECNN model to synthesize the CT image from the T1-

weighted MR image. Deep learning is well known for its capability in encoding the highly 

complex mapping between two different image spaces. The embedding block, which embeds 

the tentative CT estimation into the flow of the feature maps in deep learning, is integrated 

with CNN in our work. Thus, our derived DECNN can transform the embedded feature 

maps forward and reconstruct better CT synthesis results in the end. Our experiments prove 

that our proposed embedding block can effectively contribute to more accurate modeling of 

the MR-to-CT mapping, as well as faster convergence of the training of the deep network. 

Meanwhile, the overall performance of DECNN, measured by both the quality of the 

synthesized CT images and the running time, is superior to the state-of-the-art methods.

Note, our work provides a generalized deep learning solution that is not restricted to the 

MR-to-CT synthesis only. Moreover, we adopt the end-to-end mapping, such that the 

resulted CT image can be exactly the same size as the input MR image. In this way, the 

architecture of our DECNN ensures high efficiency to process the test images. In the future, 

we will further investigate the performance of DECNN in other image synthesis tasks, thus 

promoting more usages in the real clinical applications (e.g., dose planning in the prostate 

radiation therapy, and attenuation correction for PET imaging in PET/MRI scanner).
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Fig. 1. 
Examples of the pairs of MR and CT data from the same patients: (a) brain and (b) prostate. 

The inter-modality mapping is highly complex and non-linear, due to inconsistent 

appearance mapping in the two modalities, i.e., dark air in both MR and CT, while dark bone 

in MR but bright bone in CT.
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Fig. 2. 
Illustrations of (a) the CNN model without embedding, (b) the embedding block, and (c) our 

proposed DECNN. The CNN model in (a) consists of the transform stage and the 

reconstruction stage. Our proposed DECNN model shown in (c) is derived by inserting 

multiple embedding blocks into the CNN model in (a). The sizes of the feature maps are 

marked for the networks during the training. Note that the marked axial size (64 × 64) is not 

required when testing on a new subject.
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Fig. 3. 
Comparisons of the performances by different networks, measured with PSNR and MAE, 

for (a,b) the brain dataset and (c-d) the prostate dataset. Here, “Ebd k” indicates k 

embedding blocks used in DECNN, where the number of the convolutional layers for 

transforming feature maps is (3k + 5). The comparisons to the CNN models without 

embedding yet with the same number of convolutional layers (i.e., “11-layer CNN” for the 

brain dataset and “17-layer CNN” for prostate) are also provided.
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Fig. 4. 
The changes of the testing performance with respect to the increasing epochs of the training 

samples are plotted in (a) and (b) for brain and prostate datasets, respectively, to demonstrate 

the convergence of the training of DECNN. The comparison methods are referred to as the 

CNN models without embedding, but with the same respective number of convolutional 

layers, such as “11-layer CNN’ for the brain dataset and “17-layer CNN” for the prostate 

dataset.
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Fig. 5. 
The brain CT images synthesized using our DECNN model with different number of 

embedding blocks, i.e., 0 (middle), 1 (last second column), and 2 (last column).
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Fig. 6. 
The prostate CT images synthesized using our DECNN model with different number of 

embedding blocks, i.e., 0 and 1 in the last two columns of the upper panel, and 2 to 4 in the 

lower panel.
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Fig. 7. 
The synthesized CT brain images using 1, 3 and 5 axial slices as inputs to DECNN, which 

are designated as “ × 1 slice”, “ × 3 slices” and “ × 5 slices”, respectively. The results in the 

axial, sagittal and coronal views are presented.
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Fig. 8. 
Comparisons with state-of-the-art methods on two exemplar brain images. The first row in 

each panel shows the synthesized CT images by different methods. The second rows show 

the residuals between the synthesis and the ground-truth CT images.
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Fig. 9. 
Comparisons with state-of-the-art methods on two exemplar prostate images. The first row 

in each panel shows the synthesized CT images by different methods. The second rows show 

the residuals between the synthesis and the ground-truth CT images.
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Fig. 10. 
Example feature maps in each convolutional layer for the case of synthesizing brain CT 

image. These feature maps are sorted in descending order according to their SMI values. The 

most CT-like feature map in each convolution layer is chosen in the colored boxes.
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Fig. 11. 
Examples feature maps in each convolutional layer for the case of synthesizing prostate CT 

image. These feature maps are sorted in descending order according to their SMI values. The 

most CT-like feature map in each convolution layer is chosen in the colored boxes.
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Fig. 12. 
Feature maps learned from the last layer by CNN and DECNN on both brain and prostate 

datasets.
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