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Summary

Introduction—Anatomic characteristics of kidneys derived from ultrasound images are potential 

biomarkers of children with congenital abnormalities of the kidney and urinary tract (CAKUT), 

but current methods are limited by the lack of automated processes that accurately classify 

diseased and normal kidneys.

Objective—We sought to evaluate the diagnostic performance of deep transfer learning 

techniques to classify kidneys of normal children and those with CAKUT.

Study design—A transfer learning method was developed to extract features of kidneys from 

ultrasound images obtained during routine clinical care of 50 children with CAKUT and 50 

controls. To classify diseased and normal kidneys, support vector machine classifiers were built on 
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the extracted features using 1) transfer learning imaging features from a pre-trained deep learning 

model, 2) conventional imaging features, and 3) their combination. These classifiers were 

compared and their diagnosis performance was measured using area under the receiver operating 

characteristic curve (AUC), accuracy, specificity, and sensitivity.

Results—The AUC for classifiers built upon the combination features were 0.92, 0.88, and 0.92 

for discriminating left, right, and bilateral abnormal kidney scans from controls with classification 

rates of 84%, 81%, 87%, specificity of 84%, 74%, 88%, and sensitivity of 85%, 88%, 86%, 

respectively. These classifiers performed better than classifiers built on either the transfer learning 

features or the conventional features alone (p<0.001).

Discussion—The present study validated transfer learning techniques for imaging feature 

extraction of ultrasound images to build classifiers for distinguishing children with CAKUT from 

controls. The experiments have demonstrated that the classifiers built on the transfer learning 

features and conventional image features could distinguish abnormal kidney images from controls 

with AUCs greater than 0.88, indicating that classification of ultrasound kidney scans has a great 

potential to aid kidney disease diagnosis. A limitation of the present study is the moderate number 

of patients that contributed data to the transfer learning approach.

Conclusions—The combination of transfer learning and conventional imaging features yielded 

the best classification performance for distinguishing children with CAKUT from controls based 

on ultrasound images of kidneys.
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Introduction

Congenital abnormalities of the kidney and urinary tract (CAKUT), including posterior 

urethral valves (PUV) and kidney dysplasia, account for 50–60% of chronic kidney disease 

(CKD) in children and are the most common cause of end-stage renal disease (ESRD) in this 

age group [1, 2]. The widespread use of ultrasound imaging facilitates early detection of 

CAKUT, but current methods are limited by the lack of automated processes that accurately 

classify diseased and normal kidneys.

Recent studies have demonstrated that features computed from imaging data have promising 

performance for predicting risk of ESRD in boys with posterior urethral valves and decline 

in kidney function among adults with autosomal dominant polycystic kidney disease [3, 4]. 

Therefore, imaging features computed from ultrasound scans might facilitate automated 

detection of CAKUT. However, existing studies typically adopt imaging features that were 

empirically defined and therefore may not fully harness the predictive power of all data 

contained in ultrasound images.

In recent years, deep learning techniques have demonstrated promising performance in 

learning imaging features for a variety of pattern recognition tasks [5]. In these studies, 

convolutional neural networks (CNNs) have been applied to learn informative imaging 
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features by directly optimizing the pattern recognition performance. Therefore, it is expected 

that incorporating the deep learning techniques into ultrasound imaging data analysis would 

improve ultrasound image classification and subsequently allow automated CAKUT 

diagnosis in children based on images obtained routinely for clinical care.

With the ultimate objective of developing anatomic biomarkers of CKD progression for 

children with CAKUT, we developed a pattern recognition method for distinguishing 

children with CAKUT from controls based on their ultrasound kidney images. Building on 

successful deep learning and transfer learning techniques [6, 7], this transfer learning 

method for extracting imaging features from 2D ultrasound kidney images uses a pre-trained 

model of convolutional neural networks (CNNs), namely imagenet-caffe-alex. In this study, 

we determined the capacity of these features to correctly classify abnormal and normal 

kidneys [6]. We hypothesized that integration of deep learning based imaging features and 

conventional imaging features better distinguishes CAKUT patients from controls based on 

their ultrasound kidney images than conventional and deep learning based imaging features 

alone.

