
BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Five computational developability guidelines for
therapeutic antibody profiling
Matthew I. J. Rayboulda, Claire Marksa, Konrad Krawczyka, Bruck Taddeseb, Jaroslaw Nowaka, Alan P. Lewisc,
Alexander Bujotzekd, Jiye Shie, and Charlotte M. Deanea,1

aDepartment of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom; bDepartment of Antibody Discovery and Protein Engineering,
MedImmune, Cambridge CB21 6GH, United Kingdom; cComputational and Modelling Sciences, GlaxoSmithKline Research and Development, Stevenage
SG1 2NY, United Kingdom; dRoche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, DE-82377
Penzberg, Germany; and eChemistry Department, UCB Pharma, Slough SL1 3WE, United Kingdom

Edited by Dennis A. Carson, University of California, San Diego, La Jolla, CA, and approved January 10, 2019 (received for review July 4, 2018)

Therapeutic mAbs must not only bind to their target but must
also be free from “developability issues” such as poor stability
or high levels of aggregation. While small-molecule drug discov-
ery benefits from Lipinski’s rule of five to guide the selection of
molecules with appropriate biophysical properties, there is cur-
rently no in silico analog for antibody design. Here, we model
the variable domain structures of a large set of post-phase-I
clinical-stage antibody therapeutics (CSTs) and calculate in sil-
ico metrics to estimate their typical properties. In each case,
we contextualize the CST distribution against a snapshot of the
human antibody gene repertoire. We describe guideline values
for five metrics thought to be implicated in poor developabil-
ity: the total length of the complementarity-determining regions
(CDRs), the extent and magnitude of surface hydrophobicity,
positive charge and negative charge in the CDRs, and asym-
metry in the net heavy- and light-chain surface charges. The
guideline cutoffs for each property were derived from the val-
ues seen in CSTs, and a flagging system is proposed to identify
nonconforming candidates. On two mAb drug discovery sets,
we were able to selectively highlight sequences with devel-
opability issues. We make available the Therapeutic Antibody
Profiler (TAP), a computational tool that builds downloadable
homology models of variable domain sequences, tests them
against our five developability guidelines, and reports potential
sequence liabilities and canonical forms. TAP is freely available at
opig.stats.ox.ac.uk/webapps/sabdab-sabpred/TAP.php.

therapeutic monoclonal antibodies | developability guidelines |
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Monoclonal antibodies (mAbs) are increasingly used as ther-
apeutics targeting a wide range of membrane-bound or

soluble antigens; of the 73 antibody therapies approved by the
European Medicines Agency or Food and Drug Administration
since 1986 (valid as of June 12, 2018), 10 were first approved in
2017 (1). There are many barriers to therapeutic mAb devel-
opment, besides achieving the desired affinity to the antigen.
These include intrinsic immunogenicity, chemical and confor-
mational instability, self-association, high viscosity, polyspeci-
ficity, and poor expression. In vitro screening for these negative
characteristics is now routine in industrial pipelines (2).

While some cases of poor developability are subtle in ori-
gin, others are less ambiguous. High levels of hydrophobicity,
particularly in the highly variable complementarity-determining
regions (CDRs), have repeatedly been implicated in aggre-
gation, viscosity, and polyspecificity (2–8). Asymmetry in the
net charge of the heavy- and light-chain variable domains
is also correlated with self-association and viscosity at high
concentrations (4, 9). Patches of positive (10) and negative
(11) charge in the CDRs are linked to high rates of clear-
ance and poor expression levels. Product heterogeneity (e.g.,
through oxidation, isomerization, or glycosylation) often results
from specific sequence motifs liable to post- or cotranslational
modification.

An improved understanding of the factors governing these
biophysical properties has enabled the development of in sil-
ico assays, which are faster and cheaper than their experimental
equivalents. Computational tools already facilitate the identifica-
tion of sequence liabilities, for example sites of lysine glycation
(12), aspartate isomerization (13), asparagine deamidation (13),
and the presence of cysteines or N-linked glycosylation sites (14).
A primary focus in recent years has been on designing software
that can better predict aggregation proclivity. Many algorithms
designed for this purpose use only the antibody sequence (4,
7, 8), although some suggest an analogous equation to use if
a structure is available (4). One purely structure-based method
is the Structural Aggregation Propensity (SAP) metric (5), later
included in the Developability Index (6). This has been shown to
detect aggregation-prone regions, such as surface patches (15),
and to be able to rank candidates relative to a known antibody
developability profile (11), using a closely related antibody crys-
tal structure. It is likely that SAP’s atomic-resolution analysis
would be too sensitive to use in comparing static homology mod-
els of diverse antibodies, given the current accuracy of structure
prediction (16).

