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Spaced repetition is a technique for efficient memorization which
uses repeated review of content following a schedule determined
by a spaced repetition algorithm to improve long-term reten-
tion. However, current spaced repetition algorithms are simple
rule-based heuristics with a few hard-coded parameters. Here,
we introduce a flexible representation of spaced repetition using
the framework of marked temporal point processes and then
address the design of spaced repetition algorithms with prov-
able guarantees as an optimal control problem for stochastic
differential equations with jumps. For two well-known human
memory models, we show that, if the learner aims to maximize
recall probability of the content to be learned subject to a cost
on the reviewing frequency, the optimal reviewing schedule is
given by the recall probability itself. As a result, we can then
develop a simple, scalable online spaced repetition algorithm,
MEMORIZE, to determine the optimal reviewing times. We per-
form a large-scale natural experiment using data from Duolingo, a
popular language-learning online platform, and show that learn-
ers who follow a reviewing schedule determined by our algorithm
memorize more effectively than learners who follow alternative
schedules determined by several heuristics.

memorization | spaced repetition | human learning | marked
temporal point processes | stochastic optimal control

Our ability to remember a piece of information depends crit-
ically on the number of times we have reviewed it, the temporal
distribution of the reviews, and the time elapsed since the last
review, as first shown by a seminal study by Ebbinghaus (1). The
effect of these two factors has been extensively investigated in the
experimental psychology literature (2, 3), particularly in second
language acquisition research (4–7). Moreover, these empirical
studies have motivated the use of flashcards, small pieces of
information a learner repeatedly reviews following a schedule
determined by a spaced repetition algorithm (8), whose goal is to
ensure that learners spend more (less) time working on forgotten
(recalled) information.

The task of designing spaced repetition algorithms has a rich
history, starting with the Leitner system (9). More recently,
several works (10, 11) have proposed heuristic algorithms that
schedule reviews just as the learner is about to forget an item,
i.e., when the probability of recall, as given by a memory model
of choice (1, 12), falls below a threshold. An orthogonal line of
research (7, 13) has pursued locally optimal scheduling by iden-
tifying which item would benefit the most from a review given
a fixed reviewing time. In doing so, the researchers have also
proposed heuristic algorithms that decide which item to review
by greedily selecting the item which is closest to its maximum
learning rate.

In recent years, spaced repetition software and online plat-
forms such as Mnemosyne (mnemosyne-proj.org), Synap (www.
synap.ac), and Duolingo (www.duolingo.com) have become
increasingly popular, often replacing the use of physical flash-
cards. The promise of these pieces of software and online
platforms is that automated fine-grained monitoring and greater
degree of control will result in more effective spaced repeti-

tion algorithms. However, most of the above spaced repetition
algorithms are simple rule-based heuristics with a few hard-
coded parameters (8), which are unable to fulfill this promise—
adaptive, data-driven algorithms with provable guarantees have
been largely missing until very recently (14, 15). Among these
recent notable exceptions, the work most closely related to ours
is by Reddy et al. (15), who proposed a queueing network model
for a particular spaced repetition method—the Leitner system
(9) for reviewing flashcards—and then developed a heuristic
approximation algorithm for scheduling reviews. However, their
heuristic does not have provable guarantees, it does not adapt
to the learner’s performance over time, and it is specifically
designed for the Leitner systems.

In this work, we develop a computational framework to derive
optimal spaced repetition algorithms, specially designed to adapt
to the learner’s performance, as continuously monitored by mod-
ern spaced repetition software and online learning platforms.
More specifically, we first introduce a flexible representation
of spaced repetition using the framework of marked temporal
point processes (16). For several well-known human memory
models (1, 12, 17–19), we use this presentation to express the
dynamics of a learner’s forgetting rates and recall probabilities
for the content to be learned by means of a set of stochastic
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differential equations (SDEs) with jumps. Then, we can find the
optimal reviewing schedule for spaced repetition by solving a
stochastic optimal control problem for SDEs with jumps (20–23).
In doing so, we need to introduce a proof technique to find a
solution to the so-called Hamilton–Jacobi–Bellman (HJB) equa-
tion (SI Appendix, sections 3 and 4), which is of independent
interest.