Materials and Methods

Setting and Participants

Ultrasound kidney images were obtained from 50 controls and 50 patients with CAKUT 

evaluated at The Children’s Hospital of Philadelphia. Participants were randomly sampled 

from patients enrolled in the Registry of Urologic Disease, a comprehensive patient registry 

that includes 90% of patients seen in the Urology clinic since 2000. Controls were children 

with unilateral mild hydronephrosis (Society of Fetal Urology grade I-II). Both kidneys were 

included as control data to increase the generalizability of the feature extraction algorithm 

by ensuring that the full spectrum of “normal” kidneys were considered. We considered 

these kidneys normal because mild hydronephrosis is generally a benign finding that 

stabilizes or resolves spontaneously in 98% of patients and does not affect the echogenicity, 

growth, or function of the affected or contralateral normal kidney [8, 9].

For abnormal kidneys, we used ultrasound images from 50 children with CAKUT (e.g. PUV, 

kidney dysplasia), who have varying degrees of increased cortical echogenicity, decreased 

corticomedullary differentiation, and hydronephrosis (please see kidney ultrasound images 

in online supplement). Of the 50 patients with CAKUT, 35 had bilateral renal anomalies, 4 

patients had abnormal left kidneys, and 11 patients had abnormal right kidneys.

2D kidney ultrasound images of these patients were obtained using a Philips IU22 

Ultrasound system at a frequency of 55HZ using an abdominal transducer. All images were 

obtained for routine clinical care. The first ultrasound after birth was used and all identifying 

information was removed. The work described has been carried out in accordance with the 

Declaration of Helsinki. The study has been reviewed and approved by the Institutional 

Review Board at the Children’s Hospital of Philadelphia.
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Outcome

The clinical diagnosis of CAKUT was the outcome and gold standard against which the 

computer-aided diagnosis of CAKUT was compared. These clinical diagnoses were 

recorded prospectively in the Registry of Urology Disease and were independently verified 

by a pediatric urologist, who was not involved in the application of the feature extraction 

algorithms to the images.

Computer aided diagnosis of CAKUT in children based on ultrasound imaging data

The computer aided diagnosis of CAKUT in children based on ultrasound imaging data is 

formulated as an image classification problem, i.e., classifying ultrasound images into 

CAKUT cases and controls. Our method consists of 3 components, namely: 1) kidney 

segmentation, 2) feature extraction, and 3) support vector machine (SVM) based 

classification, as illustrated in Figure 1.

Kidney Segmentation

We adopted a graph-cuts method to segment kidneys in ultrasound images [10]. Particularly, 

the graph-cuts method segments kidneys based on both image intensity information and 

texture features extracted using Gabor filters, which are orientation-sensitive image filters 

generally used for characterizing image texture in a similar way as the human visual system 

[11, 12]. This image segmentation method has achieved promising performance for 

segmenting kidneys in ultrasound images [10]. To make ultrasound kidney images of 

different subjects directly comparable, we normalized ultrasound kidney images of different 

subjects as detailed in the supplementary material.

Feature Extraction

From the normalized images, we then extracted transfer learning features based on a deep 

CNN model and conventional imaging features. Particularly, the CNN model is a deep 

learning method to learn image filters for exacting image features by optimizing their 

discriminative performance and have been successfully applied to a variety of image 

analysis problems [5], while conventional imaging features are computed using image filters 

manually designed, including histogram of oriented gradients (HOG) [13] features and 

geometrical features. Details about the feature extraction are presented in the supplementary 

document.