An alternative approach to predict antibodies likely to have
poor developability profiles is to highlight those candidates
whose characteristics differ greatly from clinically tested thera-
peutic mAbs; a similar strategy in the field of pharmacokinetics
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led to the Lipinski rules for small-molecule drug design (17).
Here, we build 3D models of a large set of post-phase-I therapeu-
tics and survey their sequence and structural properties. These
values are then contextualized against human immunoglobulin
gene sequencing (Ig-seq) sequences and models, to see where
therapeutics share and deviate from the properties of human
mAbs.

Using the distributions of these properties, we build the Ther-
apeutic Antibody Profiler (TAP), a computational tool that
highlights antibodies with anomalous values compared with ther-
apeutics. TAP builds a downloadable structural model of an
antibody variable domain sequence and tests it against guideline
thresholds of five calculated measures likely to be linked to poor
developability. It also reports potential sequence liabilities and
all non-CDRH3 loop canonical forms.

Results
Sequence Data. As a dataset of mAbs unlikely to suffer with
developability issues, we used the variable domain heavy- and
light-chain sequences of 137 clinical-stage antibody therapeu-
tics (137 CSTs) (18). To contextualize the properties of the CST
set, we retrieved Vander Heiden’s recent snapshot of the human
antibody repertoire from the Observed Antibody Space database
(19, 20) (human VdH Ig-seq). We also used a larger proprietary
dataset procured by UCB Pharma Ltd. (human UCB Ig-seq). All
comparisons in the paper are made to the Vander Heiden data,
with UCB comparisons available in SI Appendix. Each human
Ig-seq dataset was analyzed as a set of nonredundant heavy or
light chains (human Ig-seq nonredundant chains) and as a set
of nonredundant CDR sequences (human Ig-seq nonredundant
CDRs). We chose these Ig-seq datasets as they contain simulta-
neously sequenced heavy and light chains and so are a promising
starting point for realistic in silico pairing, required to make
complete structural models.

Model Structures. High-quality structural information is critical
to accurately predict the surface properties of antibodies. As
crystal structures are often unavailable, or difficult to attain,
accurate modeling is a necessary step of an effective antibody
profiler. Accordingly, all our comparisons are made between
models, even when crystal structures are available, to avoid a bias
in terms of structural quality [modeling introduces a systematic
bias toward higher values for our patches of surface hydropho-
bicity (PSH) metric; see SI Appendix, Figs. S9 and S10]. ABody-
Builder (21) was run on the 56 CSTs with a reference Protein
Data Bank (PDB) (22) structure (as of May 4, 2018). Sequence-
identical templates were not included, and each resulting model
was aligned to its reference to evaluate the backbone rmsd across
all IMGT (international ImMunoGeneTics information system)
regions (SI Appendix, Methods). The mean framework and CDR
rmsds (SI Appendix, Table S1) were commensurate with the cur-
rent state of the art (16). For our structural property calculations,
we class surface-exposed residues as having a side chain with rel-
ative accessible surface area (ASArel,X) ≥7.5%, compared with
alanine-X-alanine for each residue X (23, 24). Using this defini-
tion, we identified all exposed residues in the models and PDB
structures. Of the 7,057 exposed crystal structure residues, only
265 (3.76%) were wrongly assigned as buried in the models.

As these results suggest that ABodyBuilder models are accu-
rate enough for our analysis, we used this software to model
all 137 CSTs (137 CST models) and diverse subsets of paired
human VdH Ig-seq chains (14,072 human VdH Ig-seq models)
and paired human UCB Ig-seq chains (19,019 human UCB Ig-
seq models). The pairing and modeling protocol was designed
to capture the sequence and structural diversity in each dataset,
within the constraints of modelability and computational expense
(SI Appendix, Methods). We then performed a series of in silico
assays to determine the TAP metrics.