For two well-known memory models, we show that, if the
learner aims to maximize recall probability of the content to be
learned subject to a cost on the reviewing frequency, the solu-
tion uncovers a linear relationship with a negative slope between
the optimal rate of reviewing, or reviewing intensity, and the
recall probability of the content to be learned. As a consequence,
we can develop a simple, scalable online spaced repetition algo-
rithm, which we name MEMORIZE, to determine the optimal
reviewing times. Finally, we perform a large-scale natural exper-
iment using data from Duolingo, a popular language-learning
online platform, and show that learners who follow a reviewing
schedule determined by our algorithm memorize more effec-
tively than learners who follow alternative schedules determined
by several heuristics. To facilitate research in this area, we are
releasing an open-source implementation of our algorithm (24).

Modeling Framework of Spaced Repetition. Our framework is
agnostic to the particular choice of memory model—it provides
a set of techniques to find reviewing schedules that are opti-
mal under a memory model. Here, for ease of exposition, we
showcase our framework for one well-known memory model
from the psychology literature, the exponential forgetting curve
model with binary recalls (1, 17), and use (a variant of) a recent
machine-learning method, half-life regression (25), to estimate
the effect of the reviews on the parameters of such model.
[In SI Appendix, sections 6 and 7, we apply our framework
to other two popular memory models, the power-law forget-
ting curve model (18, 19) and the multiscale context model
(MCM) (12).]

More specifically, given a learner who wants to memorize a set
of items I using spaced repetition, i.e., repeated, spaced review
of the items, we represent each reviewing event as a triplet

e := ( i
↑

item

,

time
↓
t, r

↑
recall

),

which means that the learner reviewed item i ∈I at time t
and either recalled it (r =1) or forgot it (r =0). Here, note
that each reviewing event includes the outcome of a test (i.e., a
recall) since, in most spaced repetition software and online plat-
forms such as Mnemosyne, Synap, and Duolingo, the learner is
tested in each review, following the seminal work of Reidiger and
Karpicke (26).

Given the above representation, we model the probability that
the learner recalls (forgets) item i at time t using the exponential
forgetting curve model; i.e.,

mi(t) :=P(r)= exp (−ni(t)(t − tr )), [1]

where tr is the time of the last review and ni(t)∈R+ is the
forgetting rate at time t , which may depend on many factors,
e.g., item difficulty and/or number of previous (un)successful
recalls of the item. [Previous work often uses the inverse of
the forgetting rate, referred to as memory strength or half-life,
s(t)=n−1(t) (15, 25). However, it is more tractable for us to
work in terms of forgetting rates.] Then, we keep track of the
reviewing times using a multidimensional counting process N(t),
in which the i th entry, Ni(t), counts the number of times the
learner has reviewed item i up to time t . Following the liter-
ature on temporal point processes (16), we characterize these

counting processes using their corresponding intensities u(t),
i.e., E[dN(t)]= u(t)dt , and think of the recall r as their binary
marks. Moreover, every time that a learner reviews an item, the
recall r has been experimentally shown to have an effect on
the forgetting rate of the item (3, 15, 25). Here, we estimate
such an effect using half-life regression (25), which implicitly
assumes that recalls of an item i during a review have a multi-
plicative effect on the forgetting rate ni(t)—a successful recall
at time tr changes the forgetting rate by (1−αi), i.e., ni(t)=
(1−αi)ni(tr ), αi ≤ 1, while an unsuccessful recall changes the
forgetting rate by (1+βi), i.e., ni(t)= (1+βi)ni(tr ), βi ≥ 0. In
this context, the initial forgetting rate, ni(0), captures the diffi-
culty of the item, with more difficult items having higher initial
forgetting rates compared with easier items, and the parame-
ters αi , βi , and ni(0) are estimated using real data (refer to SI
Appendix, section 8 for more details).