Classification of kidney images based on imaging features

The diagnosis of CAKUT was modeled as a pattern classification problem based on 

ultrasound imaging features. Particularly, SVM classifiers [14] were built on the transfer 

learning imaging features and conventional image features to distinguish US images of 

children with CAKUT from those of controls. Details about the SVM based classification 

are presented in the supplementary material. In order to investigate if the transfer learning 

based features and the conventional image features could provide complementary 

information for distinguishing abnormal kidney images from controls, we compared SVM 

classifiers built on different sets of features, including the transfer learning features (referred 

to as CNN features), the conventional imaging features, and their combination. Particularly, 
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there were 7 settings of features, including CNN features, HOG features, Geometrical 

features, HOG+Geometrical features, CNN+Geometrical features, CNN+HOG features, 

CNN+HOG+Geometrical features. We built SVM classification models based on all the 

available imaging data for the bilateral kidney images, left kidney images, and right kidney 

images separately.

Evaluation of diagnostic performance

We tested the diagnostic performance of the above SVM classification algorithms using the 

clinical classification as the gold standard. We carried out classification experiments for 

bilateral (35 CAKUT vs. 50 controls) kidney images, left kidney images (39 CAKUT vs. 50 

controls), and right kidney images (46 CAKUT vs. 50 controls) separately. The feature 

extraction algorithms were applied to images without knowledge of the clinical diagnosis.

Classification results were validated using 10-fold cross-validation. Briefly, we first 

randomly partitioned the whole dataset into 10 subsets, and then selected one subset for 

testing and used the remaining subsets for training. We repeated the process 100 times to 

avoid the possible bias during dataset partitioning for cross-validation. In the cross-

validation experiments, the algorithms were trained to build classifiers based on training 

data. Only after the algorithms classified the images as CAKUT or normal were the clinical 

diagnoses assigned to the testing images. The diagnostic performance was measured by 

correct classification rate, specificity, sensitivity, and area under the receiver operating 

characteristic (ROC) curve (AUC). Classification models built on different features were 

compared using Wilcoxon signed-rank test based on their classification performance 

measures determined by the cross-validation procedure.

RESULTS

Patient characteristics

The demographic and clinical data are summarized in Table 1. There were no differences in 

age, sex, or race between patients with CAKUT and controls. The CAKUT subjects had 

heterogenous abnormalities, as summarized in Table 2.

Classification performance of the transfer learning features and conventional image 
features

Figure 2 shows ROC curves of one run of 10-fold cross-validation for the classification of 

the left, right, and bilateral kidney scans using different imaging features. As summarized in 

Table 3, the transfer learning features had better classification performance than the 

conventional features (Wilcoxon signed-rank test, p<0.001), the combination of the HOG 

features and the geometrical features had better classification performance than the HOG or 

geometrical features alone (p<0.001), and the integration of the transfer learning and 

conventional image features had the best performance (p<0.001).
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DISCUSSION

In this study, we found that the performance of machine learning algorithms in correctly 

classifying kidneys of children with CAKUT and normal controls was high. In particular, the 

combination of transfer learning and conventional image features performed best, with 

sensitivity, specificity, discrimination, and accuracy all exceeding 87% for bilateral kidney 

images. The relatively small standard deviations of classification performance measures in 

different runs of the cross-validation experiments demonstrated that the classification 

performance was relatively stable in terms of changes in training samples. These results 

suggest that the classifiers built upon the combination of transfer learning and conventional 

imaging features could robustly distinguish children with CAKUT from controls based on 

their ultrasound kidney image, despite the heterogeneity of diagnoses and kidney 

characteristics of individuals with CAKUT. In addition, transfer learning classifiers were 

able to successfully discriminate individuals with CAKUT from individuals with mild 

hydronephrosis, which would increase the difficulty of classification. These results have 

importance for the ultimate development of models incorporating anatomic information 

obtained during routine clinical care that predict important outcomes such as CKD 

progression.