IMGT CDR Lengths. Loop length has a major impact on the nature
of antigen binding. For example, if an antibody has a long
CDRH3 loop, it tends to form most of the interactions with
an antigen, while shorter CDRH3 loops contribute to concave
binding sites where other CDRs more often assist in binding (25).

The 137 CST and human Ig-seq sequences were IMGT-
numbered (26), and IMGT CDR definitions were used to split
the sequences by region. The 137 CST CDRH3 loops had a
median length of 12, compared with 15 for the human VdH Ig-
seq dataset (Fig. 1). In the case of CDRL3 the distributions were
closer, with a median length of 9 for the 137 CSTs and the human
VdH Ig-seq data (SI Appendix, Fig. S1E).

To test whether hybridomal development might account for
these findings—as it is known that mouse antibodies tend to have
shorter CDRH3 loops than human antibodies (27)—we split the
137 CST dataset by developmental origin (SI Appendix, Fig. S3).
Fully human therapeutics were disproportionately represented
at longer CDRH3s (mean: 13.21, median: 12), compared with
chimeric, humanized, or fully murine therapeutics (mean: 11.91,
median: 12). However, both therapeutic subsets still have shorter
CDRH3s than human-expressed antibodies.

The combined length of all CDRs for each antibody in the
137 CST dataset had a median value 48 (SI Appendix, Fig. S4).
The 137 CST total CDR length was highly correlated to CDRH3
length (Pearson’s correlation coefficient of +0.77, with a two-
tailed P value of 2.44e−28). While neither human Ig-seq dataset is
natively paired, our artificially paired human Ig-seq models had
a total CDR length distribution similar to that of the CSTs (SI
Appendix, Fig. S4), so CDR length should not bias comparisons
in other metrics. As the total length of the CDRs captures both
binding-site shape (lower value and more concave) and CDRH3
length (typically shorter in CSTs than our human Ig-seq heavy
chains), this metric was selected for inclusion in the final five
TAP guidelines.

Canonical Forms. In natural antibodies, all CDR loops, apart
from CDRH3, are thought to fall into structural classes known
as canonical forms (28, 29). We assigned length-independent
canonical forms (Methods) to the 137 CST and human Ig-seq
models. All assignable CST model CDRs were labeled with a
canonical form also present in at least one human Ig-seq model
dataset (SI Appendix, Figs. S5 and S6). Fewer than 19% of CST
CDRs remained unassigned in each loop region, suggesting that,
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Fig. 1. Comparing the CDRH3 length distributions of the 137 CSTs (red),
105,458 human VdH Ig-seq nonredundant CDRH3s (blue), and 551,193
human VdH Ig-seq nonredundant heavy chains (green). The CSTs have a
lower median CDRH3 length.
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despite engineering, a clear majority of non-CDRH3 therapeu-
tic CDR loops adopt well-characterized canonical forms. TAP
reports the canonical form of each modeled loop, highlighting if
any cannot be assigned.

Hydrophobicity. Hydrophobicity in the CDR regions has been
repeatedly linked to aggregation propensity in mAbs (2, 6–
8). Using our homology models, we estimated the effective
hydrophobicity of each residue by considering not only its degree
of apolarity but also whether or not it is solvent-exposed [side-
chain ASArel ≥7.5% (23, 24)]. As the energy of the hydrophobic
effect is approximately proportional to the interface area (30), we
developed a metric, PSH (Methods), that yields higher scores if
hydrophobic residues tend to neighbor one another in a region,
rather than being evenly separated. We evaluated PSH for the
137 CST and human Ig-seq models across two regions [the CDR
vicinity (Methods) and the entire variable (Fv) region] and with
five different hydrophobicity scales (31–35).