Before we proceed farther, we acknowledge that several lab-
oratory studies (6, 27) have provided empirical evidence that
the retention rate follows an inverted U shape, i.e., mass prac-
tice does not improve the forgetting rate—if an item is in a
learner’s short-term memory when the review happens, the long-
term retention does not improve. Thus, one could argue for
time-varying parameters αi(t) and βi(t) in our framework. How-
ever, there are several reasons that prevent us from that: (i) The
derivation of an optimal reviewing schedule under time-varying
parameters becomes very challenging; (ii) for the reviewing
sequences in our Duolingo dataset, allowing for time-varying αi

and βi in our modeling framework does not lead to more accu-
rate recall predictions (SI Appendix, section 9); and (iii) several
popular spaced repetition heuristics, such as the Leitner system
with exponential spacing and SuperMemo, have achieved rea-
sonable success in practice despite implicitly assuming constant
αi and βi . [The Leitner system with exponential spacing can be
explicitly cast using our formulation with particular choices of
αi and βi and the same initial forgetting rate, ni(0)=n(0), for
all items (SI Appendix, section 11).] That being said, it would be
an interesting venue for future work to derive optimal reviewing
schedules under time-varying parameters.

Next, we express the dynamics of the forgetting rate ni(t) and
the recall probability mi(t) for each item i ∈I using SDEs with
jumps. This is very useful for the design of our spaced repetition
algorithm using stochastic optimal control. More specifically, the
dynamics of the forgetting rate ni(t) are readily given by

dni(t)=−αini(t)ri(t)dNi(t)+βini(t)(1− ri(t))dNi(t), [2]

where Ni(t) is the corresponding counting process and ri(t)∈
{0, 1} indicates whether item i has been successfully recalled at
time t . Similarly, the dynamics of the recall probability mi(t) are
given by Proposition 1 (proved in SI Appendix, section 1):

Proposition 1. Given an item i ∈I with reviewing intensity ui(t),
the recall probability mi(t), defined by Eq. 1, is a Markov process
whose dynamics can be defined by the following SDE with jumps,

dmi(t)=−ni(t)mi(t)dt +(1−mi(t))dNi(t), [3]

where Ni(t) is the counting process associated to the reviewing
intensity ui(t)†.

Finally, given a set of items I, we cast the design of a spaced
repetition algorithm as the search of the optimal item review-
ing intensities u(t)= [ui(t)]i∈I that minimize the expected value
of a particular (convex) loss function `(m(t), n(t), u(t)) of the
recall probability of the items, m(t)= [mi(t)]i∈I ; the forgetting

†To derive Eq. 3, we assume that the recall probability mi(t) is set to 1 every time item i is
reviewed. Here, one may also account for item difficulty by considering that, for more
difficult items, the recall probability is set to oi ∈ [0, 1) every time item i is reviewed.
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rates, n(t)= [ni(t)]i∈I ; and the intensities themselves, u(t); over
a time window (t0, tf ]; i.e.,

minimize
u(t0,tf ]

E
[
φ(m(tf ), n(tf ))+

∫ tf

t0

`(m(τ), n(τ), u(τ))dτ
]

subject to u(t)≥ 0 ∀t ∈ (t0, tf ), [4]

where u(t0, tf ] denotes the item reviewing intensities from t0
to tf , the expectation is taken over all possible realizations of
the associated counting processes and (item) recalls, the loss
function is nonincreasing (nondecreasing) with respect to the
recall probabilities (forgetting rates and intensities) so that it
rewards long-lasting learning while limiting the number of item
reviews, and φ(m(tf ), n(tf )) is an arbitrary penalty function. [The
penalty function φ(m(tf ), n(tf )) is necessary to derive the opti-
mal reviewing intensities u∗(t).] Here, note that the forgetting
rates n(t) and recall probabilities m(t), as defined by Eqs. 2 and
3, depend on the reviewing intensities u(t) we aim to optimize
since E[dN(t)]= u(t)dt .

