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Despite the biological importance of protein–protein complexes,
determining their structures and association mechanisms remains
an outstanding challenge. Here, we report the results of atomic-
level simulations in which we observed five protein–protein pairs
repeatedly associate to, and dissociate from, their experimentally
determined native complexes using a molecular dynamics (MD)–
based sampling approach that does not make use of any prior
structural information about the complexes. To study association
mechanisms, we performed additional, conventional MD simula-
tions, in which we observed numerous spontaneous association
events. A shared feature of native association for these five struc-
turally and functionally diverse protein systems was that if the
proteins made contact far from the native interface, the native
state was reached by dissociation and eventual reassociation near
the native interface, rather than by extensive interfacial explora-
tion while the proteins remained in contact. At the transition state
(the conformational ensemble from which association to the na-
tive complex and dissociation are equally likely), the protein–
protein interfaces were still highly hydrated, and no more than 20%
of native contacts had formed.

molecular dynamics simulations | enhanced sampling |
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Most proteins associate with other proteins to function, form-
ing complexes that lie at the heart of nearly all physiological

processes, including signal transduction, DNA repair, enzyme in-
hibition, and the immune response. Determining the structures of
these complexes and elucidating their association mechanisms are
problems of fundamental importance. While substantial progress
has been made toward the structural determination of protein–
protein complexes, such structures are still relatively un-
derrepresented in the Protein Data Bank (1), especially compared
with the large number of known, functional protein–protein
interactions derived from high-throughput, nonstructural ap-
proaches like yeast two-hybrid screening and affinity purifi-
cation–mass spectrometry (2). Moreover, the structures of
many complexes that are important drug targets for cancer
and autoimmune disease remain difficult to determine ex-
perimentally (3, 4). As for protein–protein association mechanisms,
powerful experimental approaches like double-mutant cycles and
paramagnetic relaxation enhancement have afforded a wealth of
information about potential transition states and intermediates (5,
6), but these data are often indirect or limited to, for example,
metalloproteins or proteins with attached paramagnetic spin labels.
Obtaining direct, atomic-level detail about association pathways for
a diverse set of protein–protein complexes and developing broader
insights into the common principles of protein–protein association
mechanisms are still open problems.
Atomic-level molecular dynamics (MD) simulations offer a

computational route toward characterizing both the structure and
dynamics of protein–protein complexes. Using MD, one could in
principle start a simulation with two protein monomers and
“watch” them associate and dissociate reversibly during a single
trajectory. Such a simulation would provide an unprecedented

sampling of the possible complexes that can be formed by the
protein monomers and a straightforward way to rank the stability
of different complexes based on that fraction of the time during
which each complex is observed. Moreover, mechanistic details
like intermediate and transition states along the association path-
way could be observed. In practice, however, it has proven difficult
to study protein–protein association and dissociation in MD sim-
ulations: Reversible association during a single simulation trajec-
tory has not been observed at all. Indeed, only a few examples have
been reported (7–15) of simulations that successfully captured
spontaneous protein–protein association to an experimentally de-
termined complex, and these examples have been limited to ex-
amining one system, or to the association of smaller peptides (7,
11, 14). Recently, Plattner et al. (10) were the first to capture as-
sociation and dissociation of a protein–protein complex (albeit
in separate simulations) as part of a large-scale Markov state
model study.
Difficulties encountered in protein–protein association simu-

lations include the formation of nonnative associated states with
long lifetimes compared with simulation timescales. Such kinetic
traps severely hamper the sampling of other states—including
states that may be thermodynamically more favorable, and thus
more likely to represent the most populated complex at physi-
ological conditions (16, 17). Even if the most thermodynamically
stable complex is sampled, observing spontaneous dissociation
could require simulations on the order of seconds to days (18).
Some approaches have attempted to overcome this timescale
problem by combining data from multiple short simulation
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trajectories (10, 12, 14) and have had success in modeling
various aspects of protein–protein association. None of these
methods, however, has been applied to a broad set of struc-
turally diverse protein–protein systems, making it difficult to
draw general conclusions about protein association. Moreover, such
methods require an additional layer of modeling to combine the
short trajectories and necessarily rest on assumptions that can bias
the results toward atypical pathways or miss important conforma-
tional states (19, 20).
In this paper, we have used long-timescale MD simulations in