The results of all hydrophobicity scales were highly correlated
(e.g., R2 ≥0.91 between all scales in the CDR vicinity), and
so we use the Kyte and Doolittle (31) scale for all subsequent
comparisons. The mean CDR vicinity PSH values for the CST
and human VdH Ig-seq distributions were 123.30 ± 16.60 and
133.76 ± 21.08, respectively (Fig. 2A). CSTs were noticeably
underrepresented at higher CDR PSH values; galiximab is a rare
example of a therapeutic antibody with a high value (Fig. 2B).
A similar divergence occurred across the entire Fv region, with
mean values of 357.69 ± 22.95 and 370.56 ± 24.45, respectively
(SI Appendix, Fig. S7), implying the primary difference occurs
within the CDRs. This supports the theory that the high con-
centration conditions under which therapeutics are stored may
render them less tolerant of large patches of hydrophobicity in
the highly exposed CDR vicinity and also suggests that a sub-
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Fig. 3. Histograms of 137 CST (blue) and human VdH Ig-seq model (red) val-
ues for the (A) PPC and (B) PNC metrics in the CDR vicinity. In both measures,
the datasets are biased away from higher scores. (C) Histogram of structural
Fv charge symmetry parameter values. Both datasets show a bias away from
negative values.

set of natural human antibodies would be unsuitable therapeutic
candidates. We therefore included the CDR vicinity PSH score
as a TAP metric.

Charge. Surface patches of positive or negative charge have also
been linked to negative biophysical characteristics (10, 11). We
calculated two metrics designed to highlight regions of dense
charge: the patches of positive charge (PPC) and patches of neg-
ative charge (PNC) measures (Methods). All surface residues
were initially assigned the appropriate charge for their averaged
pKa values, as neighboring residues appear to have a limited
effect at pH 7.4 (4). The charge of residues found to be engaging
in salt bridges was then revised to zero.

The 137 CST models tend to avoid patches of charge in their
CDR vicinities, with 88.32% and 80.30% having PPC (Fig. 3A)
and PNC (Fig. 3B) values below 1, respectively. The human
VdH Ig-seq models displayed similar PPC and PNC distribu-
tions. Both PPC and PNC assays were carried forward as TAP
metrics.

When mAbs have oppositely charged VH and VL chains,
they typically have higher in vitro viscosity values (4). This
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aggregate-inducing electrostatic attraction is captured at the
sequence level by the Fv charge symmetry parameter (FvCSP)
metric—the mAb tends to be more viscous if the product of net
VH and VL charges is negative (4). Harnessing our structural
models, we calculated a variant (the structural Fv charge symme-
try parameter, SFvCSP), which only includes residues that are
surface-exposed, and not locked in salt bridges, in the evalua-
tion of net charge. In galiximab, for example, we “correct” the
charge of arginine H108 and aspartic acid L56 to 0, as the model
indicates that they form a salt bridge. The charges of the glu-
tamic acid at position H6, the aspartic acids at positions H107,
L98, and L108, and the histidine at position L40 are ignored
as their side chains are buried. The FvCSP score for this anti-
body would be 0 (net heavy chain charge of 0, net light chain
charge of −2.9), while the SFvCSP score is +2.0 (net heavy chain
charge of +2, net light chain charge of +1). A similarly low per-
centage of CST models (21.9%) and human VdH Ig-seq models
(20.8%) had negative SFvCSP scores (Fig. 3C), with mean val-
ues of 3.34 ± 7.44 and 3.67 ± 7.40, respectively. With such a bias
away from negative products, we chose the SFvCSP as our final
TAP property.

The Importance of Modeling. We then mined SAbDab (36) to
find all of the human, nonengineered, nonredundant (at 100%
sequence identity) X-ray crystal structures in the PDB (22). We
found only 33 such mAbs (identities listed in Dataset S1), as most
human mAb PDB entries involve some degree of engineering.
Calculating their TAP metric values, we found approximately
the same difference in mean CDR vicinity PSH score between
therapeutic and human crystal structures as we did between
therapeutic and human VdH Ig-seq models (−9.69 and −10.46
respectively; see SI Appendix, Table S2). However, if we had
compared human structures to therapeutic models, we would
not have detected a significant difference (therapeutic models:
123.30 ± 16.60; human structures: 124.61 ± 16.54). This system-
atic bias toward higher PSH values in models is seen most clearly
when comparing the values for CST crystal structures with CST
models (SI Appendix, Fig. S9).

Developability Guidelines. When comparing the TAP metric val-
ues obtained for the 56 CST structures and their correspond-
ing models, we saw positive correlations across all metrics (SI
Appendix, Fig. S10). This indicates that calculations performed
on ABodyBuilder models are typically predictive of the results
that would be obtained from a crystal structure, and therefore
that threshold values derived from models are informative.