The MEMORIZE Algorithm. The spaced repetition problem, as
defined by Eq. 4, can be tackled from the perspective of stochas-
tic optimal control of jump SDEs (20). Here, we first derive
a solution to the problem considering only one item, provide
an efficient practical implementation of the solution, and then
generalize it to the case of multiple items.

Given an item i , we can write the spaced repetition problem,
i.e., Eq. 4, for it with reviewing intensity ui(t)= u(t) and associ-
ated counting process Ni(t)=N (t), recall outcome ri(t)= r(t),
recall probability mi(t)=m(t), and forgetting rate ni(t)=n(t).
Further, using Eqs. 2 and 3, we can define the forgetting rate
n(t) and recall probability m(t) by the following two coupled
jump SDEs,

dn(t) = −αn(t)r(t)dN (t)+βn(t)(1− r(t))dN (t)

dm(t) = −n(t)m(t)dt +(1−m(t))dN (t)

with initial conditions n(t0)=n0 and m(t0)=m0.
Next, we define an optimal cost-to-go function J for the above

problem, use Bellman’s principle of optimality to derive the cor-
responding HJB equation (28), and exploit the unique structure
of the HJB equation to find the optimal solution to the problem.

Definition 2: The optimal cost-to-go J (m(t),n(t), t) is defined
as the minimum of the expected value of the cost of going from state
(m(t),n(t)) at time t to the final state at time tf :

J = min
u(t,tf ]

E
(N (s),r(s))|

s=tf
s=t

[
φ(m(tf ),n(tf ))

+

∫ tf

t

`(m(τ), u(τ))dτ

]
. [5]

Now, we use Bellman’s principle of optimality, which the above
definition allows, to break the problem into smaller subprob-
lems. [Bellman’s principle of optimality readily follows using
the Markov property of the recall probability m(t) and forget-
ting rate n(t).] With dJ (m(t),n(t), t)= J (m(t + dt),n(t + dt),
t + dt)− J (m(t),n(t), t), we can, hence, rewrite Eq. 5 as

J (m(t),n(t), t)= min
u(t,t+dt]

E[J (m(t + dt),n(t + dt), t + dt)]

+ `(m(t),n(t), u(t))dt

0= min
u(t,t+dt]

E[dJ (m(t),n(t), t)]+ `(m(t),n(t), u(t))dt . [6]

Then, to derive the HJB equation, we differentiate J with
respect to time t , m(t), and n(t) using SI Appendix, section 2,
Lemma 1:

0= Jt(m,n, t)−nmJm(m,n, t)

+ min
u(t,t+dt]

{`(m,n, u) [J (1, (1−α)n, t)m

+ J (1, (1+β)n, t)(1−m)− J (m,n, t)]u(t)}. [7]

To solve the above equation, we need to define the loss `.
Following the literature on stochastic optimal control (28), we
consider the following quadratic form, which is nonincreasing
(nondecreasing) with respect to the recall probabilities (inten-
sities) so that it rewards learning while limiting the number of
item reviews,

`(m(t),n(t), u(t))=
1

2
(1−m(t))2 +

1

2
qu2(t), [8]

where q is a given parameter, which trades off recall probabil-
ity and number of item reviews—the higher its value, the lower
the number of reviews. Note that this particular choice of loss
function does not directly place a hard constraint on number
of reviews; instead, it limits the number of reviews by penaliz-
ing high reviewing intensities. (Given a desired level of practice,
the value of the parameter q can be easily found by simulation
since the average number of reviews decreases monotonically
with respect to q .)

Under these definitions, we can find the relationship between
the optimal intensity and the optimal cost by taking the derivative
with respect to u(t) in Eq. 7:

u∗(t)= q−1 [J (m(t),n(t), t)− J (1, (1−α)n(t), t)m(t)

−J (1, (1+β)n(t), t)(1−m(t))]+.