combination with a newly developed enhanced sampling ap-
proach, which we call “tempered binding,” to simulate the re-
versible association of five structurally and functionally diverse
protein–protein systems, and have also performed conventional
MD simulations to capture many spontaneous association events. In
the tempered binding simulations, we observed each of the protein–
protein pairs repeatedly associate to, and dissociate from, their
experimentally determined native complexes. The spontaneous
association events observed in subsequent conventional MD
simulations allowed us to draw general mechanistic conclusions
about the association process of the five proteins we studied: We
found that if the proteins made contact far from the native in-
terface, the native state was reached by dissociation and eventual
reassociation near the native interface, as opposed to extensive
exploration of various protein–protein interfaces while the pro-
teins remained in contact. The protein–protein interfaces were
still highly hydrated at the transition state, and no more than
20% of native contacts had formed.

Results
Tempered Binding Simulations of Protein–Protein Association Reversibly
Visited the Native Complex. We applied tempered binding to six
protein–protein systems and observed reversible association in five
out of the six systems (SI Appendix, Figs. S1 and S4 and Table S1).
For the five reversibly associating systems, the most stable complex
in the simulation agrees with the complex determined crystallo-
graphically within atomic resolution (Fig. 1). [In the sixth protein–
protein system, the protein dimer CLC-ec1 (21), we observed as-
sociation to the experimentally determined complex, but did not
observe dissociation on the timescales of our simulations (SI Ap-
pendix, Fig. S4).] Some of these simulations also sampled alter-
native bound states that could have functional relevance, and
provided quantitative estimates of the free-energy difference be-
tween the native state and these alternative states (Fig. 2 and SI
Appendix, Figs. S2 and S3). Although for this initial study we have
limited ourselves to proteins that do not undergo large confor-
mational changes upon binding (SI Appendix, Table S1), we note
that such proteins in themselves constitute a large class of im-
portant protein–protein complexes (22). (The ribonuclease HI–
SSB-Ct system could be considered an exception, since the SSB-
Ct peptide folds upon binding to the ribonuclease, but the RMSD
difference between the folded and disordered forms of the peptide
is only about 2 Å.)
In a tempered binding simulation, the strength of interactions

between the protein monomer atoms, and sometimes between
the protein monomer and solvent atoms, is scaled at regular time
intervals using a simulated Hamiltonian tempering framework
(14, 23–25). This scaling allows long-lived states to dissociate
more quickly. In practice, tempered binding involves a conven-
tional MD simulation augmented by frequent Monte Carlo
moves that update the scaling strength among rungs on a ladder
of values. The Monte Carlo updates are detail balanced such
that, at each rung of the ladder, a Boltzmann distribution of
states corresponding to that rung’s value of the scaling factor is
properly sampled. In particular, the sampling at the lowest rung
of the ladder (rung 0) corresponds to the completely unscaled
Hamiltonian and is consistent with the distribution of states
sampled in a conventional MD simulation.

Our current tempered binding protocol (which focuses on
scaling the near electrostatic interactions between protein
monomers, between protein monomers and water molecules,
and, in the case of CLC-ec1, between protein monomers and
lipid molecules) resulted in a significant increase in sampling
efficiency in our simulations of the protein–protein systems
studied in this work. In a tempered binding simulation of the
enzyme–inhibitor system barnase–barstar, for example, the pro-
tein–protein system escaped from its native complex in hundreds
of microseconds (SI Appendix, Fig. S1), whereas the lifetime of
the native complex is on the order of a day (26), a speedup of
almost nine orders of magnitude. It is possible, however, that
other tempered binding protocols might further improve sampling

Barnase − Barstar
1BRS, 0.54 Å (1.0 Å)

Insulin dimer
4INS, 0.73 Å (1.0 Å)

RNase HI − SSB-Ct
4Z0U, 0.62 Å (1.5 Å)

TYK2 − Pseudokinase
4OLI, 1.1 Å (2.8 Å)

Ras − Raf-RBD
4G0N, 0.80 Å (2.5 Å)