While CSTs predictably share many features in common with
human antibodies, our CDR length and hydrophobicity distri-
butions imply that not every human antibody would make a
good therapeutic. Consequently, our developability guidelines
were set solely by CST values across the five selected metrics
(Table 1). An amber flag indicates that the antibody lies within
the extremes of the distribution, whereas a red flag indicates a
previously unobserved value for that property.

To confirm that these threshold definitions do not typically flag
mAbs without developability issues, we identified a further 105

Table 1. TAP amber and red flag cut-off thresholds, with respect
to the clinical-stage therapeutic distributions

Metric Amber flag region Red flag region

1. Total CDR length Bottom 5%, top 5% Above or below
2. PSH, CDR vicinity Bottom 5%, top 5% Above or below
3. PPC, CDR vicinity Top 5% Above
4. PNC, CDR vicinity Top 5% Above
5. SFvCSP Bottom 5% Below

Table 2. TAP amber and red flag regions, as defined by the
entire set of 242 CSTs

Metric Amber flag region Red flag region

Total CDR length 54 ≤ L ≤ 60 L > 60
PSH, CDR vicinity 83.84 ≤ PSH ≤ 100.71 PSH < 83.84

156.20 ≤ PSH ≤ 173.85 PSH > 173.85
PPC, CDR vicinity 1.25 ≤ PPC ≤ 3.16 PPC > 3.16
PNC, CDR vicinity 1.84 ≤ PNC ≤ 3.50 PNC > 3.50
SFvCSP -20.40 ≤ SFvCSP ≤ -6.30 SFvCSP < -20.40

PSH score is calculated with the Kyte and Doolittle (31) hydrophobicity
scale. L, length.

mAb therapies (105 CSTs, listed in Dataset S2), not included in
the 137 CST dataset, that had advanced to at least phase II in
clinical development.

Only eight of this set (7.69%) were assigned a red developa-
bility flag according to the boundaries set by the 137 CSTs,
an average of 0.08 red flags per newly tested therapeutic (SI
Appendix, Table S3). Erenumab received the most red flags—
for total CDR length (60), CDR vicinity PSH (173.85), and CDR
vicinity PPC (1.53). All other red-flagged therapeutics received
only one: rafivirumab for total CDR length (60); intetumumab
for CDR PSH (83.84); adacanumab, derlotuximab, lanadelumab,
and teprotumumab for CDR PPC (2.67, 2.66, 2.48, and 3.16,
respectively); and quilizumab for Fv charge asymmetry (−20.40).
The low red-flagging rate confirms that these guideline charac-
teristics are highly conserved across therapeutic-like antibodies.
Incorporating both sets of CSTs into a larger dataset (242 CSTs)
led to the new guideline values shown in Table 2. While most
metrics were only slightly adjusted, the PPC thresholds changed
quite significantly. As a result, we performed statistical sampling
over our TAP metric distributions to give a sense of the error that
might be inherent in these new threshold values (SI Appendix,
Methods and Table S4). All 242 CST TAP metric values are listed
in Dataset S3.

Case Studies. We tested whether these updated guideline val-
ues could highlight candidates with developability problems by
building models and running TAP on two datasets supplied by
MedImmune (Fig. 4). A lead anti-NGF antibody, MEDI-578,
showed minor aggregation issues during in vitro testing, of a level
usually rectifiable in development, whereas the affinity-matured
version, MEDI-1912, exhibited unrectifiably high levels of aggre-
gation (37). This observation was rationalized through SAP score
(6) values, indicating that a large hydrophobic patch on the sur-
face was responsible. TAP assigns MEDI-578 an amber flag and
MEDI-1912 a red flag—by a large margin—in the CDR vicinity
PSH metric (Fig. 4A). The paper describes how back-mutation of
three hydrophobic residues in MEDI-1912 to those of MEDI-578
led to MEDI-1912STT, fixing the aggregation issue while main-
taining potency. TAP assigns MEDI-1912STT no developability
flags (Fig. 4A).