Finally, we plug the above equation into Eq. 7 and find that
the optimal cost-to-go J needs to satisfy the following nonlinear
differential equation:

0= Jt(m(t),n(t), t)−n(t)m(t)Jm(m(t),n(t), t)

+
1

2
(1−m(t))2− 1

2
q−1 [J (m(t),n(t), t)

−J (1, (1−α)n(t), t)m(t)

− J (1, (1+β)n(t), t)(1−m(t))]2+.

To continue farther, we rely on a technical lemma (SI Ap-
pendix, section 3, Lemma 2), which derives the optimal cost-to-go
J for a parameterized family of losses `. Using SI Appendix, sec-
tion 3, Lemma 2, the optimal reviewing intensity is readily given
by Theorem 3 (proved in SI Appendix, section 4):

Theorem 3. Given a single item, the optimal reviewing intensity for
the spaced repetition problem, defined by Eq. 4, under quadratic
loss, defined by Eq. 8, is given by

u∗(t)= q−1/2(1−m(t)). [9]

Note that the optimal intensity depends only on the recall
probability, whose dynamics are given by Eqs. 2 and 3, and
thus allows for a very efficient procedure to sample reviewing
times, which we name MEMORIZE. Algorithm 1 provides a
pseudocode implementation of MEMORIZE. Within the algo-
rithm, Sample(u(t)) samples from an inhomogeneous Poisson
process with intensity u(t) and it returns the sampled time
and ReviewItem(t ′) returns the recall outcome r of an item
reviewed at time t ′, where r =1 indicates the item was recalled
successfully and r =0 indicates it was not recalled. Moreover,
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note that t denotes a (time) parameter, s and t ′ denote specific
(time) values, and we sample from an inhomogeneous Pois-
son process using a standard thinning algorithm (29). [In some
practical deployments, one may want to discretize the optimal
intensity u(t) and, e.g., “at top of each hour, decide whether to
do a review or not.”]

Given a set of multiple items I with reviewing intensities u(t)
and associated counting processes N(t), recall outcomes r(t),
recall probabilities m(t), and forgetting rates n(t), we can solve
the spaced repetition problem defined by Eq. 4 similarly as in the
case of a single item. More specifically, consider the following
quadratic form for the loss `,

`(m(t),n(t), u(t))=
1

2

∑
i∈I

(1−mi(t))
2 +

1

2

∑
i∈I

qiu
2
i (t),

where {qi}i∈I are given parameters, which trade off recall prob-
ability and number of item reviews and may favor the learning
of one item over another. Then, one can exploit the indepen-
dence among items assumption to derive the optimal reviewing
intensity for each item, proceeding similarly as in the case of a
single item:

Theorem 4. Given a set of items I, the optimal reviewing intensity
for each item i ∈I in the spaced repetition problem, defined by Eq.
4, under quadratic loss is given by

u∗i (t)= q
−1/2
i (1−mi(t)). [10]

Finally, note that we can easily sample item reviewing times
simply by running |I| instances of MEMORIZE, one per item.

Experimental Design. We use data gathered from Duolingo, a
popular language-learning online platform (the dataset is avail-
able at https://github.com/duolingo/halflife-regression), to vali-
date our algorithm MEMORIZE. (Refer to SI Appendix, section
5 for an experimental validation of our algorithm using synthetic
data, whose goal is analyzing it under a controlled setting using
metrics and baselines that we cannot compute in the real data we
have access to.) This dataset consists of ∼12 million sessions of
study, involving∼5.3 million unique (user, word) pairs, which we
denote byD, collected over the period of 2 wk. In a single session,
a user answers multiple questions, each of which contains multi-
ple words. (Refer to SI Appendix, section 12 for additional details
on the Duolingo dataset.) Each word maps to an item i and the
fraction of correct recalls of sentences containing a word i in the
session is used as an empirical estimate of its recall probability
m̂(t) at the time of the session t , as in previous work (25). If a
word is recalled perfectly during a session, then it is considered a
successful recall, i.e., ri(t)= 1, and otherwise it is considered an
unsuccessful recall, i.e., ri(t)= 0. Since we can expect the esti-
mation of the model parameters to be accurate only for users