Fig. 1. The most thermodynamically stable complex visited during reversible-
association simulations agrees with the experimentally determined complex
within atomic resolution. Representative structures of the most thermody-
namically stable complexes observed in reversible-association simulations are
shown. For each protein–protein complex, we show a representative asso-
ciated structure obtained from simulation (blue and green) superimposed on
the experimentally determined crystal structure (gray) by a best-fit Cα
alignment of the larger protein monomer (blue), along with the name of the
complex, the Protein Data Bank (PDB) entry of the experimental structure (3,
26, 50–52), and the Cα interface and ligand RMSDs (I-RMSD and L-RMSD)
between the two structures. The protein–protein interface is defined as any
pair of Cα atoms, one from each protein monomer, within 10 Å of each other
in the experimentally determined complex. The I-RMSD is then calculated by
aligning the interface Cα atoms of the representative structure and the ex-
perimentally determined structure and determining the Cα RMSD of the
interface. The L-RMSD is calculated by first aligning the Cα atoms of the
larger protein monomer and then calculating the Cα RMSD of the smaller
protein monomer (green) (1). Tempered binding simulations for these five
protein–protein systems used the Amber ff99SB*-ILDN (37–39) force field
and the TIP3P (40) water model. The representative structure was obtained
by clustering the simulations, to avoid bias toward the experimentally de-
termined structure. Clustering was only performed on simulation frames
sampled at the lowest tempering rung (rung 0), where the distribution of
states is the same as that of a conventional MD simulation. The represen-
tative structure from the cluster with the greatest occupancy is used in the
figure. Because the tempered binding approach scales all interactions uni-
formly, the simulations were not biased for, or steered toward, any particular
protein–protein complex. Although tempered binding successfully re-
capitulated experimentally determined bound structures for these systems,
its computational expense greatly exceeds that of other approaches, such as
docking, for this particular task. We note, however, that its accuracy for this
set of five complexes is considerably better than a current state-of-the-art
docking program, particularly in its ability to select the correct native-like
structure among various low-energy protein–protein complexes (SI Appen-
dix, Table S3), speaking both to the level of sampling achieved by tempered
binding and to the accuracy of current MD force fields. Additional descrip-
tions of the systems and the methods are available in SI Appendix.
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efficiency and perhaps allow us to observe reversible association for
the CLC-ec1 dimer (SI Appendix, Fig. S4).

Conventional MD Simulations Captured Spontaneous Protein–Protein
Association to the Native Complex and Revealed a Shared Association
Mechanism. In addition to the tempered binding simulations, we
performed hundreds of conventional MD simulations of the five
reversibly associating protein systems to study their association
mechanisms (Table 1). In each of these simulations, we observed
the proteins come into contact and form loosely associated
protein–protein configurations (encounter complexes) that
then either (i) formed the specific, close-range interactions in
the native complex without the proteins at any point dissoci-
ating (a successful association event), (ii) dissociated without
first reaching the native complex (an unsuccessful association
event), or (iii) remained kinetically trapped in a nonnative
state for the remainder of the simulation. (Here, we use the
term “encounter complex” to refer to the set of protein–
protein configurations in which any heavy atom in one protein
is within 4.5 Å of any heavy atom in the other protein, but in
which the interface RMSD is not within 1.5 Å of the native

complex.) In some simulations, there were unsuccessful association
events preceding a successful association event. We note that we
observed several successful association events for each of the five
systems (Table 1), and, as expected, we observed no examples of
dissociation once the experimentally determined complex formed.
Successful association events in these five systems shared

several key features. Rather than forming an encounter complex
at a random interface and reaching the native interface (without
dissociating) by way of an extensive search, in successful associ-
ation events the encounter complexes tended to form near the
native interface, at least for events observed within the timescale
of our simulations (on the order of tens of microseconds). (For a
given protein–protein system, the contact preceding a successful
association event tended to be nonspecific, varying among dif-
ferent events, but typically involved interactions between charged
residues in or close to the native binding interface.) In contrast,
encounter complexes that formed during unsuccessful association
events displayed a wide variety of relative protein–protein positions,
with no pronounced preference for their positions in the native
complex (Fig. 3 and SI Appendix, Fig. S5).
Successful association events in the five systems also shared