A lead anti-IL13 candidate, AB008, had no developabil-
ity issues, but the affinity-matured version, AB001, had very
poor levels of expression (seven times lower than AB008) (11).
The authors highlighted the role of four consecutive negatively
charged residues in the L2 loop—mutation of the fourth nega-
tively charged residue to neutral asparagine (AB001DDEN) was
able to stabilize the loop backbone, mitigating the ionic repulsion
of the DDE motif, and returning acceptable levels of expression.
TAP assigns no developability flags to AB008 but a red flag to
AB001 and an amber flag to AB001DDEN for its CDR vicin-
ity PNC metric (Fig. 4B), again red-flagging the candidate with
prohibitive developability issues. Both AB001 and AB008, con-
firmed monomers in solution (11), did not flag for CDR vicinity
PSH score (Fig. 4A).
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Fig. 4. The (A) CDR vicinity PSH and (B) CDR vicinity PNC metrics for
the combined set of 242 CSTs (light blue) and MedImmune case stud-
ies (colored by assigned flag). MEDI-578, MEDI-1912, and MEDI-1912STT
all have the CDR vicinity PNC value labeled by an asterisk. Amber and
red dashed lines delineate the 242 CST guideline thresholds. Case studies
with prohibitive developability issues (MEDI-1912, AB001) are red-flagged
for the PSH and PNC metrics, respectively. Engineered versions without
developability issues (MEDI-1912STT, AB001DDEN) return to the range of
values previously seen in CSTs for all metrics. MEDI-578/1912/1912STT are
labeled as M-578/1912/1912STT, and AB-001/008/001DDEN are labeled as
A-001/008/DDEN for legibility.

Web Application. We have packaged the TAP into a web
application, available at opig.stats.ox.ac.uk/webapps/sabdab-
sabpred/TAP.php. TAP only requires the heavy- and light-chain
variable domain sequences as an input, returning a detailed pro-
file of an antibody with a typical runtime of less than 30 s. Flags
(green, amber, or red) are assigned to each of the TAP met-
rics, with accompanying histograms. An interactive molecular
viewer allows the user to visualize hydrophobicity (SI Appendix,
Fig. S11A), charge, and probable sequence liabilities on the
antibody model surface. Estimated model quality can be easily
accessed to help guide interpretation of the results (SI Appendix,
Fig. S11B). Finally, canonical forms are assigned to each non-
CDRH3 loop. A full sample output is shown in SI Appendix,
Fig. S12.

Discussion
We have analyzed several properties linked to poor developa-
bility across 242 post-phase-I therapeutics, with the assumption
that mAbs that have reached this stage of clinical trials have
characteristics amenable to therapeutic development.

By analyzing these properties, we have found evidence that
suggests that not every human antibody would make a good ther-
apeutic. This would be somewhat intuitive, as therapeutics suffer
a range of stresses during development (including variation
in pH and temperature, sheer forces, and high-concentration
storage conditions) that human-expressed antibodies are not
exposed to. The TAP metrics therefore depend on the values
seen across CSTs alone.

Our simple TAP guidelines will not capture the whole spec-
trum of developability issues. For example, they will not detect
sources of immunogenicity or more subtle mechanisms that lead
to poor stability. Nevertheless, we have shown that the TAP
guidelines can selectively highlight antibodies with expression or
aggregation issues (11, 37).

We intend to recalculate the threshold values regularly to
include new mAbs that have entered phase II of clinical trials. It
will also allow for the inevitable fluctuation in PSH, PPC, PNC,
and SFvCSP values returned by CSTs, as ABodyBuilder models
improve as the number of antibodies in the PDB increases (36).

When enough CSTs are available, it may be possible to stratify
the therapeutic guidelines into subclasses. For example, sepa-
rate thresholds could be considered for mAbs involving kappa
or lambda light chains. Lambda light chains tend to contribute
to higher average CDR vicinity PSH values across our 242 CST,
14,072 human VdH Ig-seq, and 19,019 human UCB Ig-seq mod-
els (SI Appendix, Table S5); DeKosky et al. (38) also found,
across their 2,000 natively paired models of mAbs, that lambda
CDRL3 loops are significantly more hydrophobic than their
kappa equivalents. As we currently have only 25 lambda light-
chain CSTs, we do not have enough data to safely determine a
guideline threshold. Nevertheless, as around 90% of post-phase-
I CSTs are derived from kappa light chains, this could suggest
that hydrophobicity-driven developability issues are far more
prevalent when using leads containing lambda light chains.