and items with enough numbers of reviewing events, we con-
sider only users with at least 30 reviewing events and words that
were reviewed at least 30 times. After this preprocessing step,
our dataset consists of ∼5.2 million unique (user, word) pairs.

We compare the performance of our method with two base-
lines: (i) a uniform reviewing schedule, which sends item(s) for
review at a constant rate µ, and (ii) a threshold-based reviewing
schedule, which increases the reviewing intensity of an item by
c exp ((t − s)/ζ) at time s , when its recall probability reaches a
threshold mth . The threshold baseline is similar to the heuristics
proposed by previous work (10, 11, 30), which schedule reviews
just as the learner is about to forget an item. We do not com-
pare with the algorithm proposed by Reddy et al. (15) because,
as it is specially designed for the Leitner system, it assumes a dis-
crete set of forgetting rate values and, as a consequence, is not
applicable to our (more general) setting.

Although we cannot make actual interventions to evaluate
the performance of each method, the following insight allows
for a large-scale natural experiment: Duolingo uses hand-tuned
spaced repetition algorithms, which propose reviewing times
to the users; however, users often do not perform reviews
exactly at the recommended times, and thus schedules for some
(user, item) pairs will be closer to uniform than threshold or
MEMORIZE and vice versa, as shown in Fig. 1. As a con-
sequence, we are able to assign each (user, item) pair to a
treatment group (i.e., MEMORIZE) or a control group (i.e.,
uniform or threshold). More in detail, we leverage this insight
to design a robust evaluation procedure which relies on (i) like-
lihood comparisons to determine how closely a user followed
a particular reviewing schedule during all reviews but the last
in a reviewing sequence, i.e., e1, . . . , en−1 in a sequence with
n reviews, and (ii) a quality metric, empirical forgetting rate
n̂ , which can be estimated using only the last review en (and
the retention interval tn − tn−1) of each reviewing sequence and
does not depend on the particular choice of memory model.
Refer to Materials and Methods for more details on our eval-
uation procedure. [Note that our goal is to evaluate how well
different reviewing schedule spaces the reviews—our objective
is not to evaluate the predictive power of the underlying mem-
ory models; we are relying on previous work for that (18, 25).

Fig. 1. Examples of (user, item) pairs whose corresponding reviewing times
have high likelihood under MEMORIZE (Top), threshold-based reviewing
schedule (Middle), and uniform reviewing schedule (Bottom). In every plot,
each candlestick corresponds to a reviewing event with a green circle (red
cross) if the recall was successful (unsuccessful), and time t = 0 corresponds
to the first time the user is exposed to the item in our dataset, which may
or may not correspond with the first reviewing event. The pairs whose
reviewing times follow more closely MEMORIZE or the threshold-based
schedule tend to increase the time interval between reviews every time a
recall is successful while, in contrast, the uniform reviewing schedule does
not. MEMORIZE tends to space the reviews more than the threshold-based
schedule, achieving the same recall pattern with less effort.
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Fig. 2. (A–C) Average empirical forgetting rate for the top 25% of pairs in terms of likelihood for MEMORIZE, the uniform reviewing schedule,
and the threshold-based reviewing schedule for sequences with different numbers of reviews n and different training periods T = tn−1− t1. Boxes
indicate 25% and 75% quantiles and solid lines indicate median values, where lower values indicate better performance. MEMORIZE offers a com-
petitive advantage with respect to the uniform and the threshold-based baselines and, as the training period increases, the number of reviews
under which MEMORIZE achieves the greatest competitive advantage increases. For each distinct number of reviews and training periods, ∗ indi-
cates a statistically significant difference (Mann–Whitney U test; P-value < 0.05) between MEMORIZE vs. threshold and MEMORIZE vs. uniform
scheduling.