Machine learning techniques have been adopted in studies of ultrasound images. Prior 

studies have used decision support systems to classify ultrasound images of normal patients 

and patients with kidney disease based on second order grey level co-occurrence matrix 

statistical features [15]. In addition, neural networks in conjunction with principal 

component analysis have been used to classify ultrasound kidney images [16], and SVM 

classifiers have been built on texture features extracted from regions of interest of ultrasound 

images to classify kidney images [17, 18]. These studies have demonstrated that pattern 

classifiers built on imaging features could obtain promising performance for classifying 

ultrasound imaging data.

In this study, we extend the findings from these prior studies by exploring the deep learning 

method for feature extraction on ultrasound imaging data because it can discover the 

representations needed for computer aided diagnosis from raw data automatically by 

replacing manual feature engineering. Since a large dataset is typically needed to build a 

generalizable deep learning based classification model, for applications with small datasets 

the deep learning tools are often adopted in a transform learning setting (i.e., applying deep 

learning models trained based on a large dataset for one problem to a different but related 

problem with relatively small training dataset) [19]. The transfer learning strategy by 

applying trained CNNs for feature extraction to small datasets has achieved promising 

performance in pattern recognition studies of medical image data [7, 20]. Furthermore, it has 

been demonstrated that classifiers built on combination of transfer learning features and 

hand-crafted features typically achieve better pattern recognition performance than those 

built on transfer learning features and hand-crafted features alone [7, 21].

The present study validated the transfer learning techniques for imaging feature extraction to 

build classifiers for distinguishing children with CAKUT from controls based on ultrasound 

images, aiming to discover anatomic biomarkers of CKD progression for children with 
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CAKUT. The experiments have demonstrated that the classifiers built on the transfer 

learning features and conventional image features could distinguish abnormal kidney images 

from controls with AUCs greater than 0.88, indicating that classification of ultrasound 

kidney scans has a great potential to aid kidney disease diagnosis. Since the imaging feature 

extraction and SVM classification can be finished within seconds, this progress suggests 

real-time of CKD progression using machine learning of ultrasound images may be possible. 

The pattern classification performance might be further improved by building pattern 

recognition models based on a larger dataset and using advanced deep learning techniques 

[22], and fully automated deep learning based image segmentation tools may further 

improve the kidney segmentation efficiency [23, 24].

A limitation of the present study is the moderate number of patients that contributed data to 

the transfer learning approach. Based on the available dataset, we carried out pattern 

classification studies for distinguishing left, right, and bilateral abnormal kidneys from 

controls. Although the classification performance varied across these settings, the results 

demonstrated that classification models built on the transfer learning features had overall 

better classification performance than those built on conventional imaging features and the 

integration of the transfer learning based features and the conventional imaging features had 

the overall best classification performance. We will further validate our method based on 

larger datasets.

Conclusions

This pattern classification study of ultrasound kidney data has demonstrated that transfer 

learning for feature extraction based on deep CNN models could improve pattern 

classification models that are built on conventional imaging features, including texture 

features and geometric features. Our results suggest that promising classification 

performance could be achieved by the classification model built on a combination of the 

transfer learning features and the conventional imaging features. The promising 

classification performance also indicates that the imaging features might be informative for 

predicting CKD progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of classification of ultrasound kidney images for computer aided diagnosis of 

kidney disorders.
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Figure 2. 
ROC curves of one run of 10-fold cross-validation for classification models built on different 

imaging features, including CNN features, HOG features, geometrical (GEO) features, HOG 

+ GEO features, CNN + GEO features, CNN + HOG features, and CNN + HOG + GEO 

features.
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Table 1.

Demographic information.

Controls(n=50) CAKUT (n=50) p-value

Sex; n (%)

Male 34 (68) 34 (68)
1

Female 16 (32) 16 (32)

Age (days, mean±std) 73.2±69.0 111.0±262.1 0.327

Race; n (%)

 Asian 3 (6) 1 (2)

 Black or African American 7 (14) 14 (28)
0.260

 Native Hawaiian or other pacific 0 (0) 1 (2)

islander 31 (62) 22 (44)

 White 9 (18) 12 (24)

 Unknown

Ethnicity 0 (0) 6 (12)

 Hispanic or Latino 35 (70) 44 (88) <0.001

 Not Hispanic or Latino 15 (30) 0 (0)

 Not Recorded

Age: Two-sample t-test

Sex, Race, Ethnicity: Chi-square test
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Table 2.