similar features at the transition state (the ensemble of configura-
tions from which association and dissociation are equally likely): No
more than 20% of native contacts had formed in these configura-
tions, and the protein–protein interfaces were still highly hydrated.
We identified configurations in the transition state ensemble of
association by calculating the probability of successful association,
pAssoc (also known as the committor probability), for several con-
figurations during a successful association event (27, 28), and were
able to identify configurations at or near the transition state for all
five systems. A configuration is classified as a member of the
transition state ensemble if pAssoc = 50% (that is, if additional tra-
jectories initiated from that configuration with randomized veloci-
ties drawn from a Boltzmann distribution commit half of the time to
the native complex and half of the time to the unbound state). All of
the transition states characterized here occurred when <20% of
native contacts had formed and while there were still a significant
number of water molecules between atoms that are in contact in the
native complex (Fig. 4). Given the intensive computational effort
required for determining committor probabilities and identifying
transition states, we only determined committor values in one suc-
cessful association event for each system condition. The general
features of the transition state configurations were found to be
qualitatively similar among simulations of barnase–barstar with
different force fields (Table 1), and even among completely dif-
ferent systems (Fig. 4D), however, providing strong evidence that
these transition states are representative of the transition state en-
sembles for these five systems.
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Fig. 2. Tempered binding provides a direct atomic-level observation of the
ensemble of bound states involved in protein–protein interactions. (A) An I-
RMSD trace of a tempered binding simulation of the Ras protein binding to
the Ras-binding domain of the Raf effector protein (Raf-RBD) shows re-
versible association to the crystal complex (PDB ID code 4G0N) (51). For Ras–
Raf-RBD, the simulation not only reached the known crystal–structure
complex, which was the most thermodynamically stable state, but also an
alternative complex about 2 Å away from the crystal structure. The Inset
shows a portion of the RMSD trace zoomed in along the y axis. Black (red)
circles are points from all (rung 0) trajectory frames. (B) A structure of the
alternative state (pink) overlaid onto the crystal structure (gray), aligned to
the Ras domain, is shown. Counting the population of the crystal-like state
versus the alternative state in rung 0 suggests that the alternative state is
∼3.1 kcal·mol−1 higher in free energy than the crystal-like state. (C) An
overlay of other Ras–effector complexes demonstrates that the conforma-
tion of this alternative state is well within the range of observed binding-
interface conformations (53–55).

Table 1. List of conventional MD simulations of spontaneous protein–protein association

Condition System No. of trajectories/successful association events Aggregate time, μs Association rate, M−1·s−1

BB_1 Barnase–barstar 61/24 440 2.3(2) × 107

BB_2 61/28 212.7 6(1) × 107

BB_3 51/3 225 4.4 × 106

IND_2 Insulin dimer 61/6 294.8 4.1 × 106

RAS_1 Ras–Raf-RBD 81/7 117 2.6 × 107

RNA_1 RNase HI–SSB-Ct 51/5 294 1.0 × 107

TYK_2 TYK2-Pseudokinase 151/3 461 4.2 × 106

Simulations were initiated with different velocities from the same configuration with the two proteins unbound (different association
pathways of the two proteins were sampled, providing strong evidence that the choice of starting positions does not influence the binding
events; SI Appendix, Fig. S6). A successful association event is defined as a trajectory in which the I-RMSD between the two proteins and the
experimentally determined complex structure became less than 1.5 Å after the RMSD time series was smoothed with a 10-ns moving average.
Over 2 ms of aggregate simulation time was used for these spontaneous association trajectories. The experimental rates of association for
barnase–barstar and insulin dimer are 6.0 × 108 M−1·s−1 (32) and 1.14 × 108 M−1·s−1 (56), respectively. For Ras–Raf-RBD, at least three different
experimental association rate estimates are available: 4.5 × 107 M−1·s−1 (57), 5.9 × 106 M−1·s−1 (58), and 1.02 × 104 M−1·s−1 (59). We were
unable to find experimental rates of association for RNase HI–SSB-Ct or TYK2-Pseudokinase.
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Discussion
For the enzyme–inhibitor complex barnase–barstar, one of the
best experimentally characterized protein–protein complexes
(26), our simulations are consistent with previous experimental
and computational work, including extensive mutational analysis
(5, 29) and Brownian dynamics simulations (30, 31). Combining
the information from the tempered binding and conventional
MD simulations, we estimated the binding free energy, ΔGb, to
be 19.2(2) kcal·mol−1 [Kd = 1.0(2) × 10−14 M], the association
rate, kon, to be 2.3(2) × 107 M−1·s−1, and the dissociation rate, koff,
to be 2.3(3) × 10−7 s−1. These simulation-derived values correspond
relatively well with the known experimental values of ΔGb = 19
kcal·mol−1, kon = 6 × 108 M−1·s−1, and koff = 8 × 10−6 s−1 (32).
(Further discussion of how the simulation values were calculated
can be found in SI Appendix.)
Notably, our atomic picture of the transition state agrees with