However, for completeness, we provide a series of benchmarks
and evaluations for the memory models we used in this work in
SI Appendix, section 8.]

Results
We first group (user, item) pairs by their number of reviews n
and their training period, i.e., tn−1− t1. Then, for each recall pat-
tern, we create the treatment (MEMORIZE) and control (uni-
form and threshold) groups and, for every reviewing sequence in
each group, compute its empirical forgetting rate. Fig. 2 summa-
rizes the results for sequences with up to seven reviews since the
beginning of the observation window for three distinct training
periods. The results show that MEMORIZE offers a competi-
tive advantage with respect to the uniform- and threshold-based
baselines and, as the training period increases, the number of
reviews under which MEMORIZE achieves the greatest com-
petitive advantage increases. Here, we can rule out that this
advantage is a consequence of selection bias due to the item
difficulty (SI Appendix, section 13).

Next, we go a step farther and verify that, whenever a spe-
cific learner follows MEMORIZE more closely, her performance
is superior. More specifically, for each learner with at least
70 reviewing sequences with a training period T =8± 3.2 d,
we select the top and bottom 50% of reviewing sequences
in terms of log-likelihood under MEMORIZE and compute
the Pearson correlation coefficient between the empirical for-
getting rate and log-likelihood values. Fig. 3 summarizes the
results, which show that users, on average, achieve lower empir-
ical forgetting rates whenever they follow MEMORIZE more
closely.

Since the Leitner system (9), there have been a wealth of
spaced repetition algorithms (7, 8, 10, 11, 13). However, there
has been a paucity of work on designing adaptive data-driven
spaced repetition algorithms with provable guarantees. In this
work, we have introduced a principled modeling framework to
design online spaced repetition algorithms with provable guar-
antees, which are specially designed to adapt to the learners’
performance, as monitored by modern spaced repetition soft-
ware and online platforms. Our modeling framework represents
spaced repetition using the framework of marked temporal point
processes and SDEs with jumps and, exploiting this represen-
tation, it casts the design of spaced repetition algorithms as a
stochastic optimal control problem of such jump SDEs. Since our
framework is agnostic to the particular modeling choices, i.e.,
the memory model and the quadratic loss function, we believe

it provides a powerful tool to find spaced repetition algorithms
that are provably optimal under a given choice of memory model
and loss.

There are many interesting directions for future work. For
example, it would be interesting to perform large-scale interven-
tional experiments to assess the performance of our algorithm in
comparison with existing spaced repetition algorithms deployed
by, e.g., Duolingo. Moreover, in our work, we consider a particu-
lar quadratic loss and soft constraints on the number of reviewing
events; however, it would be useful to derive optimal review-
ing intensities for other losses capturing particular learning goals
and hard constraints on the number of events. We assumed that,
by reviewing an item, one can influence only its recall probabil-
ity and forgetting rate. However, items may be dependent and,
by reviewing an item, one can influence the recall probabili-
ties and forgetting rates of several items. The dataset we used
spans only 2 wk and that places a limitation on the range of
time intervals between reviews and retention intervals we can
study. It would be very interesting to evaluate our framework in
datasets spanning longer periods of time. Finally, we believe that
the mathematical techniques underpinning our algorithm, i.e.,
stochastic optimal control of SDEs with jumps, have the poten-
tial to drive the design of control algorithms in a wide range of
applications.