Other subclasses could include clinical trial progression,
active/discontinued trial status, or therapeutic species origin. At
this stage, neither splitting by clinical progression (SI Appendix,
Table S6) nor drug campaign status (SI Appendix, Table S7)
leads to significant differences in mean metric values. Human
and humanized mAbs have noticeably higher mean PSH values
than chimeric or mouse mAbs (SI Appendix, Table S8)—with the
caveat that there are only 36 mAbs in the latter category.

As with the Lipinski rule of five, the thresholds themselves
should not be interpreted as hard-and-fast rules, and the dis-
tance of red-flagged candidates outside the previously observed
bounds should be taken into consideration. Advances in process
development and formulation may soon redefine the limits of
permissible values (18).

Methods
All 242 CST sequences are supplied in Dataset S2, and the 551,193 heavy-
and 1,359,745 light-chain nonredundant, “healthy” human VdH Ig-seq
sequences can be obtained from the Observed Antibody Space database
(20). The 4,587,907 heavy-chain and 7,120,000 light-chain nonredundant
human UCB Ig-seq sequences are available as separated CDR and framework
regions at antibodymap.org/structure. Therapeutic models and human VdH
Ig-seq models can be downloaded from opig.stats.ox.ac.uk/resources. The
pairing/modeling protocol used to derive the human Ig-seq model datasets
can be found in SI Appendix, Methods.

CSTs. The initial set of 137 CST antibody sequences was sourced
from the supporting information of Jain et al. (18). The test set of
105 CST sequences was found through an extensive search of online
resources, including the IMGT mAb (www.imgt.org/mAb-DB/) and Anti-
body Society (https://www.antibodysociety.org/late-stage-clinical-pipeline/)
databases. The names, sequences, and metadata for each CST are supplied
in Dataset S2, with PDB structures (where available) listed at opig.stats.ox.
ac.uk/webapps/sabdab-sabpred/Therapeutic.html.

Canonical Forms. A length-independent canonical form clustering protocol
(39) was run on the North-defined (40) CDR loops of a SAbDab (36) snap-
shot from September 26, 2017. Model loops were inferred to have identical
canonical forms to the template used by ABodyBuilder (21).

Surface-Exposed Residues. Residues defined as “surface-exposed” have
≥7.5% relative exposure (24) across side-chain atoms, compared with the
open-chain form alanine-R-alanine, as calculated with the Shrake and
Rupley algorithm (23).
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CDR Vicinity. The “CDR vicinity” comprises every surface-exposed IMGT-
defined CDR and anchor residue, and all other surface-exposed residues
with a heavy atom within a 4-Å radius.

Salt Bridges. Salt bridges were defined as pairs of lysines/arginines and
aspartic acids/glutamic acids with a N+−O− distance ≤3.2 Å.

Hydrophobicity. Where R1 and R2 are two surface-exposed residues with
a closest heavy-atom distance, r12, <7.5 Å and H(R,S) is the normalized
hydrophobicity score (between 1 and 2) for residue R in scheme S, the PSH

metric can be calculated as
∑

R1R2

H(R1,S)H(R2,S)

r2
12

. The hydrophobicity scales

tested were Kyte and Doolittle (31), Wimley and White (32), Hessa et al.
(33), Eisenberg and McLachlan (34), and Black and Mould (35). Salt-bridge
residues were assigned the same value as glycine in each hydrophobicity
scale.

Charge. The following charges were assigned by sequence: aspartic acid,
−1; glutamic acid, −1; lysine, +1; arginine, +1; and histidine, +0.1
(Henderson–Hasselbalch equation applied: pKa 6, pH 7.4, and rounded up
to one decimal place). Tyrosine hydroxyl deprotonation was not considered.
Salt-bridge residues were assigned a charge of 0. The PPC and PNC metrics
are analogous in form to PSH, with H(R,S) substituted for |Q(R)|, the abso-
lute value of the charge assigned to residue R. SFvCSP values were calculated

as
[∑

RH
Q(RH)

][∑
RL

Q(RL)
]
, where RH and RL are surface-exposed VH and

VL residues, respectively.
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