mutational and kinetic studies from Schreiber and coworkers (5,
33), which suggest that the transition state occurs before a ma-
jority of native interactions are formed, and while the protein–
protein interface is still highly solvated. More recent experi-
mental work on the coupled folding and binding of disordered
protein domains also suggests that the majority of native contacts
form after the transition state (34).
In addition, our observation that associating proteins already

had relative positions similar to those in the native complex upon
making contact during successful simulated association events is
consistent with the idea of a so-called “funneled” association
process, in which long-range electrostatic attraction is involved in
the rapid association of barnase–barstar (31, 35) and other
protein–protein pairs with oppositely charged binding sites (36).
This observation is also consistent with previous atomistic MD
simulation studies of protein–peptide binding, in which suc-
cessful association pathways tended to be funnel-like, often due
to electrostatic steering (7, 11, 14). Relatedly, in a recent simu-
lation study of a peptide binding to the PDZ domain, multiple
binding and unbinding events were observed before successful
association, and the peptide did not extensively search the sur-
face while bound (11).
The strong affinity of barstar for barnase and the hydrophilic

nature of the interface make it a relatively unusual protein–
protein system, so it is striking that the features of the transition
state and encounter complex observed in our simulations were
common to the association mechanisms of all of the protein–
protein systems studied in this work (Fig. 4). This shared
mechanism may thus also apply to the broader class of protein–
protein complexes that—like the systems studied here (SI Ap-
pendix, Table S1)—do not undergo large conformational changes
upon binding.
We have observed reversible association of a set of five protein–

protein systems to their respective experimentally determined
structures using an enhanced sampling method that enabled an
increase in sampling efficiency of as much as nine orders of
magnitude. Together with our long-timescale conventional MD
simulations, which yielded many spontaneous association events,
our results provide an atomic-level view of protein–protein asso-
ciation mechanisms. In the future, this methodology could be used
to determine the structures and association mechanisms of at least
some protein–protein complexes that have not yet been experi-
mentally characterized. The ability to observe both association and
dissociation events could be especially useful in this context,
helping to distinguish thermodynamically stable complexes from
kinetically trapped states that are sparsely populated.
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Fig. 3. Encounter complexes visited in successful association events fa-
vored structures in which the two proteins were positioned similarly to
how they are positioned in the experimentally determined complex.
Simulation frames were uniformly sampled from encounter complexes and
aligned to the larger protein. A single snapshot of the larger protein (blue
cartoon) is shown for reference, overlaid with multiple snapshots of a Cα
atom of the smaller protein near the center of the native binding interface
taken from unsuccessful (red spheres) and successful (green spheres) as-
sociation trajectories. The large yellow sphere indicates a region defined
by a 10-Å radius around the center of mass of the binding interface of the

larger protein. Kinetically trapped nonnative states, which neither dissoci-
ated nor reached the native state during a simulation, were not included in
this analysis.

Pan et al. PNAS | March 5, 2019 | vol. 116 | no. 10 | 4247

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815431116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815431116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815431116/-/DCSupplemental


Methods
MD Simulations. Simulations were based on the crystal structures of the
protein complexes listed in SI Appendix, Table S1. Unless otherwise in-
dicated, Lys, Arg, Asp, and Glu residues, as well as the N and C termini, were
simulated in their charged states, and all His residues were neutral. For the
soluble proteins, structures were solvated with water molecules, and coun-
terions were added until the system was overall neutral. We used the Amber
ff99SB*-ILDN (37–39) force field and the TIP3P (40) water model for these
simulations, except for a few simulations of barnase–barstar, in which we
also used the four-site water model TIP4P/2005 (41) as a control. The Ras–
Raf-RBD system contained the ligand GppNHp, a GTP analog, and the TYK2-
pseudokinase system contained two copies of the ligand compound 7012, a
TYK2 inhibitor. These ligands were parameterized with the generalized
Amber force field (42).