Fig. 3. Pearson correlation coefficient between the log-likelihood of
the top and bottom 50% of reviewing sequences of a learner under
MEMORIZE and its associated empirical forgetting rate. The circles indicate
median values and the bars indicate standard error. Lower correlation values
correspond to greater gains due to MEMORIZE. To ensure reliable estima-
tion, we considered learners with at least 70 reviewing sequences with a
training period T = 8± 3.2 d. There were 322 of such learners.
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Materials and Methods
Evaluation Procedure. To evaluate performance of our proposed algo-
rithm, we rely on the following evaluation procedure. For each (user,
item) reviewing sequence, we first perform a likelihood-based comparison
and determine how closely it follows a specific reviewing schedule (be it
MEMORIZE, uniform, or threshold) during the first n− 1 reviews, the train-
ing reviews, where n is the number of reviews in the reviewing sequence.
Second, we compute a quality metric, empirical forgetting rate n̂(tn), using
the last review, the nth review or test review, and the retention inter-
val tn− tn−1. Third, for each reviewing sequence, we record the value of
the quality metric, the training period (i.e., T = tn−1− t1), and the likeli-
hood under each reviewing schedule. Finally, we control for the training
period and the number of reviewing events and create the treatment and
control groups by picking the top 25% of pairs in terms of likelihood
for each method, where we skip any sequence lying in the top 25% for
more than one method. Refer to SI Appendix, section 13 for an additional
analysis showing that our evaluation procedure satisfies the random assign-
ment assumption for the item difficulties between treatment and control
groups (31).

In the above procedure, to do the likelihood-based comparison, we first
estimate the parameters α and β and the initial forgetting rate ni(0) using
half-life regression on the Duolingo dataset. Here, note that we fit a single
set of parameters α and β for all items and a different initial forgetting
rate ni(0) per item i, and we use the power-law forgetting curve model
due to its better performance (in terms of MAE) in our experiments (refer
to SI Appendix, section 8 for more details). Then, for each user, we use
maximum-likelihood estimation to fit the parameter q in MEMORIZE and
the parameter µ in the uniform reviewing schedule. For the threshold-
based schedule, we fit one set of parameters c and ζ for each sequence
of review events, using maximum-likelihood estimation for the parameter
c and grid search for the parameter ζ, and we fit one parameter mth for
each user using grid search. Finally, we compute the likelihood of the times
of the n− 1 reviewing events for each (user, item) pair under the intensity

given by MEMORIZE, i.e., u(t) = q−1/2(1−m(t)); the intensity given by the
uniform schedule, i.e., u(t) =µ; and the intensity given by the threshold-
based schedule, i.e., u(t) = c exp((t− s)/ζ). The likelihood LL({ti}) of a set of
reviewing events {ti}given an intensity function u(t) can be computed as
follows (16):

LL({ti}) =
∑

i

log u(ti)−
∫ T

0
u(t) dt.

More details on the empirical distribution of likelihood values under each
reviewing schedule are provided in SI Appendix, section 10.

Quality Metric: Empirical Forgetting Rate. For each (user, item), the empirical
forgetting rate is an empirical estimate of the forgetting rate by the time tn

of the last reviewing event; i.e.,

n̂ =− log(m̂(tn))/(tn− tn−1),

where m̂(tn) is the empirical recall probability, which consists of the frac-
tion of correct recalls of sentences containing word (item) i in the session at
time tn. Note that this empirical estimate does not depend on the particular
choice of memory model and, given a sequence of reviews, the lower the
empirical forgetting rate is, the more effective the reviewing schedule.

Moreover, for a more fair comparison across items, we normalize each
empirical forgetting rate using the average empirical initial forgetting rate
of the corresponding item at the beginning of the observation window n̂0;
i.e., for an item i,

n̂0 =
1

|Di|
∑

(u,i)∈Di

n̂0,(u,i),

whereDi ⊆D is the subset of (user, item) pairs in which item i was reviewed.
Furthermore, n̂0,(u,i) =− log(m̂(t(u,i),1))/(t(u,i),1− t(u,i),0), where t(u,i),k is the
kth review in the reviewing sequence associated to the (u, i) pair. How-
ever, our results are not sensitive to this normalization step, as shown in
SI Appendix, section 14.
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