Characteristics of CAKUT subjects (n=50).

Characteristics number

Posterior urethral valves 24

Multicystic dysplastic kidney 6

Renal hypodysplasia 11

Ureterocele 3

Vesicoureteral reflux 2

Ectopic ureter 3

Autosomal recessive polycystic kidney disease 1
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Table 3.

Classification performance estimated from 100 runs of 10-fold cross-validation (Mean±std).

CNN HOG Geometrical
HOG

+
Geometrical

CNN
+

Geometrical

CNN
+

HOG

CNN
+

HOG
+

Geometrical

Accuracy

Left 0.85±1.8e-2 ^#*0.77±2.3e-2
^*0.78±1.5e-2

^*0.79±2.7e-2
0.87±1.5e-2 *0.84±1.4e-2 0.84±1.6e-2

Right *0.75±2.0e-2 *0.74±2.5e-2 ^#*0.67±1.7e-2
*0.74±2.4e-2 *0.74±2.1e-2 0.81±1.8e-2 0.81±1.8e-2

Bilateral *0.85±1.2e-2 ^#*0.78±2.4e-2
^#*0.76±1.8e-2

^*0.79±2.3e-2
*0.85±1.4e-2 *0.86±2.1e-2 0.87±2.1e-2

AUC

Left *0.88±0.8e-2 ^#*0.84±1.5e-2
^#*0.80±0.9e-2

^*0.86±1.5e-2
*0.88±0.9e-2 *0.92±0.8e-2 0.92±0.7e-2

Right *0.83±1.3e-2 *0.83±1.6e-2 ^#*0.67±1.7e-2
*0.83±1.6e-2 *0.83±1.2e-2 0.88±1.0e-2 0.88±1.1e-2

Bilateral *0.89±0.8e-2 ^#*0.87±1.6e-2
^#*0.82±1.3e-2

^*0.87±1.5e-2
*0.89±0.8e-2 *0.92±0.7e-2 0.92±0.7e-2

Specificity

Left *0.80±2.6e-2 ^*0.70±3.9e-2
^#*0.63±2.9e-2

^*0.71±4.3e-2
*0.82±2.6e-2 *0.83±1.9e-2 0.84±2.2e-2

Right *0.66±2.6e-2 ^*0.63±4.3e-2
^#*0.45±2.3e-2

^*0.62±4.2e-2
*0.65±2.7e-2 0.74±2.6e-2 0.74±2.6e-2

Bilateral *0.83±1.4e-2 ^#*0.78±3.3e-2
^#*0.62±3.2e-2

^*0.79±3.3e-2
*0.82±1.8e-2 0.88±2.6e-2 0.88±2.6e-2

Sensitivity

Left 0.89±2.2e-2 ^#*0.82±2.6e-2
0.90±1.4e-2 ^

0.84±2.7e-2
0.91±1.4e-2 *0.84±1.7e-2 0.85±1.8e-2

Right *0.83±2.8e-2 *0.84±2.5e-2 0.88±2.1e-2 *0.85±2.4e-2 *0.83±3.1e-2 0.88±2.0e-2 0.88±2.1e-2

Bilateral 0.86±1.9e-2 ^#*0.78±2.9e-2
0.86±1.8e-2 ^*0.79±2.9e-2

0.87±1.9e-2 *0.85±2.6e-2 0.86±2.6e-2

*
CNN + HOG + Geometrical better than others; Wilcoxon signed-rank test, p<0.001

^
CNN better than HOG, Geometrical, and HOG + Geometrical; Wilcoxon signed-rank test, p<0.001

#
HOG + Geometrical better than HOG or Geometrical alone; Wilcoxon signed-rank test, p<0.001
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