For the membrane–protein dimer system CLC-ec1, we truncated the dy-
namic N-terminal helix (residues 17–30) on both monomers, and inserted the
system into a palmitoyl oleoyl phosphatidylethanolamine (POPE) lipid bi-
layer. The CHARMM27 force field was used for the protein, ions, and water
(43, 44), and the CHARMM36 force field for lipids (45). We also adjusted the
side-chain charges of aspartate, glutamate, and arginine residues (“DER”
correction) to weaken the guanidinium acetate association constant (46).

For some of our protein–protein systems, we applied torsional corrections
to the φ and ψ backbone dihedrals, consisting of an additional potential U =

k
PM

m=1(−1)
m − 1[(1 + cos m(φ − φ′))/m!] (M = 6), where k ranged from 1 to 5

kcal·mol−1, and the cosine terms were centered at φ′ = φxtal − 180°. This term
adds a backbone restraint and helps prevent system degradation on the
microsecond timescale (46). Even with the addition of these terms, the
protein backbone is able to fluctuate, and, more importantly, protein side
chains retain full flexibility. We observed, for example, subtle but significant
side-chain fluctuations at the barnase–barstar binding interface (SI Appen-
dix, Fig. S2). Specific values of k, the backbone dihedrals to which this cor-
rection was applied, further justification for these terms, and additional
simulation details can be found in SI Appendix.

Tempered Binding. To enhance the sampling in our protein–protein associ-
ation simulations, we used an approach that we call tempered binding,
which is analogous to simulated tempering (47, 48), except that terms in the
system’s energy function, as opposed to its temperature, are updated during
the simulation. Tempered binding dynamically scales various atomic inter-
actions during an MD simulation by a factor, λ, that is updated among a
ladder of discrete values, λi. At the lowest rung of the ladder (rung 0), the
atomic interactions are unscaled (i.e., λ0 = 1). An update attempt was
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Fig. 4. The transition state for association was solvated, and only <20% of native contacts had formed. Configurations and portions of I-RMSD traces from
successful association events in conventional MD simulations of (A) barnase–barstar and (B) RNase HI–SSB-Ct association are shown. The green arrows indicate
points where pAssoc was calculated in the successful association event (red circles). The Insets show an expanded view of the region close to the transition state,
showing the fraction of native contacts (black) and fractional hydration around the interface (blue) as a function of time (SI Appendix). Additional con-
figurations near the transition state of association are shown for (C) insulin dimer, Ras–Raf-RBD, and TYK2-pseudokinase. Configurations show the larger
protein as a blue cartoon, the smaller protein as a green cartoon, interprotein residue contacts between residues at the native interface as van der Waals
spheres, and water within 4 Å of the native binding interfaces as red and white licorice, demonstrating the lack of protein–protein contacts and the large
amount of water at the binding interface. (D) A plot of the probability of association, pAssoc, against the fraction of native contacts and a normalized water
interface coordinate (Inset). The fraction of native contacts remained below 30% even for configurations that had a committor probability of 90% to the
native-complex state. Protein–protein interfaces in the successful association events, except for insulin dimer, which has a relatively hydrophobic interface,
also remained more than 50% solvated. We note that these observations about the fraction of native contacts and interface solvation are qualitatively similar
for the transition state of barnase–barstar determined under three different force field conditions: BB_0, BB_2, and BB_3 (SI Appendix, Fig. S7).
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performed in two steps. First, the following normalized probability distri-
bution was calculated for the given atomic configuration, x:

pðλiÞ= expð−βHiðxÞ+ fiÞP
jexp

�
−βHjðxÞ+ fj

�.

Here, β= ðkBTÞ−1, kB is Boltzmann’s constant, T is temperature, Hi is the
energy function, or Hamiltonian, at rung λi, and fi is a free-energy weight at
rung i, calculated adaptively during the simulation. Second, a new rung was

chosen with a probability consistent with p(λi) (49). Our tempered binding
simulations scaled near electrostatic and van der Waals nonbonded inter-
actions between different groups of atoms in the system. Additional details
about tempered binding can be found in SI Appendix.
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